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Abstract. Message-passing concurrency (MPC) is increasingly being
used to build systems software that scales well on multi-core hardware.
Functional programming implementations of MPC, such as Erlang, have
also leveraged their stateless nature to build middleware that is not just
scalable, but also dynamically recon�gurable. However, many middle-
ware platforms lend themselves more naturally to a stateful program-
ming model, supporting session and application state. A limitation of
existing programming models and frameworks that support dynamic re-
con�guration for stateful middleware, such as component frameworks, is
that they are not designed for MPC.
In this paper, we present Kompics, a component model and program-
ming framework, that supports the construction and composition of dy-
namically recon�gurable middleware using stateful, concurrent, message-
passing components. An added bene�t of our approach is that by decou-
pling our component execution model, we can run the same code in both
simulation and production environments. We present the architectural
patterns and abstractions that Kompics facilitates and we evaluate them
using a case study of a non-trivial key-value store that we built using
Kompics. We show how our model enables the systematic development
and testing of scalable, dynamically recon�gurable middleware.

Keywords: component model, message-passing, compositional concur-
rency, dynamic recon�guration, multi-core execution, reproducible sim-
ulation, distributed systems architecture.

1 Introduction

In recent times, there has been a marked increase in the use of programming
languages and frameworks that support message-passing concurrency (MPC) to
build high performance servers [1,2]. The main reasons for the renewed interest
in MPC are that it scales well on multi-core hardware architectures and that it
provides a simple and compositional concurrent programming model, free from
the quirks and idiosyncrasies of locks and threads. Another reason is that high
performance non-blocking sockets map easily to MPC applications. In addition
to this, functional programming implementations of MPC, such as Erlang [3]
and Scala actors [4], have the bene�t of being suitable for building middleware
that is dynamically recon�gurable. Due to its stateless nature and support for
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message passing, Erlang supports the construction of software that can be safely
upgraded online. Message processing can be temporarily suspended in modules
marked for upgrade, and the problem of transferring state from the old module
to the new module is largely avoided.

The challenge we address in this paper is how to provide support for both
MPC and dynamic recon�guration in a framework for building high-performance
middleware that lends itself more naturally to a stateful programming model,
supporting session and application state. Existing stateful programming mod-
els and frameworks that support dynamic recon�guration, such as component
frameworks [5], are not designed for MPC support and they do not decouple
their execution model from component code. As a result, they cannot run the
same code in both simulation and production environments.

In previous work on dynamically recon�gurable middleware, component mod-
els, such as OpenCom [5] and Fractal [6], developed mechanisms such as explicit
dependency management, component quiescence, and recon�gurable connectors
for safely adapting systems online. However, the style of component interaction,
based on blocking interface invocation, precludes compositional concurrency in
these models making them unsuited to present day multi-core architectures.

Our work is also relevant within the context of popular non-blocking socket
frameworks that are used to build high performance event-driven server appli-
cations [7], such as Lift [1] and Twitter's Finagle [8] for Scala, and Facebook's
Tornado [9] for Python. Kompics' asynchronous event programming framework
allows it to seamlessly integrate di�erent non-blocking networking frameworks
(such as Netty, Apache Mina, and Grizzly)3 as pluggable components.

Kompics is a message-passing, concurrent, and hierarchical component model
with support for dynamic recon�guration. The broad goal of Kompics is to raise
the level of abstraction in programming distributed systems. We provide con-
structs, mechanisms, architectural patterns, as well as programming, concur-
rency, and execution models that enable programmers to construct and compose
reusable and modular distributed abstractions. We believe this is an important
contribution because it lowers the cost and accelerates the development and
evaluation of more reliable distributed systems. The other main motivation for
our asynchronous event programming framework is performance, particularly for
high-concurrency networked applications.

Through a case-study of a scalable key-value store, we show that the per-
formance of traditional event-driven programming does not have to come at
the cost of more complex programs. Using encapsulation, components can hide
event-driven control �ow and support component reuse. We leverage encapsula-
tion when testing Kompics systems, by enabling the same component code to
be run in both simulation and production systems. To support the easy speci�-
cation of simulation experiments, we introduce a domain-speci�c language that
provides constructs for generating simulation experiment scenarios containing
thousands of nodes.

3 http://www.jboss.org/netty; http://mina.apache.org; http://grizzly.java.net.
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A summary of our key principles in the design of Kompics are as follows. First,
we tackle the increasing complexity of modern distributed systems through hier-
archical abstraction. Second, we decouple components from each other to enable
dynamic system evolution and runtime dependency injection. Third, we decouple
component code from its executor to enable di�erent execution environments.

2 Component Model

Kompics is a component model targeted at building distributed systems by com-
posing protocols programmed as event-driven components. Kompics components
are reactive state machines that execute concurrently and communicate by pass-
ing data-carrying typed events, through typed bidirectional ports, connected by
channels. This section introduces the conceptual entities of our component model
and its programming constructs, its execution model, as well as constructs en-
abling dynamic recon�guration, component life-cycle and fault management.

2.1 Concepts in Kompics
The fundamental Kompics entities are events, ports, components, event han-
dlers, subscriptions, and channels. We introduce them here and show examples
of their de�nitions with snippets of Java code. The Kompics component model is
programming language independent, however, we use Java to illustrate a formal
de�nition of its concepts.

