
HAL Id: hal-01555558
https://inria.hal.science/hal-01555558

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Taking Garbage Collection Overheads Off the Critical
Path in SSDs

Myoungsoo Jung, Ramya Prabhakar, Mahmut Taylan Kandemir

To cite this version:
Myoungsoo Jung, Ramya Prabhakar, Mahmut Taylan Kandemir. Taking Garbage Collection Over-
heads Off the Critical Path in SSDs. 13th International Middleware Conference (MIDDLEWARE),
Dec 2012, Montreal, QC, Canada. pp.164-186, �10.1007/978-3-642-35170-9_9�. �hal-01555558�

https://inria.hal.science/hal-01555558
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Taking Garbage Collection Overheads off the
Critical Path in SSDs

Myoungsoo Jung, Ramya Prabhakar, Mahmut Taylan Kandemir

The Pennsylvania State University

Abstract. Solid state disks (SSDs) have the potential to revolutionize
the storage system landscape, mostly due to their good random access
performance, compared to hard disks. However, garbage collection (GC)
in SSD introduces significant latencies and large performance variations,
which renders widespread adoption of SSDs difficult. To address this
issue, we present a novel garbage collection strategy, consisting of two
components, called Advanced Garbage Collection (AGC) and Delayed
Garbage Collection (DGC), that operate collectively to migrate GC op-
erations from busy periods to idle periods. More specifically, AGC is
employed to defer GC operations to idle periods in advance, based on
the type of the idle periods and on-demand GC needs, whereas DGC
complements AGC by handling the collections that could not be han-
dled by AGC. Our comprehensive experimental analysis reveals that the
proposed strategies provide stable SSD performance by significantly re-
ducing GC overheads. Compared to the state-of-the-art GC strategies,
P-FTL, L-FTL and H-FTL, our AGC+DGC scheme reduces GC over-
heads, on average, by about 66.7%, 96.7% and 98.2%, respectively.

1 Introduction

Over the past decade, different computing domains, ranging from high perfor-
mance computing and enterprise server platforms to embedded systems, are
adopting SSDs [1] [2], due to their technical merits such as good random ac-
cess performance, low power consumption, higher robustness to vibrations and
temperature, and higher read/write bandwidth than hard disks [3]. NAND flash
capacity is increasing by two to four times every two years [4] and SSD prices
are expected to continue to fall to the extent of becoming cheaper than high-
speed hard disk [5], which can in turn enable widespread deployment in diverse
computing domains.

Modern SSDs internally employ a flash translation layer (FTL), managing
two intrinsic properties of NAND flash memory to emulate it as a block device:
first, no write is allowed before erasing a block, called the erase-before-write
property. Second, NAND flash makers adopt a write sequence in a block due to
the page-level program disturbance behavior [6] [7], which has a deep relation-
ship with modern NAND flash memory reliability and data integrity. In addition
to the erase-before-write property, this in-order-update property in a block ne-
cessitates out-of-place updates for write operations. To enable such out-of-place
updates in the SSD, FTL remaps the logical addresses that conventional block
devices provide to the physical addresses presented by the NAND flash mem-
ory. In addition, the FTL employs a garbage collector, which reclaims the in-
valid pages, incurred during the out-of-place update process. At a high-level, the
garbage collector relocates valid pages in certain blocks to new blocks, which are

2 Jung, M. et al.

prepared in advance, and erases them in order to make rooms for new writes.
This operation is referred to as garbage collection (GC).

The biggest problem with existing garbage collectors is that their worst-case
latency can be as high as 64∼128 times than that of normal write operations [8]
[9]. Our own experiments show that GCs introduce numerous blocking I/Os, and
once a GC operation begins, the response time of write operations on SSD in-
creases substantially. Further, GC overheads significantly reduce available band-
width in most recent commercial SSDs. Unfortunately, this interaction between
the GC and writes introduces significant performance variations/degradations
during I/O, which may not be acceptable in many I/O-intensive computing en-
vironments.

Motivated by this, most current FTLs optimize mapping policies to minimize
the number of GC invocations and hide their undesired latency. For example,
existing buffer management schemes are specialized to reduce the number of
writes to NAND flash. Also, some SSDs employ partial block cleaning tech-
niques [10] [11] that attempt to provide stable GC performance by balancing
the number pages/blocks between production and consumption of them using
an extra non-volatile buffer. However, there is yet another dimension to avoiding
GC overheads. Specifically, the presence of idle I/O times in workloads can be
exploited by shifting garbage collections from busy periods to other periods where
they can be accommodated with minimum performance penalty.

In this paper, we propose a novel GC strategy, an approach that removes
GC overheads and provides stable I/O performance in SSDs during the I/O
congestion periods. Our proposed GC strategy consists of two components, called
Advanced Garbage Collection (AGC) and Delayed Garbage Collection (DGC).
More specifically, AGC tries to secure free blocks and remove on-demand GCs
from the critical path in advance, so that users do not experience GC-induced
latencies during the I/O-intensive periods, whereas DGC handles the collections
that AGC could not handle, by delaying them to future idle periods. Since our
approach mainly reschedules garbage collections, it can work with any existing
FTL.

Shifting GC operations however can increase program/erase (PE) cycles,
which makes the life time of SSDs shorter. For example, if a garbage collector
heedlessly reclaim blocks, which have the potential to be further utilized or used
for new writes, it can introduce unnecessary PE cycles in relocating valid pages
within them. To prevent this problem, we propose two different implementations
for AGC, called look-ahead garbage collection and proactive block compaction,
based on the duration of the idle period under consideration and the style of
GC detection. Specifically, the look-ahead GC utilizes short idle periods and
reclaims block based on the online information extracted from a device-level
queue, whereas the proactive block compaction targets long idle periods and
perform GCs only related to fully utilized blocks.

As shown in Figure 1, the main goal behind our strategies is to perform as
many GCs as possible in the idle periods. Our contributions in this paper can
be summarized as follows:

• Eliminating GC overheads: When using our garbage collection strategies,
applications do not experience GC overheads. This is because our strategies
successfully migrate on-demand GCs from busy periods to idle periods. Ex-
perimental results show that our proposed GC strategies result in stable I/O
performance under various types of workloads.

• Avoiding additional GC operations: The proposed schemes (AGC and
DGC), when applied together, do not increase the original number of GC oper-
ations. They only reschedule the GC operations that would be invoked soon by

Taking Garbage Collection Overheads off the Critical Path in SSDs 3

0 200 400 600 800 1000
0

30000

60000

90000

120000

0 200 400 600 800 1000
0

30000

60000

90000

120000

0 200 400 600 800 1000
0

30000

60000

90000

120000

0 200 400 600
0

120000

0 200 400 600
0

120000

0 200 400 600
0

120000

La
te

nc
y w

ith
 G

Cs
(u

s)
La

te
nc

y w
ith

Pr

ist
in

e
St

at
e

(u
s)

La
te

nc
y w

ith
AG

C
&

DG
C

(u
s)

Command Sequence

idle periods

Real View

Real View

Real View User View

User View

User View

Fig. 1: Overview and comparison of SSD latencies with/without our proposed
GC strategies (AGC and DGC), tested by random write pattern with 2048KB
request size. Note that AGC and DGC shift GC overheads to idle periods (as
shown in the real view), thereby providing stable I/O performance like a pristine
state (as shown in the user view).

speculating their GC activities and identifying appropriate idle periods based
on their durations (short or long). If the frequency with which idleness occurs is
not high enough, then the GC invocations are postponed to future idle periods
without affecting latency of I/O operations. As a result, we do not incur any
additional GC operations.

