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Spectral clustering
based on k-nearest neighbor graph

Malgorzata Lucinska! and Stawomir T. Wierzchon?-3

! Kielce University of Technology, Kielce, Poland
2 Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland
3 University of Gdanisk, Gdansk, Poland

Abstract. Finding clusters in data is a challenging task when the clus-
ters differ widely in shapes, sizes, and densities. We present a novel spec-
tral algorithm Speclus with a similarity measure based on modified mu-
tual nearest neighbor graph. The resulting affinity matrix reflex the true
structure of data. Its eigenvectors, that do not change their sign, are
used for clustering data. The algorithm requires only one parameter — a
number of nearest neighbors, which can be quite easily established. Its
performance on both artificial and real data sets is competitive to other
solutions.

Keywords: spectral clustering, nearest neighbor graph, signless Lapla-
cian

1 Introduction

Clustering is a common unsupervised learning technique; its aim is to divide
objects into groups, such that members of the same group are more similar each
to another (according to some similarity measure) than any two members from
two different groups. Different applications of clustering in practical problems
are reviewed e.g. in [7]. The technique is successfully used for e.g. in management
for risk assessment [13] and [1] or in portfolio management [19]. Although many
clustering methods have been proposed in the recent decades, see e.g. [6] or [17],
there is no universal one that can deal with any clustering problem, since the
real world clusters may be of arbitrary complicated shapes, varied densities and
unbalanced sizes.

Spectral clustering techniques [15] belong to popular and efficient clustering
methods. They allow to find clusters even of very irregular shapes, contrary to
other algorithms, like k-means algorithm [8]. Spectral techniques use eigenvalues
and eigenvectors of a suitably chosen matrix to partition the data. The matrix
is the affinity matrix (or a matrix derived from it) built on the basis of pairwise
similarity of objects to be grouped. The structure of the matrix plays a significant
role in correct cluster separation. If it is clearly block diagonal, its eigenvectors
will relate back to the structural properties of the set of the objects, [10].

One of the key tasks in spectral clustering is the choice of similarity measure.
Most spectral algorithms adopt a Gaussian kernel function defined as:
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S(i.5) = exp (- el 1)

where ||x; — x,|| denotes the Euclidean distance between points x; and x;. The
kernel parameter o influences the structure of an affinity matrix and generally
it is difficult to find its optimal value. Some authors propose a global value
of o for the whole data set e.g. [12] and [14] while the others suggest using a
local parameter e.g. [18]. However both the solutions fail to reveal the properties
of real world data sets [16]. Another open issue of key importance in spectral
clustering is that of choosing a proper number of groups. Usually this number
is a user defined parameter [12], but sometimes it is estimated — with varying
success rate [14] — in a heuristically motivated way.

In this paper we present a spectral clustering algorithm Speclus that can
simultaneously address both of the above mentioned challenges for a variety of
data sets. It adopts the idea derived by Shi et al. from their analysis of the rela-
tionship between a probability distribution and spectrum of the corresponding
distribution-dependent convolution operator, [14]. Their DaSpec (i.e. Data Spec-
troscopic) algorithm estimates the group number by finding eigenvectors with
no sign change and assigns labels to each point based on these eigenvectors. In
our algorithm the similarity between pairs of points is deduced from their neigh-
borhoods. The use of similarity based on nearest neighbors approach removes,
at least partially, problems with cluster varying densities and the unreliability
of distance measure. Resulting adjacency matrix reflects true relationships be-
tween data points. Also the o parameter is replaced by the number of neighbors
parameter, which can be chosen more simply since it is an integer and takes a
small number of values. Apart from only one parameter another advantage of
the presented approach is that it incorporates a variety of recent and established
ideas in a complete algorithm which is competitive to current solutions.

In section 2 the notation and related work is presented, the next section
explains the main concepts used in the Speclus algorithm, which is presented in
details in section 4. Then, in section 5, we compare performance of our algorithm
with other solutions. Finally, in section 6, the main conclusions are drawn.

