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Abstract. As the researches on Networked Control & Cyber-Physical System 
(NCCPS) are growing, the requirement of reliable evaluation tools for these 
systems is urgent. There are several simulators, such as TureTime, Ptolemy II 
and so on, can be used, but they usually focus on modeling of the control dy-
namics, and are too simple and abstracted on the simulation of network com-
munication. In this work, a co-simulation tool, NCCPIS is presented, which in-
tegrates the dynamic control system simulator, Ptolemy II and the network 
simulator, NS-2. We demonstrate the validation of the tool by presenting a case 
study of platoon longitudinal control in AHS (Automatic Highway System). 
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1 Introduction 

In recent years, more and more researches focus on Cyber-Physical Systems (CPS), 
which integrate computation with the physical process. Actually, a CPS is often moni-
tored and controlled by a Networked Control System (NCS). In this paper, we call 
them together as Networked Control & Cyber-Physical System (NCCPS). Basically, a 
NCCPS is composed of three components: physical process, computation and net-
work [9]. The researches of NCCPS include investigating problems at the intersection 
of control systems, networking, and computer science [8], exploring compositional 
verification and testing methods [15], and so on. 

Design and evaluation of NCCPS can not be accurately conducted without consid-
ering the effect of networks, it is important to develop a verification tool that not only 
has the ability of simulating the dynamics of the system's plant and controller, but 
also can simulate the realistic network environment for communication. To build a 
brand new tool from scratch satisfying the requirement is very difficult and unneces-
sary. There are several powerful model-based tools being used to simulate control 
systems in the academia, such as Ptolemy II [14], Simulink [11], ViSim [19], and so 
on. On the other hand, there are a few network simulators can exactly emulate de-
tailed network communication, such as NS-2 [12], OpNET [4], OMNet++ [13], and 
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so on. The feasibility of integrating a control system simulator and a network simula-
tor to evaluate NCCPS is foreseeable. 

By considering the flexibility, reliability and technical supporting, we choose to in-
tegrate both open source simulators, Ptolemy II and NS-2, to build our co-simulation 
tool called NCCPIS. The challenges are significant, including designing the frame-
work of NCCPIS and coordinating the synchronization of event time and data ex-
change in both sides of the simulators. 

This paper is organized as follows. In section 2, we introduce the related work. In 
section 3, we present the implementation of NCCPIS. Time and data synchronization 
are discussed in section 4. A case study is given in section 5. Finally, this paper is 
concluded in section 6. 

2 Related Work 

As a most popular tool for validating NCS, TrueTime [7] extends Matlab/Simulink 
with platform related modeling concepts (i.e., network, clock and schedulers) and 
supports simulation of networked and embedded control systems with implementation 
effects [3]. However, in TureTime, the modeling of network dynamics are highly 
abstracted, thus it's not appropriate to evaluate the systems that require detailed low 
layer network communication. 

For different considerations, combining different control system simulators with 
network simulators, some similar ideas of seeking co-simulating methods exist in a 
few articles. In [16], an evaluation tool called NCSWT was developed, which inte-
grated Matlab/Simulink and NS-2 using the HLA standard for coordinating data 
communication and time synchronization. In [1], two approaches of extending NS-2 
and one of integrating Modelica and NS-2 have been proposed. In [6], for WNCS 
(Wireless NCS) over MANET (Mobile ad-hoc Network), the SIMULINK-OPNET 
co-simulation was investigated. 

3 NCCPIS Implementation 

3.1 Ptolemy II & NS-2 

In Ptolemy II, actors are the basic computation units that can execute concurrently 
and communicate through messages sent via interconnected ports [14]. There may be 
a special actor in a model called Director, which manages the execution of this 
model. Actors have the key flow of control methods [2, 10]: 

 setup: Initialize the actor. 
 prefire: Test preconditions for firing. 
 fire: Read inputs and produce outputs. 
 postfire: Update the state. 
 wrapup: End execution of the actor. 



The CT (continuous-time) domain in Ptolemy II aims to help the design and simu-
lation of systems that can be modeled using ordinary differential equations (ODEs). 
ContinuousDirector is the main Director of CT domain. It contains an ODESolver 
who's responsible to determine the integration step sizes according to ODEs or time 
points of interest so as to achieve an accurate simulation. Meanwhile, Ptolemy II im-
plements a ContinuousStepSizeController interface to support accurate time ad-
vancement. Any actors implemented the interface can influence the passage of simu-
lation time. The interface has following methods [10]: 

 isStepSizeAccurate: to see if the current step is accurate. 
 suggestedStepSize: suggests the next step size. 
 refinedStepSize: if isStepSizeAccurate returns false, this method will be called, 

returns the step size this actor wants to refine currently. 