• Compatibility with underlying FTL schemes: Most optimized garbage col-
lectors proposed in the literature need additional non-volatile (NV) blocks on the
SSD and/or require customized FTLs for successful execution. In contrast, our
proposed schemes do not require any extra NV blocks or major modifications to
the existing data structures, and can therefore work with diverse FTLs.

To test the effectiveness of our GC schemes, we implemented them in a
simulator that models bus-level transactions and collected statistics using a va-
riety of workloads. Our experimental results show that the proposed schemes
reduce GC overheads (without causing additional write/erase operations) be-
tween 66.7% and 98.2%, in terms of the worst-case response time. Further, our
schemes prepare free blocks in advance to help prevent the block thrashing prob-
lem. Consequently, they reduce the number of block erase operations by 16.6%,
compared to a conventional FTL.

2 Background and Related work

2.1 Flash Translation Layer

The NAND-based flash consists of physical blocks; a physical block is the erase
unit and is composed of several pages, which are the read/write units in the
NAND flash. One of the drawbacks of the NAND flash is that a page needs to be
updated in-place within the block. In addition, writes to a formerly written page
are not allowed before erasing the entire block corresponding to it. Since a block
is much larger than a page and an erase operation is more expensive than a write
operation, the NAND flash alone is not sufficient to build an SSD. Therefore, a
Flash Translation Layer (FTL) is required within the SSD to prepare physical
blocks ahead of time. Whenever an SSD receives write requests, it forwards

4 Jung, M. et al.

them to a temporal block called an update block. The FTL then serves requests
by physically (in-place) writing them into a block. This allows logical out-of-
order update by mapping addresses between the in-place and out-of-place update
sequences.

The FTL also hides the latency of block erase and unnecessary read/write
operations in copying valid pages that are live in a block [8] [12]. Similarly, to
provide data consistency and coherence between the original block (also called
the data block) and the update block, the FTL internally maintains mapping
information and address translations. In this way, by internally managing the
flash specific characteristics, the FTL provides compatibility with commodity
storage systems. Typically, based on the number of the data block(s) and update
block(s) in a logical block, FTLs are classified into three types. Block-mapping
FTL manages a logical block by combining one data and one update block (1:1
mapping). Hybrid mapping FTLs manage a logical block by composing n data
block(s) and m update block(s) (n : m mapping). Finally, pure-page mapping
FTLs leverage only update blocks for serving I/Os, and can allocate them in any
physical page location.

2.2 Garbage Collection

If the FTL does not have enough free pages in its update block, it has to per-
form GC in an attempt to reclaim available blocks to which write request, can
be forwarded. This type of GC is referred to as update block reclaiming GC.
Similarly, in cases where the FTL has insufficient free blocks, it should secure
free blocks by evicting some other logical blocks, called free block reclaiming GC.
These processes require migrating all valid pages from the update and original
blocks to a new free block (called page migration) and erasing these two blocks.
Thus, the GC latencies are typically much larger than that of normal I/O op-
erations. In addition, the FTL carries out these GC operations during runtime
on a need-basis, meaning that the collections are postponed as long as the SSD
can accept new data and are only performed when required. The reason why
GCs are executed on demand is that a block erase operation, which is part of
the garbage collection activity, can significantly affect the SSD’s lifetime and re-
liability [8]. For example, if a garbage collector heedlessly reclaim blocks, which
have the potential to be further utilized or used for new writes, it can introduce
unnecessary program/erase (P/E) cycles for relocating valid pages within them.
Due to this property, GC latencies typically piggyback on ordinary I/O requests,
leading potentially to very high I/O latencies. Several FTL based studies [9] [8]
attempted to reduce GC overheads and hide their latencies. Other approaches
like the real-time GC [10] and the partial block cleaning [11] [13] aimed to pro-
vide stable GC performance by balancing the number pages/blocks between the
production and consumption of them using an extra non-volatile buffer.

3 Impact of Garbage Collection in Commercial SSDs

To measure the impact of GCs in state-of-the-art SSDs, we evaluated their la-
tencies and bandwidth with/without GCs.1

Latency impact: Figures 2a and 2b plot normal latencies and extra latencies
due to GCs, respectively. In this empirical test, we used a 256GB MLC-based

1 All SSDs we tested (e.g., 64GB, 256GB, 160GB MLC-based SSDs and 120GB SLC-
based SSD) were deployed in 2010 ∼ 12.

Taking Garbage Collection Overheads off the Critical Path in SSDs 5

SSD which employs two 128MB internal DRAM buffers and measure latencies of
individual I/O operations using ULINK’s DriveMaster [14]. The DriverMaster is
a commercial tool that captures detailed storage-level latencies and tests SSDs
in a physical level. We wrote data with 1MB transfer size into the SSD using
a random pattern. While a pristine SSD was used for the normal latency test,
we later filled the SSD completely and introduced a one hour period before
evaluating the GC latencies. As illustrated in Figure 2, GCs introduce numerous
blocking I/Os, and once a GC operation begins, the response time for write
operations increases substantially. Further, irrespective of the large amount of
idleness that we artificially introduced, high latencies of GC are observed from
the beginning of the GC latency test.

0 2000 4000 6000

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

La
te

nc
y

(u
s)

Write Sequence

(a) Normal Latencies

0 2000 4000 6000

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

La
te

nc
y

(u
s)

Write Sequence

La
te

ci
es

 d
ue

 to
 G

C
Ex

pe
ct

ed
La

te
nc

ie
s

(b) Latencies with GCs

Fig. 2: Latency comparison for a random write access pattern with 1MB request
size using a real MLC-based SSD.

512B 1K 2K 4K 8K 16K 32K 64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

B
an

dw
id

th
 (M

B
/s

)

Request Size

 MLC-SSD-S-64G
 MLC-SSD-S-256G
 SLC-SSD-M-120G
 MLC-SSD-I-160G

(a) Normal Bandwidth (Pristine)

512B 1K 2K 4K 8K 16K 32K 64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

B
an

dw
id

th
 (M

B
/s

)

Request Size

 MLC-SSD-S-64G
 MLC-SSD-S-256G
 SLC-SSD-M-120G
 MLC-SSD-I-160G

(b) Bandwidth with GCs (Fragmented)

Fig. 3: System throughput for four state-of-the-art SSDs (different vendors and
NAND types). Note that all SSDs tested suffer from significant performance
degradation once garbage collections begin.

Bandwidth impact: From a system designer viewpoint, throughput might be
a more important performance metric. In this test, we measured performance
with/without GCs of four commercial SSDs (three 64GB, 256GB and 160GB
MLC-based SSDs and one 120GB SLC-based SSD) using Intel Iometer [15].