2 Notation and related work

Let X = (x1,Xa,...,X,) be the set of data points to be clustered. For each pair
of points 4, j an adjacency a;; € {0,1} is attached (see Section 3 for details).
The value a;; = 1 implies the existence of undirected edge i ~ j in the graph G
spanned over the set of vertices X. Let A = [a;;] be the adjacency matrix. Let
d;i =5 ; Gij denote the degree of node i and let D be the diagonal matrix with
d;’s on its diagonal. A clustering C = (C1,Cy,...,C}) is a partition of X into
[ nonempty and mutually disjoint subsets. In the graph-theoretic language the
clustering represents a multiway cut in G [3].

In the Speclus algorithm a signless Laplacian M = D + A, introduced by
Cvetkovié [2], is used. Cvetkovié¢ proves that the spectrum (i.e. the set of eigenval-
ues) of M can better distinguish different graphs than spectra of other commonly
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used graph matrices. Graphs with the same spectrum of an associated matrix B
are called cospectral graphs with respect to B, or B-cospectral graphs. A graph
H cospectral with a graph F', but not isomorphic to F', is called a cospectral
mate of H. Let G be a finite set of graphs, and let G’ be the set of graphs in G
which have a cospectral mate in G with respect to M. The ratio |G’'|/|G| is called
the spectral uncertainty of (graphs from) G with respect to B. Cvetkovié¢ com-
pares spectral uncertainties with respect to the adjacency matrix, the Laplacian
(L =D — A), and the signless Laplacian of sets of all graphs on n vertices for
n < 11. Spectral uncertainties in case of the signless Laplacian are smaller than
for the other matrices. This indicates that the signless Laplacian seems to be
very convenient for use in studying graph properties.

As already mentioned the Speclus algorithm utilizes the idea proposed by
Shi et al. in [14]. They study the spectral properties of an adjacency matrix A
and its connection to the data generating distribution P. The authors investigate
the case when the distribution P is a mixture of several dense components and
each mixing component has enough separation from the others. In such a case A
and L are (close to) block-diagonal matrices. Eigenvectors of such block-diagonal
matrices keep the same structure. For example, the few top (i.e. corresponding
to highest eigenvalues) eigenvectors of L can be shown to be constant on each
cluster, assuming infinite separation between clusters. This property allows to
distinguish the clusters by looking for data points corresponding to the same
or similar values of the eigenvectors. Shi et al. develop in [14] theoretical results
based on a radial similarity function with a sufficiently fast tail decay. They prove
that each of the top eigenvectors of A corresponds exactly to one of the separable
mixture components. The eigenvectors of each component decay quickly to zero
at the tail of its distribution if there is a good separation of components. At a
given location x; in the high density area of a particular component, which is at
the tails of other components, the eigenvectors from all other components should
be close to zero.

Also Elon [4] attempts to characterize eigenvectors of the Laplacian on reg-
ular graphs. He suggests that the distribution of eigenvectors, except the first
one, follows approximately a Gaussian distribution. There are also proofs that in
general, top eigenvalues have associated eigenvectors which vary little between
adjacent vertices. The two facts confirm the assumption that each cluster is re-
flected by at least one eigenvector with large components associated with the
cluster vertices and almost zero values in the other case.

Another concept incorporated in the Speclus algorithm comes from New-
man. It concerns a quality function called modularity, which is used for assessing
a graph cut [11].

Another concept incorporated in the Speclus algorithm is so-called modu-
larity, i.e. a quality function introduced by Newman [11] for assessing a graph
cut. According to its inventor a good division of a graph into partitions is not
merely one in which there are few edges between groups; it is one in which there
are fewer than expected edges between groups. The modularity @ is, up to a
multiplicative constant, the number of edges falling within groups minus the
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expected number in an equivalent graph with edges placed at random, or in
functional form

1 did;

= 5 2 [ = 55 (00 @
ij

where 0(r,s) = 1 if r = s and 0 otherwise, and m is the number of edges in the

graph. Newman suggests that a division on a graph makes sense if @ > 0.3.