Events. Events are passive and immutable typed objects having any number
of typed attributes. The type of an attribute can be any valid type in the host
programming language. New event types can be de�ned by sub-classing old ones.

Here are two example event type de�nitions in Java4:
 class Message extends Event {
 Address source;
 Address destination;
 }

 class DataMessage extends Message {
 Data data;
 int sequenceNumber;
 }

In our Java implementation of Kompics, all event types are descendants of a
root type, Event. We write DataMessage⊆Message to denote that DataMessage
is a subtype of Message. In diagrams, we represent an event using the Event

graphical notation, where Event is the event's type, e.g., Message.

Ports. Ports are bidirectional event-based component interfaces. A port is a
gate through which a component communicates with other components in its
environment by sending and receiving events. A port allows a speci�c set of
event types to pass in each direction. We label the two directions of a port as
positive (+) and negative (−). The type of a port speci�es the set of event types
that can traverse the port in the positive direction and the set of event types that
can traverse the port in the negative direction. Concretely, a port type de�nition
consists of two sets of event types: a �positive� set and a �negative� set. There is
no sub-typing relationship for port types.

Here are two example port type de�nitions in Java5:

4 We omit the constructors, getters, setters, access modi�ers, and import statements
for clarity.

5 The code block in the inner braces represents an �instance initializer�. The positive

and negative methods populate the respective sets of event types. In our implemen-
tation, a port type is a (singleton) object (for fast dynamic event �ltering).
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 class Network extends PortType {{
 positive(Message.class);
 negative(Message.class);
 }}

 class Timer extends PortType {{
 indication(Timeout.class); //positive
 request(ScheduleTimeout.class);//negative
 request(CancelTimeout.class); //negative
 }}

In this example we de�ne a Network port type which allows events of type
Message (or a subtype thereof) to pass in both (`+' and `−') directions. The
Timer port type allows ScheduleTimeout and CancelTimeout events to pass in
the `−' direction and Timeout events to pass in the `+' direction.

Conceptually, a port type can be seen as a service or protocol abstraction
with an event-based interface. It accepts request events and delivers indication

or response events. By convention, we associate requests with the `−' direction
and responses or indications with the `+' direction. In our example, a Timer
abstraction accepts ScheduleTimeout requests and delivers Timeout indications.
A Network abstraction accepts Message events at a sending node (source) and
delivers Message events at a receiving node (destination) in a distributed system.

A component that implements a protocol or service will provide a port of
the type that represents the implemented abstraction. Through this provided
port, the component will receive the request events and trigger the indication
events speci�ed by the port's type. In other words, for a provided port, the `−'
direction is incoming to the component and the `+' direction is outgoing from
the component.

In Figure 1, the MyNetwork component provides a Network port and the
MyTimer component provides a Timer port. In diagrams, we represent a port
using the Port+

− graphical notation, where Port is the type of the port, e.g., Network.
We represent components using the Component notation.

When a component uses a lower level abstraction in its implementation,
it will require a port of the type that represents the abstraction. Through a
required port, a component sends out the request events and receives the indi-
cation/response events speci�ed by the port's type, i.e., for required ports, the
`−' direction is outgoing from the component and the `+' direction is incoming
to the component.

Channels. Channels are �rst-class bindings between component ports. A chan-
nel connects two complementary ports of the same type. For example, in Fig-
ure 2, channel1 connects the provided Network port of MyNetwork with the re-

FailureDetector

MyTimerMyNetwork

Network
+


Timer
+


Timer
+


Network
+


ScheduleTimeout
CancelTimeout

Timeout+


Message

Message+


Timer
+


Network
+


Fig. 1. The MyNetwork component has a provided Network port. MyTimer has a pro-
vided Timer port. The FailureDetector has a required Network port and a required

Timer port. In diagrams, a provided port is �gured on the top border, and a required
port on the bottom border of a component.
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FailureDetector

MyTimerMyNetwork

Network
+


Timer
+


Timer
+


Network
+


channel1 channel2

Fig. 2. channel1 connects the provided Network port of MyNetwork with the required
Network port of the FailureDetector. channel2 connects the provided Timer port of My-

Timer with the required Timer port of the FailureDetector.

quired Network port of the FailureDetector. This allows, e.g., Message events sent
by the FailureDetector to be received by MyNetwork.

Channels forward events in both directions in FIFO order. In diagrams, we
represent channels using the channel graphical notation. We omit the channel name
when it is not relevant.

Handlers. An event handler is a �rst-class procedure of a component. A handler
accepts events of a particular type (and subtypes thereof) and it is executed
reactively when the component receives such events. During its execution, a
handler may trigger new events and mutate the component's local state. The
handlers of one component instance aremutually exclusive, i.e., they are executed
sequentially. This alleviates the need for synchronization between di�erent event
handlers of the same component accessing the component's mutable state, which
greatly simpli�es their programming.

Here is an example event handler de�nition in Java:
 Handler<Message> handleMsg = new Handler<Message>() {
 public void handle(Message message) {
 messages++; // ← component-local state update
 System.out.println("Received from " + message.source);
 }};

In diagrams, we use the hEvent graphical notation to represent an event han-
dler, where h is the handler's name and Event is the type of events accepted by
the handler, e.g., Message.