6 Jung, M. et al.

Figures 3a and 3b plot bandwidth with the pristine state and bandwidth with
fragmented state, respectively. To make an SSD fragmented, we first wrote 4KB
data in random order and fully utilized its storage space. Similar to the latency
impact test, we artificially introduced a one hour idle time before evaluating this
bandwidth impact test. As shown in Figure 3, GC overheads significantly reduce
available bandwidth in all four commercial SSDs tested, regardless of the idle
time introduced.

4 High Level View of GC Scheduling

To avoid performance degradation and variations caused by GCs, we propose
novel garbage collection strategies. Unlike previous GC strategies that reduce
the number of GC invocations or GC overheads at runtime, our proposed GC
strategies fully utilize device-level idle times, which are invisible to the user, to
perform GC activities. To efficiently exploit such idle times, we classify them
into two groups based on their lengths. Using our idle period classification, we
then invoke different types of GCs to ensure that the user does not experience
long GC-induced latencies. Our approach allows the other components of FTL
to work without any modification, making our approach highly portable.

4.1 Idle Period Classification

Short idle periods: Several applications exhibit short idle intervals interleaved
with parallel I/O requests in a device-level command queue [16], which allows
a storage system to determine actual data transfer times and implement out-of-
order execution of I/O commands. To enable this, most host interface protocols
bring I/O commands, along with preinformation including request type, ad-
dresses and request size, to the storage system before the actual data transfer
begins.

To measure how many commands with their preinformation are available
at a given time and the duration of idle periods, we executed Intel Iometer
workloads [15] and employed a 265GB MLC-based SSD that used in Figure 2.
The LeCroy protocol analyzer [17] is used for analyzing the SATA protocol at
the physical layer. We observed that 3-17 commands are delivered to the device-
level command queue in parallel before the actual data communication starts,
and the storage-level idle times experienced by the I/O requests vary between
1.8 µs and 15.2 ms, based on the operation type and transfer size.

This storage-level short idle periods that we measured can be detected by
looking through the I/O commands with their preinformation. Specifically, one
can preview I/O commands in the queue before they get executed, and identify
the short idle intervals between successive I/O commands. Even though this
interval is short, one benefit gained from utilizing these short idle intervals is
that it allows one to investigate a request through preinformation and accurately
predict what will happen to the request during the idle time. Each short idle
period can be expressed as follows:

Tshort−idle = tstarti+1 − (tstarti + texei ∗ li) (1)

: ∀i, 1 < i ≤ n,

where i+1 denotes the index of the I/O command following the ith I/O command
in the queue, tstarti denotes actual transfer start time, texei is the execution time
based on a page, and li is the page length of I/O command i. Clearly, short idle

Taking Garbage Collection Overheads off the Critical Path in SSDs 7

periods exist only if Tshort−idle is larger than zero and there are I/O commands
sitting in the queue (i.e., at least two commands). Here, n depends on the queue
size accommodated by the host interface nuance. For example, NCQ [16] provides
32 entries, whereas TCQ [18] typically provides 256 entries. AGC exploits just
two entries for previewing the I/O commands.
Long idle periods: We also observed that many applications exhibit relatively
long idle periods with no enqueued I/O commands. We classify an idle period
as a long idle period if its length is larger than a certain threshold [19] [20]
[21]. The fraction of I/O instructions that experience these long idle periods
ranges between 38% and 83% under various workloads tested [22] [23] when
the threshold is set to 1 sec. Note that, to detect these idle periods, we cannot
take advantage of the device-level command queue and preinformation since it
is empty most of the time. Consequently, long idle periods should be handled
differently.

Depending on whether idle periods are short, long or none, our proposed
strategies schedule GC operations and secure free blocks differently.

AGC AGC

Wasted idle time

On-demand GC On-demand GC

Block compaction

DGC

Retroactive

AGC

Proactive

TIME

Wasted idle time

Preinformation arrival

(a) short idle utilization (b) long idle utilization

Fig. 4: A high-level view of our proposed GC strategy and idle time utilization.

4.2 Shifting Garbage Collection Overheads to Idle Periods

We start by observing that scheduling a GC on an arbitrary idle period can in-
troduce extra block reclaimings (P/E cycles) and reduce opportunities for block
reuse. This can in turn potentially shorten SSD lifetime and affect its reliability.
Therefore, in our proposed schemes, we migrate the GC operations to carefully-
chosen idle periods without increasing the original number of GC operations. We
also minimize the overheads incurred by on-demand GC invocations by securing
the available free blocks as much as possible in advance during the idle periods.

We explore two different strategies for shifting GC overheads, depending on
the amount of idleness and on-demand GC needs, as shown in Figure 4. First,
short idle periods are mainly exploited by shifting on-demand GCs that will
be invoked during busy periods (Figure 4a). In this case, the garbage collector
monitors upcoming device-level I/O tasks to determine when a collection will be
needed and performs the necessary tasks proactively. If there is no on-demand
GC need, the garbage collector performs block compactions to reclaim fully-
occupied blocks thereby retrieving free blocks in advance (Figure 4b). We refer
to this strategy as the Advanced GC (AGC). Second, if the amount of short
idleness is not sufficient to avoid on-demand GC invocations at a certain point,
our proposed GC strategies prevent them from being invoked on the critical
path by delaying the GC execution (Figure 4b); we refer to this strategy as the

8 Jung, M. et al.

Delayed GC (DGC). In other words, AGC shifts GC activities to idle periods in
advance, whereas DGC handles the on-demand collections that AGC could not
handle, by delaying the GC invocations to future idle periods.

These different GC strategies based on the type of idle periods and GC needs
allow our strategies to shift GCs from busy periods to idle periods, as illustrated
in Figure 1. At the same time, they help us minimize the potential side effects
on SSD reliability and eliminate the extra storage space requirement in the SSD
for the operation of the proposed schemes.

5 Implementation of our GC strategies

Recall that we quantified the impact of garbage collection on commercial SSDs in
Section 3. To alleviate the overheads caused by garbage collections, we classified
the types of idle periods in Section 4 and presented a high-level view of our
proposed approach. We next describe the technical details of AGC and DGC
in Sections 5.1 and 5.2, respectively. Section 5.3 discusses how AGC and DGC
works together.

5.1 Details of Advanced GC Strategy (AGC)

AGC tries to remove the on-demand GCs from the critical path and secure free
blocks in advance so that users do not experience long GC-induced latencies
during the I/O congestion periods. Depending on the type of the idle period we
are dealing with, one can implement AGC in two different ways. The look-ahead
garbage collection (Section 5.1) is a type of AGC that targets on-demand col-
lections by utilizing short idle periods, whereas the proactive block compaction
(Section 5.1) secures free blocks by utilizing long idle periods.

Look-ahead Garbage Collection To shift GC invocations to earlier idle peri-
ods, this scheme exploits the device-level command queue and short idle periods.
It starts by calculating the number of GC operations that can be executed in
short idle periods. In this step, the look-ahead GC checks the queue entries and
extracts I/O request information such as the length of I/O request and the Log-
ical Sector Number (LSN) and associated Logical Block Number (LBN). It then
finds the Physical Block Numbers (PBNs) corresponding to the LBN by looking
up the mapping table of the underlying FTL. The look-ahead garbage collector
then checks whether the available space, especially the number of free pages,
is sufficient to service the I/O request of the specified size (length). If not, an
update block reclaiming GC is required.