3 Neighborhood graph and structure of its eigenvectors

The novel concept of the Speclus algorithm is the similarity measure based on
nearest neighbors approach. Specifically the & mutual nearest neighbor graph is
constructed with points as the vertices and edges as similarities. First for each
of the points k symmetric nearest neighbors are found with Euclidean distance
as the distance metric. Then for each two vertices x; and x; the connecting edge
v;; is created if vertex x; belongs to k-nearest neighbors of vertex x; and vice
versa. Afterwards vertices with a small number of edges (less than half of an
average number of edges connected to one point in the graph) are identified.
Each of such vertices with low degree is additionally connected to a few nearest
neighbors of vertices in its closest proximity. By “closest proximity” we under-
stand approximately the first k/2 neighboring vertices and half of its neighbors
create additional connections, but only in case their degree is less than k/2. The
resulting graph is similar to a mutual nearest neighbor graph described in [9)].
The difference lies in additional edges, which are created between vertices with
low degrees. For each pair of nodes x; and x; in such constructed graph the
value a;; is set to one if and only if there is an edge joining the two vertices.
Otherwise a;; equals 0. Also all diagonal elements of the affinity matrix A are
Zero.

Such an approach guarantees a sparse affinity matrix, capturing the core
structure of the data and achieved simply with only one parameter k. It can also
handle data containing clusters of differing densities. To illustrate this statement
let us consider two neighboring clusters: a dense cluster A and a sparse cluster B,
as Figure 1 shows. The point P does not belong to the mutual nearest neighbors
of the point A, as the last one has many other neighbors closer to it than P. In
such a case lacking neighbors of the point P will be supplemented by the nearest
neighbors of points @) and R.

In order to estimate the number of groups and divide data into clusters the
Speclus algorithm utilizes structure of the top eigenvectors of signless Laplacian.
According to works [4] and [14], and our extensive numerical observations, top
eigenvectors of sparse matrices, related to points creating disjoint subsets, reflect
the structure of the data set. Figure 2 shows an ideal example, when three
clusters are completely separated and each of them can be presented in the form
of the regular graph of the same degree. Top eigenvectors of signless Laplacian
show clearly its structure. Each cluster is represented by an eigenvector, which
assumes relatively high values (of one sign) for points belonging to the cluster
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Fig. 1. Choice of mutual nearest neighbors in case of two clusters with different den-
sities

and zero values for points from other clusters. An additional regularity can also
be seen — if a point is close to a cluster center its value in the corresponding
eigenvector is high. The points, which lay at the border of a cluster have relatively
small values of the appropriate eigenvector.

In real situations, when subsets are close to each other, overlap or have
different densities, the picture of data structure given by the top eigenvectors
can be a little confusing. Shi et al. notice that smaller or less compact groups may
not be identified using just the very top part of the spectrum. More eigenvectors
need to be investigated to see these clusters. On the other hand, information
in the top few eigenvectors may also be redundant for clustering, as some of
these eigenvectors may represent the same group. In the Speclus algorithm the
problems are solved with the help of modularity function. If two eigenvectors
indicate two different divisions of the set, the modularity is calculated in order
to choose a better cut in terms of modularity maximization.

4 The Speclus algorithm

The steps of the Speclus algorithm are as follows:

The Speclus algorithm

Input: Data X, number of nearest neighbors k
Output: C clustering of X
Algorithm:
1. Compute, in the following order
k-nearest neighbors for each x
mutual nearest neighbors for each x
additional neighbors in case degree of x < half of
average degree in X
2. Create affinity matrix A and signless Laplacian M=D+A
3. Compute top w eigenvectors of M
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Fig. 2. Perfectly separated clusters (top right) and their eigenvectors (top left and
bottom).