Subscriptions. A subscription binds an event handler to one component port,
enabling the handler to handle events that arrive at the component on that port.
A subscription is allowed only if the handler's accepted event type, E, is allowed
to pass by the port's type de�nition. In other words, E must be one of (or a
subtype of one of) the event types allowed by the port's type de�nition to pass
in the direction of the handler.

Figure 3 illustrates the handleMsg handler from our previous example being
subscribed to a port. In diagrams, we represent a subscription using the
graphical notation.

In this example, the subscription of handleMsg to the Network port is allowed
becauseMessage is in the positive set of Network; handleMsg will handle all events
of type Message or a subtype of Message, received on this Network port.

Components. Components are event-driven state machines that execute con-

currently and communicate asynchronously by message-passing. In the host pro-
gramming language, components are objects consisting of any number of local
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MyComponent

Network
+


handleMsg
Message

Fig. 3. The handleMsg event handler is subscribed to the required Network port
of MyComponent. As a result, handleMsg will be executed whenever MyComponent

receives a Message event on this port, taking the event as an argument.

state variables and event handlers. Components are modules that export and im-
port event-based interfaces, i.e., provided and required ports. Each component
is instantiated from a component de�nition.

Here is an example component de�nition in Java:
 class MyComponent extends ComponentDefinition {
 Positive<Network> network = requires(Network.class); // ← required port
 int messages; // ← local state
 public MyComponent() { // ← component constructor
 System.out.println("MyComponent created.");
 messages = 0;
 subscribe(handleMsg, network);
 }
 Handler<Message> handleMsg = new Handler<Message>() { ... };
 }

In this example we see the component de�nition of MyComponent which was
illustrated in Figure 3. Line 2 speci�es that the component has a required Net-
work port. The requires method returns a reference to a required port, network,
which is used in the constructor to subscribe the handleMsg handler to this port
(line 7). The type of the required port is Positive〈Network〉 because, for required
ports the positive direction is incoming into the component. Both a component's
ports and event-handlers are �rst-class entities which allows for their dynamic
manipulation.

Components can encapsulate subcomponents to hide details, reuse function-
ality, and manage system complexity. Composite components enable the control
and dynamic recon�guration of entire component ensembles as if they were sin-
gle components. Composite components form a containment hierarchy rooted at
a Main component (see Figure 4). Main is the �rst component created when the
runtime system starts and it recursively creates all other sub-components. Since
there exist no components outside of Main, Main has no ports.

Here is the Main component speci�cation in Java:
 class Main extends ComponentDefinition {
 Component net, timer, fd; // ← subcomponents
 Channel channel1, channel2; // ← channels
 public Main() { // ↙ constructor
 net = create(MyNetwork.class);
 timer = create(MyTimer.class);
 fd = create(FailureDetector.class);
 channel1 = connect(net.provided(Network.class), fd.required(Network.class));
 channel2 = connect(timer.provided(Timer.class), fd.required(Timer.class));
 }
 public static void main(String[] args) {
 Kompics.bootstrap(Main.class);
 }}
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Main

FailureDetector

MyTimerMyNetwork

Network
+


Timer
+


Timer
+


Network
+


channel1 channel2

Fig. 4. The Main component encapsulates a FailureDetector, a MyNetwork and a My-

Timer component.

In our Java implementation, the Main component is also a Java main class
(lines 11-13 show the main method). When executed, this will invoke the Kom-
pics runtime system, instructing it to bootstrap, i.e., to instantiate the root
component using Main as a component speci�cation (line 12).

In lines 5-7, Main creates its subcomponents and saves references to them. In
line 8, it connects MyNetwork's provided Network port to the required Network
port of the FailureDetector. As a result, channel1 is created and saved. Unless
needed for dynamic recon�guration (see Section 2.6), channel references need
not be saved.

Components are loosely coupled : a component does not know the type, avail-
ability, or identity of any components with which it communicates. Instead, a
component only �communicates� with its ports and it is up to the component's
environment to wire up the communication.

Explicit component dependencies (required ports) enable dynamic recon�g-
uration of the component architecture, a fundamental feature for evolving, long-
lived systems.

2.2 Kompics Operations

While presenting the Kompics concepts we have already introduced some of the
basic operations on these concepts: subscribe, create, and connect. These have
counterparts that undo their actions: unsubscribe, destroy, and disconnect, and
these have the expected semantics. Here is the code for destroy and disconnect

using our previous example:
 class Main extends ComponentDefinition {
 Component net, timer, fd; // ← subcomponents
 Channel channel1, channel2; // ← channels
 public undo() { // ↙ some method
 disconnect(net.provided(Network.class), fd.required(Network.class));
 disconnect(timer.provided(Timer.class), fd.required(Timer.class));
 destroy(net); destroy(timer); destroy(fd);
 }}

A fundamental command in Kompics is trigger, which is used to (asyn-
chronously) send an event through a port. In the next example, MyComponent
handles a MyMessage event due to its subscription to its required Network port.
Upon handling the �rst message, MyComponent triggers a MyMessage reply on
its Network port and then it unsubscribes its handleMyMsg handler, thus han-
dling no further messages.