Once the need for GC is identified, our scheme next calculates a GC latency
in order to accurately perform on-demand GC in advance. Let κ denote the
number of physical blocks per logical block (e.g., in a block mapping scheme,
the value of κ is one. On the other hand, if the system employs a 2:8 hybrid
mapping scheme, κ can be up to ten). Further, let tload, twrite, and terase denote
execution latencies for page load (read), page write and block erase operation,
respectively, and let t′write represent the time for writing metadata to confirm
the fact that a certain physical block was erased after GC (this helps to ensure
mapping consistency in the FTL). Since the look-ahead GC knows PBN(s) for
the logical block and has all the relevant mapping information, it can determine
the number of valid pages for the PBN(s); say, nvalid

page . In this way, for each I/O

Taking Garbage Collection Overheads off the Critical Path in SSDs 9

command i that is involved in the GC, its GC latency (Tgci) can be calculated
using the following expression:

Tgci = (tload + twrite) ∗ nvalid
page︸ ︷︷ ︸

page migration

+

block cleaning︷ ︸︸ ︷
(terase + t′write) ∗ κ . (2)

This expression captures the page migration latency for each valid page from
the update/data block to a free block, as well as the block cleaning latency for
these blocks. Typically, t′write is approximately the same as the latency it takes to
write one page (twrite). This is because the metadata is designed to fit in a single
page to reduce the overhead of storing the metadata itself. The total amount of
time taken by the look-ahead GC to perform collections over n blocks is given
by (

∑n
i=1 Tgci). Using the GC latencies of individual blocks, we determine the

number of blocks (n) that can be reclaimed at runtime, under the constraint
that the total GC time for the determined number of blocks is less than or equal
to the short idle time given by Equation (1). Once AGC determines the number
of blocks, n, to be claimed, it performs look-ahead GCs for these n blocks in
advance.

Data Blocks

Update Blocks

PBN 3 PBN 4

PBN 7 PBN 10 PBN 15 PBN 21

valid
valid
valid
free

invalid
invalid
invalid
invalid

10
8
8

10

11
12
8
8

invalid
valid
valid

invalid

14
12
10
8

invalid
valid

invalid
valid

12
13
14
15

8
9

10
11

11
14
8
.

LBN 1

invalid
invalid
invalid
invalid

invalid
valid

invalid
invalid

Device-level command queue

....1211

write(136, 8) LPN:34, 1Page

write(32, 8) LPN: 8, 2Pages

8

9

10

11

12

13

14

15

2

1

2

0

1

1

1

3

21

3

15

21

15

4

21

4

LBN 1

PBN PPN LPN

Requests from the host side

Pre-info

(TAGS)

Metadata

Logical Block

Fig. 5: An example of the look-ahead GC with a hybrid mapping scheme. By
inquiring the mapping information, our AGC scheme figures out that the GC
for LBN 1 will be invoked soon.

For instance, in Figure 5, the look-ahead GC identifies the request with an
LSN of 32 and I/O size of eight sectors. Since the logical block corresponding to
that request has only one free page, our scheme executes the GC operation in the
short idle time. In addition to providing stable and better SSD performance, this
implementation performs GCs only when an on-demand GC is about to occur
and the short idle periods are suitable to perform GC. Therefore, it ensures a
similar level of reliability compared to a standard FTL.

Proactive Block Compaction In order to exploit long idle times that could
not be exploited by the look-ahead GC, we propose a proactive block compaction
mechanism strategy. In this strategy, we detect the blocks (in a logical block)
that are fully occupied with valid/invalid pages, and compact them in advance
during the long idle periods. Compacting blocks involves enforcing all valid pages

10 Jung, M. et al.

from the fully-occupied physical block to a new, clean block, and removing the
invalid pages in the former by erasing them. Consider as an example Figure 6
where we have two fully-occupied blocks, namely, LBN 5 and LBN 32768. AGC
can compact these two blocks in advance during long idle periods. In order to
avoid the scanning penalty required to identify the fully-occupied blocks, we
add the LBN of the fully-occupied block to the AGC job list, while the FTL is
serving the I/O requests so that the blocks can be compacted proactively without
scanning the entire storage address space.

LBN 1 LBN 2 LBN 3 LBN 4 LBN 32768 LBN 32769

85% 20 % 95 % 15 % 100 % 15 %

LBN 5

100 %

Logical Block Address Space

..327685

.1.1

The AGC Job List

The DGC Job List
..

..

Advance Garbage Collector

Delay Garbage Collector

.32.20PBN

LBN

LBN

Fig. 6: Job lists for AGC and DGC.

Even though proactive block compaction is relatively simple, it can be very
effective in practice as far as enhancing idle time utilization and securing free
blocks are concerned. It should be noted that the proactive block compaction
mechanism is executed only if the number of free blocks is less than the free
block threshold (i.e., an on-demand GC would be invoked very soon). There-
fore, similar to the look-ahead GC mechanism discussed earlier, this proactive
block compaction mechanism also minimizes the number of unnecessary erase
operations, which in turn helps to improve SSD endurance and reliability.

Incremental Garbage Collection One concern regarding AGC is that it
could lead to undesired performance degradations and prevent the GC laten-
cies from being hidden, if idle periods are too short or do not occur frequently
enough. To avoid this, our implementation of AGC splits GC activities into
smaller ones delimited by checkpoints, and performs the GCs step-by-step based
on the checkpoints. As illustrated in Figure 7, the checkpoints are inserted at the
end of every NAND I/O completion point and constitute the boundaries across
the neighboring GC steps. Inspired by the checkpointing strategy described by
[24], AGC incrementally performs a given GC operation one step at a time; this
is referred to as the Incremental Garbage Collection (Incremental GC) in the
remainder of this paper.

Page Load Page Write Page Load Page Write Block Erase Block Erase

.. Meta WriteMeta Write

The i
th

Garbage Collection Workload

������ + �	
���
 ∗ ������
�����

 ���
��� + �	
���
′
 ∗ � ����

Incremental GC Checkpoints for Idle Time Breakup

Fig. 7: Checkpointing for incremental GC. At each checkpoint, by checking the
device-level queue, the garbage collector can decide whether it can perform fur-
ther collections or not.

Taking Garbage Collection Overheads off the Critical Path in SSDs 11

Whenever AGC reaches a checkpoint, the incremental GC determines whether
further collections can be performed or not by checking the device-level queue. If
there are no I/O requests until the next checkpoint, it goes ahead and executes
the next step of the GC operation. The same procedure is repeated as long as
there are no I/O requests. If on the other hand AGC detects an I/O request at
a particular checkpoint, it postpones the remaining GC steps to the next idle
period. To do this, it marks the current GC job status and inserts this marked
status information into another job list that is managed by DGC (this will be
revisited in Section 5.2). This incremental GC operation allows AGC to avoid
the potential drawbacks of very short idle periods, and smoothly pass the control
of GC operations to DGC. As a result, the SSD is able to serve the bursty I/O
requests that can potentially create very short idle periods.

5.2 Details of Delayed GC Strategy (DGC)

Even though idle periods are typically long enough [20] [22] [25] for AGC to
prepare available free blocks ahead of time and execute GC in advance, in cases
where idleness does not occur frequently, AGC may not be very successful. The
main goal behind our Delayed Garbage Collection Strategy (DGC) is to address
this situation by delaying GC invocations. Its operation can be divided into two
steps as explained below.