4. Find eigenvectors with no sign change (up to standard
deviation of its values)

5. Determine overlapping eigenvectors (related to the same
cluster)

6. Calculate modularity corresponding to the graph cut for

each overlapping eigenvector and choose the best one

Create a set of eigenvectors A, each representing one cluster

8. Assign each point x to one eigenvector from the set A,
having the biggest entry for x

~

The algorithm builds a graph, with points as vertices and similarities be-
tween points as edges. It starts by retrieving k nearest neighbors for each point
and afterwards generates mutual nearest neighbors. If a degree of a vertex is
smaller than half of the average degree of vertices in the graph, edges to nearest
neighbors of the vertices from the closest proximity are added, as it is described
in section 3. After determining the affinity matrix and signless Laplacian the
eigenvectors and eigenvalues of the last one are calculated. The number of eigen-
vectors computed, w = 20 is estimated as twice the maximum expected number
of clusters, that guarantees representation of each cluster by at least one eigen-
vector. Next, eigenvectors with no sign change are extracted. We assume that an
eigenvector does not change a sign if all its positive entries are smaller than its
standard deviation or absolute values of its all negative entries do not exceed the
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standard deviation. If the clusters are not perfectly separated or have varying
densities one cluster may be represented by a few eigenvectors. Such overlapping
eigenvectors are recognized with a help of a point with the biggest entry for each
eigenvector (eigenvector maximum). As it is mentioned in the section 3 of this
paper, points located in the center of a cluster have big entries in appropriate
eigenvectors. A point corresponding to the maximum of one eigenvector should
have small entries in the other eigenvectors, unless they represent the same clus-
ter. After establishing the maximum of an eigenvector v we compare its values
in the other eigenvectors. If the appropriate entry in an eigenvector w is bigger
than a small value ¢, e.g. ¢ = 0.001, it means that the two eigenvectors overlap.
Such pairs of eigenvectors create a set B, while the eigenvectors, which do not
overlap belong to a set A. First the data set is divided into clusters on the basis
of the set A. If a point x has the biggest entry in the eigenvector v it receives a
label v, etc. Afterwards similar divisions are made with a use of each overlapping
eigenvector pair from the set B. Let us assume that eigenvectors v1 and v2 over-
lap with each other. A point, which has an entry in v1 bigger than € is labeled
as a set C'1, if the entry in v2 is bigger the label corresponds to a set C2. For
each of the two divisions a modularity function is calculated. The eigenvector,
which leads to better division in terms of modularity function is added to the
set A. Eigenvectors from this set are used for the final labeling of the data. The
number of eigenvectors included in the set A indicates the number of groups.
Each eigenvector represents one cluster. Each point is labeled according to the
eigenvector with the highest entry for the point.

Computational complexity of the proposed algorithm is relatively small. First
of all the affinity matrix is very sparse as we use the concept of mutual neigh-
bors. Second the number of needed eigenvectors is relatively small, if we consider
clusters of reasonable size only, i.e. if we require that the minimal cluster size
exceeds 1 percent of the size of the whole data set. Moreover, in case of a signless
Laplacian we seek for top eigenvectors, which are easier to find than eigenvec-
tors corresponding to smallest eigenvalues. In such situation solving the eigen
problem even for large data set is not very time consuming. The other steps of
the algorithm take time O(n) each. So the solution is scalable.

5 Experimental results

We have compared the performance of the Speclus algorithm (implemented in
MATLAB) to three other methods: the Ng et al. algorithm [12], the Fischer et
al. algorithm [5], and the DaSpec algorithm. The first one is a standard spectral
algorithm, which uses normalized Laplacian L = D'/25D'/2 and k-means algo-
rithm for final clustering. The second one aims at amplifying the block structure
of affinity matrix by context-dependent affinity and conductivity methods. The
DaSpec algorithm uses the same properties of eigenvectors as the Speclus algo-
rithm and similarly does not need a cluster number to be given in advance. The
first two algorithms need a number of clusters as an input parameter.
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In the case of the three algorithms the o parameter should be carefully es-
tablished. Ng et al. and Shi et al. have proposed heuristics to calculate the value
of the o parameter. For many data sets neither of the formulas can guarantee
correct classification. In order to compare the best achievements of all the al-
gorithms the values of the ¢ parameter were chosen manually, as described by
Fischer et al. For each data set they systematically scanned a wide range of ¢’s
and ran the clustering algorithms. We use their results in case of the first two
algorithms.

All the algorithms are evaluated on a number of benchmark data sets identical
as in [5]. Six of the sets are artificial and three are real-world problems. They
cover a wide range of difficulties, which can be met during data segmentation.
The first data set 2R3D.2 is obtained by dispersing points around two interlocked
rings in 3D. The dispersion is Gaussian with standard deviation equal 0.2. The
2RG data set consists of two rather high density rings and a Gaussian cluster
with very low density. The 2S set is created by two S-shaped clusters with varying
densities within each group. Sets 4G and 5G have four and five Gaussian clusters
each of different density in 3D and 4D respectively. 2Spie is a standard set used
for evaluation of spectral clustering algorithms consisting of two spirals with
double point density. The last three sets are common benchmark sets with real-
world data: the iris, the wine and the breast cancer. The first one consists of
three clusters, two of which are hardly separated. The wine is a very sparse set
with only 178 points in 13 dimensions.

Table 1. Number of incorrectly clustered points for Ng et al., Fischer et al. DaSpec,
and Speclus algorithms. n denotes number of points, [ — number of clusters, and D —
data dimension.