Figure 5 illustrates MyComponent. In diagrams, we denote that an event
handler may trigger an event on some port, using the Event graphical notation.
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Fig. 5. MyComponent handles one MyMessage event and triggers a MyMessage reply
on its required Network port.

 class MyComponent extends ComponentDefinition {
 Positive<Network> network = requires(Network.class);
 public MyComponent() { // ← component constructor
 subscribe(handleMyMsg, network);
 }
 Handler<MyMessage> handleMyMsg = new Handler<MyMessage>(){
 public void handle(MyMessage m) {
 trigger(new MyMessage(m.destination, m.source), network);
 unsubscribe(handleMyMsg, network); // ← reply only once
 }};}

2.3 Publish-Subscribe Event Dissemination
Components are unaware of other components in their environment. A com-
ponent can communicate, i.e., handle received events and trigger events, only
through the ports visible within its scope. The ports visible in a component's
scope are its own ports and the ports of its immediate sub-components. Ports
and channels forward triggered events toward other connected components, as
long as the types of events triggered are allowed to pass by the respective port
type speci�cations. Hence, component interaction is dictated by the connections
between components as con�gured by their enclosing parent component.

Component communication follows a message-passing publish-subscribe model.
An event triggered (published) on a port is forwarded to other components by all
channels connected to the other side of the port (Figure 6). As an optimization,
our runtime system avoids forwarding events on channels that would not lead to
any compatible subscribed handlers. An event received on a port is handled by
all compatible handlers subscribed to that port (Figure 7).

Fig. 6.WhenMyNetwork triggers aMessageA on its provided Network port, this event is
forwarded by both channel1 and channel2 to the required Network ports of Component1

and Component2, respectively.

2.4 Component Initialization and Life-Cycle
Every component provides a special Control port used for initialization, life-cyle,
and fault management. Figure 8 illustrates the Control port type and a com-
ponent that declares an Init, a Start, and a Stop handler. Typically, for each
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Fig. 7. When MyNetwork triggers a MessageA event on its Network port, this event
is delivered to the Network port of MyComponent and handled by both handler1 and
handler2, sequentially (�gured with yellow diamonds), in the order in which the two
handlers were subscribed to the Network port.

component de�nition that requires state initialization one de�nes a speci�c ini-
tialization event (subtype of Init) which contains component-speci�c con�gura-
tion parameters.

An Init event is guaranteed to be the �rst event handled. When a compo-
nent subscribes an Init event handler to its Control port in its constructor, the
component will not handle any other event before a corresponding Init event.
 class MyComponent extends ComponentDefinition {
 int myParameter;
 public MyComponent() { // ← component constructor
 subscribe(handleStart, control); // ← similar for Stop
 subscribe(handleInit, control);
 }
 Handler<MyInit> handleInit = new Handler<MyInit>() {
 public void handle(MyInit init) {
 myParameter = init.myParameter;
 }};
 Handler<Start> handleStart = new Handler<Start>() {
 public void handle(Start event) {
 System.out.println("started");
 }};}

Start and Stop events allow a component (which handles them) to take some
actions when the component is activated or passivated. A component is created
passive. In the passive state, a component can receive events but it will not
execute them. (Received events are stored in a port queue.) When activated, a
component will enter the active state (executing any enqueued events). Handling
life-cycle events is optional for a component.

To activate a component, a Start event is triggered on its control port, and
to passivate it, a Stop event is triggered on its control port. Here is an example
snippet of code possibly executed by a parent of myComponent:

MyComponent

Control
+


startH
Start

stopH
Stop

initH
MyInit

Start
Stop
Init

Fault+


Control
+


MyInit Init

Fig. 8. Every Kompics component provides a Control port by default. To this Control
port, the component can subscribe Start, Stop, and Init handlers. In general, we do not
illustrate the control port in component diagrams.
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 trigger(new MyInit(42), myComponent.control());
 trigger(new Start(), myComponent.control());
 trigger(new Stop(), myComponent.control());

When a composite component is activated (or passivated), its subcomponents
are recursively activated (or passivated). The bootstrap construct, introduced in
the Main component example, both creates and starts the Main component.

2.5 Fault Management

Kompics enforces a fault isolation and management mechanism inspired by Er-
lang [3]. A software fault or exception thrown and not caught within an event
handler is caught by the runtime system, wrapped into a Fault event and trig-
gered on the Control port, as shown in Figure 9.

Fig. 9. Uncaught exceptions thrown in event handlers are caught by the runtime,
wrapped in a Fault event and triggered on the control port.

A composite component may subscribe a Fault handler to the control port of
its subcomponents. The component can then replace the faulty subcomponent
with a new instance (through dynamic recon�guration) or take other appropriate
actions. If a Fault is not handled in a parent component it is further propagated
to the parent's parent and so on until it reaches the Main component. If not
handled anywhere, ultimately, a system fault handler is executed which dumps
the exception to standard error and halts the execution.

2.6 Dynamic Recon�guration

Kompics enables the dynamic recon�guration of the component architecture
without dropping any of the triggered events. In addition to the ability to dy-
namically create and destroy components, connect and disconnect ports, sub-
scribe and unsubscribe handlers, Kompics supports four channel commands to
enable safe dynamic recon�guration: hold, resume, plug, and unplug. The hold

command puts the channel on hold. The channel stops forwarding events and
starts queuing them in both directions. The resume command has the opposite
e�ect, resuming the channel. When a channel resumes, it �rst forwards all en-
queued events, in both directions, and then keeps forwarding events as ususal.
The unplug command, unplugs one end of a channel from the port where it is
connected, and the plug command plugs back the unconnected end to a (possibly
di�erent) port.