Update Block Replacement As stated earlier, the main reason why GCs
degrade system performance is page migrations. To avoid this degradation, DGC
defers the page migration activity to future idle periods. Whenever an on-demand
GC occurs in a busy period, DGC allocates free block(s) as update block(s).
Normally, commodity FTLs migrate valid pages from the update and data blocks
to an allocated free block. In contrast, DGC skips this process and serves the
urgent I/O requests. Rather than migrating pages, DGC adds the LBN and
PBN(s) corresponding to the migration into a job list it maintains (called the
DGC job list). This delayed page migration activity is later resumed in a future
idle period by the DGC’s retroactive block compaction (see Section 5.2).

The free block allocation carried out by DGC is similar to what a standard
FTL would do during GC. The only difference is that DGC allocates the block
as an update block (not a free block). Since the FTL already has an update
block (but it is garbage), DGC intercepts the update block information and
replaces the PBN of the update block with the allocated free block’s PBN in
the FTL mapping table. In this way, the FTL treats the allocated free block
(called the delay block) as an update block, and is not required to manage the
block mapping information. It explicitly manages replacing/updating a block for
preserving consistency during information mapping. Further, DGC maintains
this information using the DGC job list and hides this information from the
FTL until the page migration process completes. In the meantime, if there is
an I/O request, the FTL serves that request based on the available mapping
information. This replacement and interception procedure is called the Update
Block Replacement.

The main advantage of the update block replacement is that, as soon as
the SSD receives an I/O request, it can serve the request without migrating
the valid pages, even when AGC could not handle on-demand GCs in advance.
Another benefit is that DGC does not require any additional NV memory space
for delaying on-demand GCs, which is essential resources of prior works [11] [13].
This is because it replaces the update block with free blocks that belong to the

12 Jung, M. et al.

FTL address space. Note that the mappings employed by the FTL and DGC do
not interfere with each other, and this allows DGC to work with various other
mapping schemes used in current FTLs.

if irp.command != empty then
if ftl.checkOnDemandGc(irp)
then

/* delay the on-demand GC */

UpdateBlockReplacement(irp)
insertEntry(DgcJobList,
irp.getLbn())

/* call the FTL service */

ftl.ServeIo(irp.command, irp.lsn,
irp.sectors)

else
targetLbn := getDgcLbn(DgcJobList)

/* DGC */

if targetLbn != nullblock then
consumed = RetroactiveBlock-
Compaction(targetLbn)

/* AGC */

idleType :=
checkIdleType(CommandQueue,
consumed)
if idleType = short then

/* Calculate GC latency using

Equation 1 & 2 */

idletimes :=
getIdleTime(CommandQueue,
consumed) requiredTimes :=
speculateExecutionTime()
while idletimes ≥
requiredTimes do

LookaheadGc(irp)

else if idleType = long then
ProactiveBlockCompaction(irp)

Algorithm 1:
IssueCommands(IoRequestPacket
irp) of our proposed AGC+DGC
algorithm. Note that the SSD just
forwards I/O requests to the un-
derlying FTL without performing
any GC during the busy periods.

Retroactive Block Compaction When
there is no I/O congestion, DGC per-
forms page migrations and returns the
relevant delay block and update/replace
block to the free block space. The blocks
returned DGC can be recycled as nor-
mal free blocks. To return a block, DGC
first extracts the LBN and PBN for a
replace/update block from the DGC job
list. It then queries the PBN for the data
and delay blocks by using FTL’s block-
level mapping table. That is, it looks up
the mapping table entry for the LBN ex-
tracted from the DGC job list and gets
the corresponding PBN from the table.

Once DGC collects all PBN(s) for the
blocks related to the delayed logical block,
it retroactively compacts the blocks and
returns them to the original state (i.e., as
free blocks). While compacting, DGC mi-
grates valid pages deferred from all PBNs
for each delay, replace/update, and data
block. This page migration is simply ex-
ecuted by reading and writing pages in
an ascending order. We want to point out
that the number of pages requiring migra-
tion is less than or equal to the number of
pages in a logical block, independent of
the number of delay and data blocks in-
volved. Thus, the migration cost of DGC
is the same as that of original GC. During
busy periods, DGC preferentially reads
and writes pages to the delay block rather
than the replace/update block to guaran-
tee data consistency. The reason behind
this order is that the delay block contains the latest data when compared to
the data in the replace/update block(s). This also helps DGC to improve block
utilization and reduce the amount of I/O activity while performing the collec-
tions since the replace/update block(s) can be erased without any read or write
operation in the ideal case.

5.3 Putting the Two Schemes Together

When our two schemes, AGC and DGC, are applied together we expect that most
GCs are invoked by AGC; DGC will be invoked only if the idleness at hand is
insufficient or the number of free blocks secured by AGC is not enough. In fact, we
observed during our experiments that the fraction of idle periods DGC handles
accounts for at most 20%, and AGC manages the rest. Algorithm 1 describes the

Taking Garbage Collection Overheads off the Critical Path in SSDs 13

steps involved in integrating DGC and AGC (called the AGC+DGC scheme).
In summary, if an I/O request triggers an on-demand GC, DGC delays page
migration to future idle periods using the update block replacement mechanism.
During idle periods, DGC first performs retroactive block compaction only if a
delayed GC block exists. And, AGC is invoked based on the type of idle period
at hand. Specifically, if the idle period is short (just enough to perform the
required GC), look-ahead garbage collection is invoked. Finally, proactive block
compaction is invoked when the idle period is long. In each implementation, GC
is performed incrementally, as explained in Section 5.1.

6 Experimental Evaluation

To evaluate the effectiveness of our AGC and DGC, we introduced them in
a event simulation platform whose a typical SSD storage stack is fully imple-
mented, including flash drivers, translation layers, and host interface controllers.
Our simulator also models multiple channels and ways with a bus transaction-
level clock accuracy such that different types of idleness can be accurately sim-
ulated with diverse workloads we tested.
SSD configuration. We implemented two different SSD-based disk arrays;
• 6SSDs-RAID: the first disk array was setup based on the original MSN file
server storage configuration [22], which consists of 6 disks (Disk0 ∼ Disk5). In
this default array, we introduced six of 64GB SSDs and each SSD, which replaces
each disk of MSN storage server, has 4 channels and 4 ways architecture. Further,
we categorize this SSD array based on each disk of write-intensity.

– 6SSDs-RAID-LO is the group of SSD0, 1, 2, and 3 with low I/O intensive
workloads of which the fraction of write amount is under 20% of total I/Os.

– 6SSDs-RAID-HI is another SSD group, consisting SSD4 and 5 with high
I/O intensive workloads of which the write fraction of total I/Os is 80%.

• 3SSDs-RAID: Another disk array leverages three SSDs, in which each indi-
vidual SSD composes of 8 channels and 8 ways (128GB). This disk array was
configured to measure performance impacts on a different SSD configuration. In
this 3SSDs-RAID, disk0 and disk1 (of the MSN server) are replaced by SSD0,
disk2 and disk5 are replaced by SSD1, and disk3 and disk4 are replaced by SSD2.