Data n |1|D|Ng et al.|Fischer et al.|DaSpec|Speclus
2R3D.2|600|2| 3 4 93 195 11
2RG  |290(3|2| 101 0 180

2S 220(2| 2 0 0 70

4G 200/4| 3 18 1 41

5G 250|5| 4 33 11 53 11
2Spi  [386|2| 2 0 193 191 0
Iris 150|3| 4 14 7 35 14
Wine |178|3(13 3 65 89 9
BC 683(2| 9 22 20 239 21

As can be seen from Table 1 the Speclus algorithm is the most flexible
one and performs well independently on data set structure. Although both the
Speclus and the DaSpec algorithms use the same concept of eigenvector prop-
erties the second one often fails on real-world data or clusters with different
densities. For sets presented in Table 1 it usually is not able to detect all the
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clusters. The dramatic differences in the performance between the two algorithms
can be explained as a result of the use of signless Laplacian and special similar-
ity measure in the Speclus algorithm. The signless Laplacian spectrum pictures
better data structure than spectrum of any other graph matrix. The similarity
measure based on the mutual neighbors concept caused the affinity matrix to be
more clearly block diagonal. Whether density of points varies meaningly with or
within clusters, our method of constructing affinity matrix gives good results.
Even in case of very sparse data or high Gaussian noise the labeling of data by
Speclus is correct. If data are sparse, adding edges between vertices with few
connections and neighbors of vertices from their closest proximity avoids lost
of graph connectivity and isolation of some points. On the other hand creating
connections between graph vertices on the basis of mutual nearest neighbors
eliminates influence of any noises in the data.

We also compare the performance of the Speclus algorithm with the DaSpec
algorithm on the basis of sets suggested by Shi et al. in [14], that contain non-
Gaussian groups and various levels of noise. We use the set DS1, that consists
of three well-separable groups in R2. The first group of data is generated by
adding independent Gaussian noise N((0,0)7,0.15%I) to 200 uniform samples
from three fourth of a ring with radius 3. The second group includes 100 data
points sampled from a bivariate Gaussian N((3, —3)7,0.5%I) and the last group
has only five data points sampled from a bivariate Gaussian N((0,0)%,0.32).
Here I stands for the unit matrix. Given DS1, three more data sets (DS2, DS3,
and DS4) are created by gradually adding independent Gaussian noise (with
standard deviations 0.3, 0.6, 0.9 respectively). The results obtained for the four
data sets with the Speclus algorithm are shown in the left column and with the
DaSpec algorithm in the right column of Figure 3. It is clear that the degree
of separation decreases from top to bottom. The divisions resulting form our
algorithm are more correct than in the case of the other algorithm. However,
neither of them is able to separate the five points inside the part of the ring. But
even for the highest level of noise the Speclus algorithm finds the right number
of groups.

At last we show how performance of the Speclus algorithm changes if we
use ordinary Laplacian L = D — A instead of signless Laplacian M = D + A.
In Figure 4 there are eigenvectors of Laplacian L and Laplacian M, which are
used for partitioning of the set 2RG. The data structure is perfectly illustrated
by signless Laplacian eigenvectors, indicating three separate clusters. Ordinary
Laplacian eigenvectors indicate only two clusters, whereas the third one does not
have any clear representation. This result constitutes an experimental proof, that
signless Laplacian is more suitable for partitioning sets with varying densities
than Laplacian L.

6 Conclusions and future work

We have presented a new spectral clustering algorithm, which uses signless Lapla-
cian eigenvectors and a novel affinity matrix.
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Fig. 4. Comparison of ordinary Laplacian (top) and signless Laplacian (bottom) eigen-
vectors for 2RG dataset.

The matrix is created on the basis of a mutual nearest neighbor graph with
additional edges connecting points from sparse density areas. Experiments con-
firm that a good similarity measure is crucial to the performance of spectral clus-
tering algorithms. Our solution correctly separates different types of clusters with
varying densities with and within groups, being simultaneously noise-resistant.
It has only one parameter, which is quite easy to establish. The Speclus algo-
rithm does not require a group number as an input parameter and estimates it
correctly using eigenvectors structure and a modularity function.

These observations show that our algorithm is a good candidate to apply it
to image segmentation, that will be our next task.
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