To replace a component c1 with a new component c2 (with similar ports), c1's
parent, p, puts on hold and unplugs all channels connected to c1's ports; then,
p passivates c1, creates c2 and plugs the unplugged channels into the respective
ports of c2 and resumes them; c2 is initialized with the state dumped by c1 and
activated. Finally, p destroys c1.
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3 Implementation

We have implemented Kompics in Java. In this section we discuss some of the
implementation details related to the runtime system, component scheduling,
di�erent modes of execution, and component dependency management. Kompics
is publicly released as an open-source project. The source code for the Java
implementation of the Kompics runtime, component library, and case studies
presented here, are all available online at http://kompics.sics.se.

Java Runtime and Network I/O. Our Java runtime system implements the
Kompics concepts and operations as well as the Kompics execution model. The
Kompics runtime system supports pluggable component schedulers, decoupling
component behaviour from component execution. In particular, this enables the
ability to use di�erent component schedulers to execute the same (unchanged)
component-based system in di�erent modes: parallel multi-core execution and
deterministic simulation. Next subsection highlights the default scheduler.

We implemented a rich library of components and ports that provide basic
distributed systems abstractions. For example, we have three di�erent implemen-
tations for the Network abstraction using Apache MINA, Netty, and the Grizzly
network library, respectively. Each of these components implements automatic
connection management, message serialization, and Zlib compression. The choice
of implementations is con�gurable - for example, CATS in section 4 uses Grizzly
with Kyro for message serialization.

Multi-core Component Scheduling. The Kompics execution model admits
an implementation with one lightweight thread per component. However, as Java
has only heavyweight threads, we use a pool of worker threads for concurrently
executing components. Every component is marked as idle (if it has no events
awaiting execution), ready (if it has one or more events waiting in ports to
be executed in handlers), or busy (if an event is currently being executed in
a handler). Each worker has a dedicated queue of ready components. Workers
process one event in one component at a time and one component cannot be
processed by multiple workers at the same time. Thus, the Kompics execution
model guarantees that handlers of a single component instance execute mutually
exclusively.

Workers may run out of ready components to execute, in which case they
engage in work stealing [10]. Work stealing involves a thief, a worker with no
ready components contacting a victim, the worker with the highest number of
ready components, and stealing a batch of half of its ready components. Stolen
components are moved from the victim's work queue to the thief's work queue.
From our experiments, batching shows a considerable performance improvement
over stealing small numbers of ready components. To improve concurrency, the
work queues are implemented as lock-free queues, meaning that the victims and
thieves can concurrently consume ready components from their queues.

By designing components as reactive state machines and scheduling them
using a pool of worker threads, we provide a simple programming model that
leverages multi-core machines without any extra programming e�ort.
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Deterministic Simulation Mode. We provide a special scheduler for repro-
ducible system simulation. The system code is executed in deterministic simu-
lation provided it does not attempt to create threads. In simulation mode, the
system's bytecode (including any binary libraries) is instrumented to intercept
all calls for the current time and return the simulated time. Therefore, without
editing any of its source code, the system can be executed deterministically in
simulated time. Library code for secure random number generators is also in-
strumented to use the same seed and achieve determinism. Attempts to create
threads are also intercepted and the simulation halts since it would not be able
to guarantee deterministic execution.

Testing and Programming in the Large. Kompics supports test-driven de-
velopment through both unit-testing and integration-testing. Firstly, since com-
ponents are implemented in Java classes, a component can be mocked, so that
the individual handlers can be unit-tested. Secondly, integration tests (tests cov-
ering more than one component) can be implemented as Java unit tests running
the tested subsystem in simulation mode, enabling systems to be built and val-
idated using standard continuous integration platforms. To this end, we used
Apache Maven to organize the structure and manage the artifacts of the Kom-
pics component library. The complete framework counts more than 100 mod-
ules. We organize the various Kompics concepts into abstraction and component

packages. An abstraction package contains a port together with the request and
indication events of that port. A component package contains the implementa-
tion of one component with some component-speci�c events (typically subtypes
of events de�ned in required ports). The source code for an abstraction or com-
ponent package is organized as a Maven module and the binary code is packaged
into a Maven artifact, a JAR archive annotated with meta-data about the pack-
age's version, dependencies, and pointers to web repositories from where (binary)
package dependencies are automatically fetched by Maven.

In general, abstraction packages have no dependencies and component pack-
ages have dependencies on abstraction packages for both the required and pro-
vided ports. This is because a component implementation will use event types
de�ned in abstraction packages, irrespective of the fact that an abstraction is
required or provided. Maven enables the reusability of protocol abstractions and
component implementations. When we start a project for a new protocol imple-
mentation we just need to specify what existing abstractions our implementation
depends on. They are automatically fetched and made visible in the new project.
This approach also enables deploy-time composition.