Both SSD arrays in RAID-0 configuration are viewed by the OS as a single
device. Even though we model a Samsung K9KGA0B0M MLC NAND flash2 [26]
in our simulations, our proposed GC strategies can be applied to other NAND
flash device models as well. Due to limitations of space, we are not able to show
our evaluation on other devices, but the performance behaviors with the most
current version of NAND flash packages (two planes and dual dies architecture)
are very similar to the results shown in this section.
FTL implementation. We implemented a log-structured FTL (L-FTL) and a 2:8
hybrid mapped FTL (H-FTL) on the SSD-based disk array models [12] [8]. We
also implemented a partial GC scheme based FTL (P-FTL) [11] [13] [10]. After
some initial experiments, the percentage of free blocks and GC threshold are set
to 3% and 1%, respectively, of the total SSD address space3. We also introduced

2 This has 128 pages per a block. Based on a 4 KB page size, read, write and block
erase latencies are 183.2 us, 860.36 us, and 2 ms, respectively.

3 Some industries employ even higher GC thresholds with more free blocks, which
renders SSDs expensive. Since there is a variety of configurations for GC threshold,

14 Jung, M. et al.

The number of
I/O requests

Total amount of
requests (KB)

Total amount of
writes (KB)

Idle Peri-
ods (%)

Disk0 1,509,397 32,490,240 3,051,918 38.6
Disk1 2,221,728 35,383,340 17,722,159 81.3
Disk2 500 1,958 1,958 56.6
Disk3 4,352 2,392,445 2,387,767 83.0
Disk4 12,627,396 117,607,983 24,835,283 42.4
Disk5 12,981,710 130,033,924 31,777,436 41.3
Total 29,345,083 317,909,889 79,776,520 64.1

Table 1: Important characteristics of our traces. The last column gives % of I/O
requests containing sufficiently long idle (> 1 sec) periods.

a 14 GB extra space to P-FTL for each SSD in the 6SSDs-RAID and 28GB extra
spaces to it for each SSD in the 3SSDs-RAID based on the results from the write
buffer analysis [11]; these extra spaces are used as the non-volatile write buffer
in an attempt to serve urgent I/Os and provide real-time support, and managed
through the page-level mapping scheme in P-FTL, instead of employing a block-
level mapping scheme.

Workloads. Enterprise traces tested are collected from the MSN file storage server
over 5 days [22] [23]. The total I/O traffic studied was up to 1.8TB. Important
characteristics of our traces are given in Table 1. In the traces used, 34.6% of
idle intervals were long (larger than 1 sec) and less than 29.5% were short, and
35.9% of the requests were back-to-back with no idle time in between.

It should be mentioned that each I/O request of any trace we simulate has
a time stamp associated with it, and all the different approaches we tested (for
reducing GC overheads) take advantage of scheduling the I/O requests based
on the corresponding time stamps (using NCQ). Our bus-transaction level sim-
ulator extracts access time information from the I/O commands, using which
we synchronize the global timer of the simulator and check the I/O latencies at
the end of every I/O completion. This enables us to accurately record idle/busy
periods on the SSDs.

0e+00

1e+05

2e+05

3e+05

4e+05

 0 300000 600000

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequences

SSD0

(a) Baseline GC

0e+00

1e+05

2e+05

3e+05

4e+05

 0 300000 600000

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequences

SSD0

(b) AGC only

Fig. 8: Performance of AGC with relatively low I/O intensive workloads (SSD 0
of 6SSDs-RAID).

we choose a lower bound value for our evaluation. We believe that alleviating GC
overheads in our configuration (more complex) can be reduced the GC problem in
such expensive SSDs configuration based on write amplification analysis with over-
provisioning and spare factors [27].

Taking Garbage Collection Overheads off the Critical Path in SSDs 15

6.1 Performance Comparison

We first evaluate the performance of our two GC strategies (AGC and DGC)
using 6SSDs-RAID in isolation. Figures 8 and 9 plot the response times of SSD0
of 6SSDs-RAID-LO and SSD5 of 6SSDs-RAID-HI, respectively. As illustrated
in Figure 8, AGC alone successfully hides almost all on-demand GCs in SSD0,
leaving nothing for DGC. We see from Figure 9b, however, that AGC alone
is not very successful with the high I/O intensive workloads. During the high
write-intensive periods, a few on-demand GCs are invoked due to the very small
amount of short idle periods in SSD5. Even though the number of these on-
demand GC invocations is small, the FTL uses up available free blocks for new
requests, which introduces more on-demand GC invocation. In a worst-case sce-
nario, AGC suffers from both increased amount of GC invocations and short idle
periods as the execution progresses. This is the reason why AGC requires DGC
to handle such on-demand GCs. One can see from Figure 9c that DGC alone
successfully hides the GC latencies until four million write requests are served.
However, as soon as the available free blocks run out, DGC starts performing
on-demand GCs. One can also see from this result that DGC needs AGC, which
supplies free blocks, enabling the former to defer on-demand GCs. Both AGC
and DGC, when applied individually, increase the number of GCs compared to
the baseline GC, which is used to perform on-demand GC of L-FTL (see Figure
9a). However, when they are applied together, they successfully hide GC laten-
cies, as illustrated in Figure 9d, and the total number of GCs does not exceed
the baseline case (Section 6.5). In the rest of our experiments, we focus on this
integrated AGC+DGC scheme.

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(a) Baseline GC

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(b) AGC only

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(c) DGC only

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(d) AGC+DGC

Fig. 9: Performance comparison of different garbage collection strategies (SSD5
of 6SSDs-RAID with high I/O intensive workloads).

16 Jung, M. et al.

6.2 Worst Case Response Time

Figure 10 plot the worst-case response times (WCRTs) 6SSDs-RAID. We see
from these graphs that, WCRT ranges from 131 ms to 311 ms in 6SSDs-RAID-
LO, under both the L-FTL and H-FTL schemes. However, in both P-FTL and
AGC+DGC we observe negligible WCRTs, which results in completely hiding
the GC latencies from the I/O operations. We further observe that AGC+DGC
reduces the WCRT by 65.2%, 98.6% and 96.4%, on average, over P-FTL, L-FTL
and H-FTL, respectively. This is because AGC+DGC performs on-demand GCs
only during the idle periods, and consequently, users experience no GC overheads
during their I/O services.

SSD
0
SSD

1
SSD

2
SSD

3
SSD

0
SSD

1
SSD

2
SSD

3
SSD

0
SSD

1
SSD

2
SSD

3
SSD

0
SSD

1
SSD

2
SSD

3
0

50000
100000
150000
200000
250000
300000

W
C

R
T

(u
s)

 Day 1
 Day 2
 Day 3
 Day 4
 Day 5

AGC+DGCP-FTLH-FTLL-FTL

(a) 6SSDs-RAID-LO

SSD4 SSD5 SSD4 SSD5 SSD4 SSD5 SSD4 SSD5
0

1000000
2000000
3000000
4000000
5000000
6000000

AGC+DGCP-FTLH-FTL

W
C

R
T

(u
s) Day 1

 Day 2
 Day 3
 Day 4
 Day 5

L-FTL AGC+DGCP-FTLH-FTLL-FTL

(b) 6SSDs-RAID-HI

Fig. 10: Worst-case response time (WCRT) analysis for 6SSDs-RAID. (a) With
low I/O intensive workloads, P-FTL and AGC+DGC show deterministic behav-
iors while the performances of L-FTL and H-FTL fluctuate over time. (b) With
high I/O intensive workloads, P-FTL experiences very high WCRT, whereas
AGC+DGC continues to provide stable I/O performance.

However, in 6SSDs-RAID-HI, P-FTL’s WCRT behavior fluctuates due to
the write buffer block thrashing problem.4 This causes P-FTL to perform out
of order writes for a while and, as a result, WCRTs become ten times worse as
compared to the L-FTL case. In contrast, AGC+DGC still serves I/O requests
within the predefined latencies, and achieves about 53 ms latency, including the
theoretic minimum for I/O processing, while the other approaches suffer from the
performance fluctuations and experience long WCRT under heavy I/O requests.
Further, SSDs supported by our AGC+DGC do not incur any GC latencies
during busy periods, even in execution phases with very low idle times (≤ 10%).
This is because AGC eliminates on-demand GCs using idle times, and DGC
postpones the GC latencies by shifting them to future idle periods, as plotted in
Figure 11c. Figure 11 also explains how our proposed GC strategies collectively
take GC overheads off the critical path. While L-FTL and H-FTL (see Figures
11a and 11b) incur GC latencies during the busy periods, AGC+DGC incurs (see
Figure 11d) GC latencies only during the idle periods, which are not perceived
by applications. This clearly shows that AGC+DGC provides stable and better
SSD performance with no on-demand GCs taking place during the busy periods.

4 This problem arises when the free pages in the write buffer (NV buffer) to which
P-FTL writes urgent data are no longer available.

Taking Garbage Collection Overheads off the Critical Path in SSDs 17

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05R
e

sp
.T

im
e

 (
m

s)

Write Request Sequence

(a) L-FTL

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05R
e

sp
.T

im
e

 (
m

s)

Write Request Sequence

(b) H-FTL

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05R
e

sp
.T

im
e

 (
m

s)

Write Request Sequence

(c) AGC+DGC Visible

0

600

900

0 2e+05 3e+05 4e+05R
e

sp
.T

im
e

 (
m

s)

Detecting Idle Periods Sequence

Invisible Latency

(d) AGC+DGC Invisible

Fig. 11: Response times for a write intensive section (where the fraction of I/O
executions with no idle time is account for about 90%). While H-FTL removes
about 40% of the GC related overheads, AGC+DGC hides all on-demand GC
latencies.

6.3 Excess Waiting Time

Figure 12 plots the amount of excess waiting time (EWT)5 in 6SSDs-RAID.
One can observe from Figure 12a that H-FTL significantly cuts down the GCs
by maximizing the block-level locality. It also dramatically reduces the number
of page migrations introduced by GCs. However, it can also be seen that, as the
execution progresses (from day 1 to day 5), occurrences of EWTs increase, due
to the shortage of available free blocks. To secure free blocks, H-FTL had to
merge up to ten blocks into two logical blocks, and merge approximately fifteen
thousand times a day, generating significant overheads. In contrast, P-FTL and
AGC+DGC successfully hide GC overheads at runtime (and thereby All EWT
of them is zero). However, the frequency of EWTs in H-FTL is less than that in
P-FTL with high write intensive workloads (see Figure 12b). In this case, P-FTL
could not fully hide GC latencies when the NV buffer was completely used by
the large amount of I/O requests. This is because P-FTL incurs much longer
latencies than H-FTL, due to the write buffer thrashing problem, which is the
same as the one causing high WCRT.

On the other hand, our scheme successfully hides GC latencies because AGC
can ahead secure available blocks (delay blocks) to DGC even under high write
intensive workloads. Further, because of update block replacement scheme, the
delay blocks are the same as the free blocks, thereby not requiring any extra
blocks to manage different mapping schemes. Our proposed strategy essentially
eliminates on-demand GCs by exploiting different types of idle periods and thus
leads to stable GC latencies.

5 EWT is defined as the difference between the actual wait time and the marginal
response time (in this paper, it is assumed to be 30 ms).

18 Jung, M. et al.

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

00
2x104
4x104
6x104
8x104
1x105
1x105

Latency(ms)

Fr
eq

ue
nc
y

L-FTL H-FTL

S
S
D
0

S
S
D
1

S
S
D
2

S
S
D
3

S
S
D
0

S
S
D
1

S
S
D
2

S
S
D
3

 Day 5 Day 4
 Day 3 Day 2 Day 1

(a) 6SSDs-RAID-LO

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

00
5x104

2x105
4x105
6x105
8x105
1x106

Latency(ms)

S
S
D
4

AGC+DGCP-FTLH-FTL

Fr
eq
ue
nc
y

 Day 5 Day 4 Day 3 Day 2 Day 1

L-FTL

S
S
D
5

S
S
D
4

S
S
D
5

S
S
D
4

S
S
D
5

S
S
D
5

S
S
D
4

(b) 6SSDs-RAID-HI

Fig. 12: Excess waiting time (EWT). The x-axis represents the upper bound on
EWT. (a) L-FTL and H-FTL experience I/O blocking problem stemming from
GCs while P-FTL and AGC+DGC have no such problem. (b) With heavy writes,
even though P-FTL results in fewer GC invocations, its GC latencies are much
longer than others

SSD0 SSD1 SSD2 SSD0 SSD1 SSD2 SSD0 SSD1 SSD2 SSD0 SSD1 SSD20
200000
400000
1000000
2000000
3000000

W
C

R
T

(u
s)

 Day 1
 Day 2
 Day 3
 Day 4
 Day 5

L-FTL H-FTL P-FTL AGC+DGC

Fig. 13: Worst-case response time (WCRT) analysis for the 3SSDs-RAID.

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

50000

100000

150000

200000

250000

Fr
eq

ue
nc
y

Latency

 Day 5 Day 4 Day 3 Day 2 Day 1

SS
D
2

SS
D
1

L-FTL H-FTL

SS
D
0

AGC+DGCP-FTL

SS
D
2

SS
D
1

SS
D
0

SS
D
0

SS
D
1

SS
D
2

SS
D
2

SS
D
1

SS
D
0

Fig. 14: Excess waiting time (EWT) analysis for the 3SSDs-RAID.

6.4 Performance Compariosn of 3SSDs-RAID

Figure 13 and Figure 14 illustrate, respectively, WCRTs and EWTs for 3SSDs-
RAID. In both WCRT and EWT analyses, performance of the 3SSDs-RAID is
similar to 6SSDs-RAID except for P-FTL. Specifically, in day 1, P-FTL guar-
antees deterministic performance with the zero EWT value on even high write-
intensive workloads (SSD1 and SSD2 of 3SSDs-RAID) because each SSD of
3SSDs-RAID has a larger storage capacity than an SSD in the 6SSDs-RAID
configuration. In other words, P-FTL is more tolerant to update block reclaim-
ing GC overheads as its NV buffer has more physical pages. However, as the
amount of writes increases, the available physical pages also run out. As a re-
sult, P-FTL could not satisfy the deadline requirements again. 3SSDs-RAID
with P-FTL has about 50% less impact on the write block thrashing problem
compared to 6SSDs-RAID, mainly because, in addition to the larger physical
pages on the NV buffer, P-FTL itself can secure abundant free block resource
as well, thereby reducing potential GC overheads during free block reclaiming.
However, due to reasons similar to the case of 6SSDs-RAID, over the time, P-

Taking Garbage Collection Overheads off the Critical Path in SSDs 19

FTL makes 3SSDs-RAID performance worse than L-FTL and H-FTL. While the
performance of P-FTL depends mainly on the size of NV buffer and are not able
to essentially take GC overheads off the critical path of SSDs, AGC+DGC sat-
isfies the performance requirements irrespective of different SSD configuration
chosen and the I/O traffics tested.