4 Case Study: A Scalable, Consistent Key-Value Store
To put into perspective the Kompics concepts, patterns, and di�erent execution
modes, we present a case study of a key-value store called CATS that provides a
simple API to get and put key-value pairs, while guaranteeing linearizable con-
sistency in partially synchronous, lossy, partitionable and dynamic networks [11].
Kompics was used to develop, deploy, stress-test, and simulate CATS. This is a
(non-trivial) large-scale, self-organizing distributed system with dynamic node
membership. Each node in the system handles a complex mix of protocols for
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failure detection, topology maintenance, routing, replication, group membership,
agreement, and data consistency. In the next section we highlight the component
based software architecture of the system and later we show how the same system
implementation designated for deployment is executed in simulation mode for
debugging and testing under a wide array of concurrency and failure scenarios.

4.1 CATS Deployment Architecture

Firstly, we provide a general component framework with protocols reusable in
many large-scale distributed systems (such as our key-value store or a peer-
to-peer (P2P) system). Such systems typically need a bootstrap procedure to
assist newly arrived nodes in �nding nodes already in the system in order to
execute any join protocols. To this end, we have a BootstrapServer component
which maintains a list of online nodes for a particular system instance. Every
node embeds a BootstrapClient component which provides a Bootstrap service to
the node. When a node starts, it issues a BootstrapRequest to the client which
retrieves from the server a list of alive nodes and delivers a BootstrapResponse
to the node. The node runs a join protocol against one or more of the returned
nodes and after joining, it sends a BootstrapDone event to the client, which, from
now on, will send periodic keep-alives to the server letting it know this node is
still alive. The BootstrapServer evicts nodes who stop sending keep-alives.

Another reusable service provided, is a monitoring service that provides dis-
tributed tracing, where a client component at each node periodically inspects
the status of various internal components, and may also log all network events
for tracing. The client periodically sends reports to a monitoring server that can
aggregate the status of nodes, rebuild trace trees, and present a global view of
the system on a web page. The bootstrap and monitoring servers are illustrated
in Figure 10 (left), within executable main components.
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Fig. 10. Bootstrap and monitoring servers (left) exposing a user-friendly web inter-
face for troubleshooting. Component architecture for one CATS node (right). This
architecture is designated for system deployment where every CATS node executes on
a di�erent machine and communicates with other nodes by sending messages using
Grizzly, a Java NIO non-blocking sockets framework.

We embed the Jetty web server library in the JettyWebServer component
which wraps every HTTP request into a WebRequest event and triggers it on a
required Web port. Both servers provide the Web abstraction, accepting WebRe-
quests and delivering WebResponses containing HTML pages with the node list
and global view, respectively.
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Fig. 11. The architecture of the CATS Node. We omit the channels for clarity. In this
scope, all provided ports are connected to all required ports of the same type.

In Figure 10 (right), we show the component architecture designated for
system deployment. Here we have the executable CATS NodeMain component
that embeds the CATS node, network, timer, web server, and client application
components. The embedded CATS Node exposes its status through a Web port.
The HTML page representing the node's status will typically contain hyperlinks
to the neighbor nodes and to the bootstrap and monitoring server. This enables
users/developers to browse the set of nodes over the web, and inspect the state
of each remote node. The CATS Client component may embed a GUI or CLI
user interface and issue functional requests (or accept indications) to the CATS
Node over the PutGet port.

The CATS Node is detailed in Figure 11. As you can see, by encapsulating
many components behind the PutGet port, clients are hidden from the complexity
and event-driven control �ow internal to the component. The components used
to implement CATS include a PingFailureDetector, a CATS Ring component to
build and maintain a distributed hash table, and a One-Hop Router component
that provides routing over the ring. The One-Hop Router, in turn, uses a node
sampling service called Cyclon Overlay to periodically provide random samples
of nodes in the system. The Consistent ABD component provides quorum-based
reading and writing operations that in turn use the One-Hop Router to discover
the destination endpoints for read and write messages.

Every functional component provides a Stat port, accepting StatusRequests
and delivering StatusResponses to MonitorClient and JettyWebServer. JettyWeb-
Server provides a web interface to the node, dumping the status of the node
components and allowing users to issue interactive commands to PutGet from a
web browser.

We have deployed and tested CATS on the PlanetLab testbed, on our lo-
cal cluster, and on Rackspace. Using the web interface to interact with CATS
(con�gured with a replication degree of 5) on the local-area network, resulted in
sub-millisecond end-to-end latencies for get and put operations. This includes the
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Fig. 12. Component architecture for whole-system simulation (left) / interactive stress-
test execution (right). All nodes and servers execute within a single OS process in
simulated time (left) / real time (right).

LAN latency (two message round-trips, so 4 one-way latencies), message serial-
ization (4x), encryption (4x), decryption (4x), deserialization (4x), and Kompics
runtime overheads for message dispatching and execution. In terms of scalability,
for read-intensive workloads, reading 1KB values, CATS scaled on Rackspace to
96 machines providing just over 100,000 reads/sec. We refer the reader to [11]
for more details on CATS performance.

4.2 CATS Simulation Architecture
We now show how we can reuse the CATS' components, without modifying their
code, to execute the system in simulation mode for testing, stepped debugging,
or repeatable simulation studies. Figure 12 (left) shows the component archi-
tecture for simulation mode. Here, a generic NetworkEmulator/ExperimentDriver
interprets an experiment scenario and issues command events to the CATS Sim-
ulator component. A command (triggered through the CATS Experiment port)
may tell the CATS Simulator to create and start a new node, to stop and de-
stroy an existing node, or to instruct an existing node to execute a system-
speci�c operation (through its PutGet port). The ability to create and destroy
node subcomponents in CATS Simulator is clearly facilitated by Kompics' sup-
port for dynamic recon�guration and hierarchical composition. The NetworkEm-
ulator/ExperimentDriver also provides the Network and Timer abstractions and
implements a generic discrete-event simulator.