6.5 Side-Effects of AGC and DGC

0%

20%

40%

60%

80%

100%

SSD0 SSD1 SSD2 SSD3 SSD4 SSD5

P
er
ce
n
ta
g
e
o
f
to
ta
l
G
C
s

Proactive Block Compactoin

Retroactive Block Compaction

Look-ahead GC

(a)

16
18

16
20

22
24 27

0

5

10

15

20

25

30

A
v
er
a
g
e
E
ra
se
 C
o
u
n
t

Free Block Thresholds

Better than L-FTL Worse than L-FTL

(b)

Fig. 15: (a) Garbage col-
lection type breakdown of
total collection. (b) Block
erase impact by free block
threshold.

Figure 15a plots the breakdown of GCs across dif-
ferent collection schemes. Since AGC is responsible
for preparing the free blocks, it is desired that the
contribution of the AGC be larger than that of the
DGC. We see that, as expected, AGC executes for
at least 80% of the total number of GCs. As a re-
sult, DGC is able to secure enough free blocks when
it performs update block replacement to delay GCs.
We want to point out that the proactive block com-
paction is applied in a majority of the AGC opera-
tions. The proactive block compaction does not ex-
ecute until the number of free blocks is less than the
free block threshold (even though it is under the un-
derlying FTL’s GC threshold (3%)). Therefore, our
scheme does not introduce any unnecessary erases,
and thus reduces the potential side-effects of GC.

Figure 15b presents the average block erase
counts under different free block thresholds when
executing AGC. In this figure, the dotted vertical
line indicates L-FTL’s average erase count per block,
which is twenty one. Since AGC is performed only
if the target GC block is fully occupied or if an
on-demand GC is to be invoked very soon, it only
migrates necessary GC activities from busy period,
thereby minimizing side effect in terms of SSD reli-
ability.

We observed that the free block threshold should be less than 71% for the
average erase count of the proactive block compaction in AGC to be comparable
to L-FTL. If the proactive block compaction shifts on-demand GCs beyond this
threshold, it makes wear-leveling characteristics worse than L-FTL. Interestingly,
the erase counts with low free block thresholds are better than L-FTL. This
is because preparing free blocks using fully-occupied blocks in advance helps
to prevent the log block thrashing problem (in L-FTL), which can introduce
improper erase operations. In our experiments, the best free block threshold for
satisfying the wear-leveling requirement was found to be less than 43% of the
original GC threshold.

7 Conclusions

We proposed novel a garbage collection strategy consisting of two main compo-
nents, called Advanced Garbage Collection (AGC) and Delayed Garbage Collec-
tion (DGC), that cooperate in hiding GC overheads in SSDs. AGC tries to secure
free blocks in advance and remove on-demand GCs from the critical path so that
users do not experience GC latencies during I/O congestion. In comparison, DGC

20 Jung, M. et al.

handles GC invocations that could not be handled by AGC by differing them to
future idle periods. Our experimental analysis using both enterprise workloads
and high performance I/O workloads indicate that the proposed strategies (AGC
and DGC) provide stable I/O performance. Compared to three state-of-the-art
GC strategies, P-FTL, L-FTL and H-FTL, our integrated scheme (AGC+DGC)
reduces GC overheads dramatically.
Acknowledgment. We would like to thank anonymous reviewers for their con-
structive feedback. This work is supported in part by NSF grants 1017882,
0937949, and 0833126 and DOE grant DESC0002156.

References

1. Caulfield, A. M. et al.: Understanding the impact of emerging non-volatile mem-
ories on high-performance, IO-intensive computing. In: SC. (2010)

2. Kgil, T., Roberts, D., Mudge, T.: Improving NAND flash based disk caches. In:
ISCA. (2008)

3. Caulfield, A.M., Grupp, L.M., Swanson, S.: Gordon: Using flash memory to build
fast, power-efficient clusters for data-intensive applications. In: ASPLOS. (2009)

4. Lee, S.W., et al.: A case for flash memory SSD in enterprise database applications.
In: FAST. (2011)

5. EMC: Raw drive capacity cost trends http://wikibon.org/w/images/a/a4/
emcrawdrivecapacitycosttrends.jpg

6. Micheloni, Rino et al.: Inside NAND Flash Memories. Springer (2010)
7. Caulfield, A. M. et al.: Characterizing flash memory: Anomalies, observations,and

applications. In: SC. (2009)
8. Kang, J.U., et al.: A superblock-based flash translation layer for NAND flash

memory. In: EMSOFT. (2006)
9. Lee, Sang Won et al.: FAST: An efficient flash translation layer for flash memory.

In: EUC Workshops. (2006)
10. Chang, L.P., Kuo, T.W.: Real-time garbage collection for flash-memory storage

systems of real-time embedded systems. TECS (2004)
11. Choudhuri, S., Givargis, T.: Deterministic service guarantees for NAND flash using

partial block cleaning. In: CODESS+ISSS. (2008)
12. Kim, J., et al.: A space-efficient flash translation layer for Compact Flash systems.

In: TCE. (2002)
13. Jung, M., Yoo, J.: Scheduling garbage collection opportunistically to reduce worst-

case I/O performance in SSDs. In: IWSSPS. (2009)
14. ULINK technology: http://www.ulinktech.com/
15. Intel: http://www.iometer.org/
16. Intel, Seagate: Serial ATA Native Command Queuing: An Exciting New Perfor-

mance Feature for Serial ATA. Intel and Seagate, July (2003)
17. LeCroy: http://www.lecroy.com/
18. T10: http://www.t10.org/, Technical Committee T10 (2009)
19. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In:

SC. (2002)
20. Mi, N., et al.: Efficient management of idleness in storage systems. In: the ACM

Transactions on Storage Journal. (2009)
21. Golding, R., et al.: Idleness is not sloth. In: USENIX ATC. (1995)
22. Narayanan, D., et al.: Migrating server storage to SSDs: Analysis of tradeoffs. In:

EuroSys. (2009)
23. SNIA: http://iotta.snia.org/, IOTTA Repository (2006)
24. Kim, J.H., et al.: Incremental Merge Methods and Memory Systems Using the

Same. U.S. Patent #2006004971A1, Jan. 5 (2006)
25. Narayanan, Dushyanth et al.: Everest: Scaling down peak loads through I/O off-

loading. In: EuroSys. (2008)
26. Samsung Electorincs: K9GAG0B0M. In: Data Sheet. (2008)
27. Hu, X.Y., et al.: Write amplification analysis in flash-based solid state drives. In:

SYSTOR. (2009)