This whole architecture is executed in simulation mode, i.e., using a simu-
lation component scheduler which executes all components that have received
events and when it runs out of work it passes control to the NetworkEmula-
tor/ExperimentDriver to advance the simulation time.

4.3 Local, Interactive, Stress-Test Execution
Using the same experiment scenario used in simulation, the same system code
can be executed in an interactive stress-testing execution mode. Figure 12 (right)
shows the respective component architecture. This is similar to the simulation
architecture, however, our concurrent component scheduler is used and the sys-
tem executes in real-time.

During development it is recommended to incrementally make small changes
and quickly test their e�ects. The interactive execution mode helps with this
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routine since it enables us to quickly run a small-scale distributed system (with-
out the need for remote deployment or launching of multiple processes) and we
can interact with it using a web browser.

4.4 CATS Experimentation

We designed a Java domain-speci�c language (DSL) for expressing experiment
scenarios for large-scale distributed systems. Such scenarios are interpreted by a
NetworkEmulator/ExperimentDriver or NIO Framework and ExperimentDriver com-
ponent. A scenario is a parallel and/or sequential composition of stochastic pro-

cesses. We start each stochastic process, a �nite random sequence of events, with
a speci�ed distribution of inter-arrival times.

Here is an example stochastic process:
 StochasticProcess boot = new StochasticProcess() {{
 eventInterArrivalTime(exponential(2000)); //exponentially distributed, µ = 2s
 raise(1000, catsJoin, uniform(16)); //1000 joins with uniform IDs from 0..216

 }};

This will generate a sequence of 1000 catsJoin operations, with an inter-
arrival time between two consecutive operations extracted from an exponential
distribution with a mean of 2 seconds. The catsJoin operation is a system-speci�c
operation with 1 parameter. In this case, the parameter is the ring identi�er of
the joining node, extracted from an uniform distribution of [0..216]. Here is how
the catsJoin operation is de�ned:
 Operation1<Join, BigInteger> catsJoin = new Operation1<Join, BigInteger>() {
 public Join generate(BigInteger nodeKey){
 return new Join(new NumericRingKey(nodeKey));
 }};

It takes one BigInteger argument (extracted from a distribution) and gener-
ates a Join event (triggered by the NetworkEmulator/ExperimentDriver on PutGet
port). Next, we de�ne a churn process which will generate a sequence of 1000
churn events (500 joins randomly interleaved with 500 failures), with an expo-
nential inter-arrival time with a mean of 500 milliseconds.
 StochasticProcess churn = new StochasticProcess() {{
 eventInterArrivalTime(exponential(500));//exponentially distributed, µ = 500ms
 raise(500, catsJoin, uniform(16)); //500 joins
 raise(500, catsFail, uniform(16)); //500 failures
 }};

Next, we de�ne a process to issues some Lookup events.
 StochasticProcess lookups = new StochasticProcess() {{
 eventInterArrivalTime(normal(50, 10));//normally distributed,µ = 50ms, σ = 10ms
 raise(5000, catsLookup, uniform(16), uniform(14));
 }};

The catsLookup operation takes two BigInteger parameters, extracted from
a (here, uniform) distribution, and generates a Lookup event that tells CATS
Simulator to issue a lookup for key key at the node with identi�er node. As you
can see above, a random node in 0..216 will issue a lookup for a random key in
0..214. 5000 lookups are issued in total, with an exponential inter-arrival time
with mean 50 milliseconds.
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 Operation2<Lookup, BigInteger, BigInteger> catsLookup
 = new Operation2<Lookup, BigInteger, BigInteger>() {
 public Lookup generate(BigInteger node,BigInteger key){
 return new Lookup(new NumericRingKey(node), new NumericRingKey(key));
 }};

We de�ned three stochastic processes: boot, churn, and lookups. The next
code snippet shows how we can compose them into a complete experiment sce-
nario. The experiment scenario starts with the boot process. Two seconds (simu-
lated time) after this process terminates, the churn process starts. Three seconds
after churn starts, the lookups process starts, now working in parallel with churn.
The experiment terminates one second after all lookups are done. Putting it all
together, here is how one de�nes and executes an experiment scenario using our
Java DSL:
 class CatsSimulationExperiment {
 // system-specific operations definitions
 static Scenario scenario1 = new Scenario() {
 StochasticProcess boot = ... // see above
 StochasticProcess churn = ...
 StochasticProcess lookups = ...
 boot.start(); // start
 churn.startAfterTerminationOf(2000, boot); // sequential composition
 lookups.startAfterStartOf(3000, churn); // parallel composition
 terminateAfterTerminationOf(1000, lookups); // join synchronization
 }
 public static void main(String[] args) {
 scenario1.setSeed(rngSeed);
 scenario1.simulate(CatsSimulationMain.class); // simulation mode
 // scenario1.execute(CatsLocalExecutionMain.class);// local, interactive
 }} // execution mode

Note that the above code is an executable Java main-class. It creates a sce-

nario1 object, sets an RNG seed, and calls the simulate method passing the
simulation architecture of your system as an argument (line 14). The simulate

method instruments the bytecode of the system and executes it in simulation
mode, driving the simulation from the given experiment scenario. This is useful
for debugging. If you want to run an interactive experiment, comment out line
14 and uncomment line 15. This will run your interactive execution architec-
ture and drive it from the same scenario. You will be able to interact with and
monitor the system over the web while the experiment is running.

Discussion and Simulation Performance. We have showed the component
based software architecture of a non-trivial distributed system and how the same
system implementation designated for deployment can be executed in simulation
mode or interactive whole-system execution. We showed how Kompics can be
used to build scalable, concurrent middleware using CATS as a case study.

We also ran simulations of CATS and we were able to simulate a system of
16384 nodes in a single 64-bit JVM with a heap size of 4GB. The ratio between
the real time taken to run the simulation and the simulated time was roughly 1.
For smaller system sizes we observe a much higher simulated time compression
e�ect, as shown in Table 1.

5 Related Work

Kompics is related to work in several areas: concurrent programming mod-
els [12�15], recon�gurable component models for distributed systems [5, 6, 16],
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Table 1. Time compression e�ects observed when simulating the system for 4275
seconds of simulated time.

Peers Time compression

64 475x

128 237.5x

256 118.75x

512 59.38x

1024 28.31x

2048 11.74x

4096 4.96x

8192 2.01x

recon�gurable software architectures [17�20], and event-based frameworks for
distributed systems [7,21,22].

Kompics's message-passing concurrency model is similar to the actor model
[23], of which Erlang [12], the Unix �lter and pipe model, Kilim [14] and Scala [13]
are, perhaps, the best known examples. Similar to the actor model, message
passing in Kompics involves bu�ering events before they are handled in a �rst-in
�rst-out (FIFO) order, thus, decoupling the thread that sends an event from
the thread that handles an event. In contrast to the actor model, event bu�ers
are associated with component ports, so each component can have more than
one event queue, and ports are connected using typed channels. Channels that
carry typed messages between processes are also found in other message-passing
systems, such as Singularity [24]. Connections between processes in the actor
models are unidirectional and based on process-ids, while channels between ports
in Kompics are bi-directional and components are oblivious to the destination
of their events.

The main features of the Kompics component model, such as the ability to
compose components, support for strongly-typed interfaces, and explicit depen-
dency management using ports, are found in many existing component models,
such as ArchJava [20], OpenCOM [5], Fractal [6], LiveObjects [16], and OMN-
net++ [25]. However, with the exception of LiveObjects, these component mod-
els are inherently client-server models, with blocking RPC interfaces.

LiveObjects has the most similar goals to Kompics of supporting encapsula-
tion and composition of distributed protocols. Its endpoints are similar to our
ports, providing bi-directional message-passing, however, endpoints in LiveOb-
jects support only one-to-one connections. Other di�erences with Kompics in-
clude: the lack of a concurrency model beyond shared-state concurrency, the lack
of recon�gurability, and the lack of support for hierarchical components.

Although there is support for dynamic recon�guration in some actor-based
systems, such as Erlang, Kompics's recon�guration model is based on recon�gur-
ing strongly typed connections between components. Component-based systems
that support similar runtime recon�guration functionality use either re�ective
techniques, such as OpenCOM [5], or dynamic software architecture models, such
as Fractal [6], Rapide [17], and ArchStudio4/C2 [19]. Kompics's recon�guration
model is most similar to the dynamic software architecture approaches, but a
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major di�erence is that the software architecture in Kompics is not speci�ed ex-
plicitly in an architecture de�nition language, rather it is implicitly constructed
at runtime.

Other work related to Kompics are non-blocking socket frameworks that sup-
port asynchronous event programming, such as Tornado for Python [9] and Lift
for Scala actors. Protocol composition frameworks, such as Horus [26], Appia [22]
and Mace [27], are also related, but they are speci�cally designed for building
distributed systems by layering modular protocols. Although this approach cer-
tainly simpli�es the task of programming distributed systems, these frameworks
are often designed with a particular protocol domain in mind and this limits
their generality. Mace, however, also supports the execution of the same code in
both production and simulation. Finally, there are related tools for monitoring
distributed systems, such as Dapper [28] by Google, a distributed tracing sys-
tem that is built-in to a few key modules commonly linked by all applications.
In contrast, in Kompics, we have a monitoring client that execute concurrently
and can be easily adapted to handle events published by any component.

6 Conclusions and Future Work

In this paper we presented the Kompics component model and programming
framework. We showed how complex distributed systems can be built by com-
posing simple protocols. Protocol abstractions are programmed as event-driven,
message-passing concurrent components. Kompics contributes a unique combi-
nation of features well suited for the development and testing of large-scale,
long-lived distributed systems, including: hierarchical component composition,
dynamic recon�guration, message-passing concurrency, publish-subscribe non-
blocking component interaction, seamless integration of NIO frameworks, and
the ability to run the same code in either production mode or reproducible sim-
ulation for testing and stepped debugging. For future work, we are investigating
a Kompics front-end in Scala. This would immediately leverage the existing Java
components and runtime system. Also, it has the potential for more expressive
code and a succint DSL for Kompics operations.
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