Moreover, there is a ContinuousStatefullComponent interface which has a roll-
BackToCommittedState method. It's for the actors who have tentative state to roll back 
if the current step size is not accurate. Figure 1 shows the process of the fire method 
of ContinuousDirector. 
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Fig. 1. The process of fire method of ContinuousDirector 

3.2 Framework & Integration 

Figure 2 shows the framework of NCCPIS. Considering supporting separated hosts 
simulating, we integrate the two simulators through sockets, and design a few com-
mands for synchronization shown in table 1. On the Ptolemy II side, NS2Node actors 
are considered as the shadows of Nodes in NS-2, they directly participate in the simu-
lation of Dynamic Control System. Once they have state (e.g., position and velocity) 
updated or packets to send, they ask NS2Coordinator to send the corresponding 
commands to NS-2 through its socket thread, and waiting for the response commands 
from NS-2 so as to continue the simulation. The actor NS2Coordinator implements 
ContinuousStepSizeController and ContinuousStatefull-Component interfaces 
intrduced previously, every time before postfire, Continuous-Director invokes isStep-
SizeAccurate, then NS2Coordinator turns to consult NS-2 whether the current step 
size is accurate. On the NS-2 side, similarly, we develop the class ptIIEngine as the 
proxy to coordinate synchronization with Ptolemy II. 
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Fig. 2. The framework of NCCPIS 

Table 1. Synchronization Commands 

Comm Sender Response comm Description 
setdest Ptolemy II setdest_ok Coordinate MobileNode to update position 
broadcast Ptolemy II broadcast_ok Coordinate MobileNode to broadcast packet 
send_pkt Ptolemy II send_pkt_ok Coordinate MobileNode to send packet 
iSSA Ptolemy II iSSA [true/false] Consult NS-2 if the step size is accurate 
rSS Ptolemy II rSS [t] Consult NS-2 the step size 
sSS Ptolemy II sSS [t] Consult NS-2 the next step size 
rB [t] Ptolemy II rB_ok Ask NS-2 to roll back to time t 
runTo [t] Ptolemy II runTo_ok Ask NS-2 to run to time t 
recvdata NS-2 recvdata_ok Coordinate NS2Node to generate packet 

Note: iSSA = isStepSizeAccurate, rSS = refinedStepSize, sSS = suggestedStepSize, rB = rollBackTo 

4 Time & Data Synchronization 

Synchronization is critical for co-simulation tools. In NCCPIS, the time when nodes 
send and receive a packet should be same in both simulations. For wireless network 
simulation, the position and velocity of nodes are essential for packet transmissions, 
thus, we need to synchronize the position and velocity of nodes in both simulations. 

Position and velocity synchronization is simple. The position and velocity of 
NS2Node can only change in the "Do Solver Iteration" process shown in figure 1, as 
long as NS2Node detects the change of its state, it delegates NS2Coordinator to send a 
"setdest" command to NS-2. Respectively, when NS-2 receives that command, as 
shown in figrue 2, ptIIEngine inserts an  AtEvent like "ns at t 'nn setdest x y v'" into 
scheduler, and records it in TSO to prepare for following up "rollBackTo" command. 
TSO records all events generated by the synchronization commands from Ptolemy II, 
if ptIIEngine receives a  "rollBackTo" command, it could remove these events from 
the scheduler, however, if receive a "runTo" command, just clear them from  TSO. 



Synchronization of sending packets is similar to that of position and velocity. But, 
to synchronize the time of receiving packets is a little hard. As shown in figure 3, the 
simulation time of Ptolemy II is always ahead of NS-2, while the time NS-2 receiving 
packets is unpredictable, thus we can't generate a future receiving packets event for 
Ptolemy II in advance. As a result, the time NS-2 receiving packets is always before 
or equal to (if the receiving time is equal to the time Ptolemy II invokes postfire) the 
current simulation time in Ptolemy II. Obviously, we should ensure that the time NS-2 
receiving packets are exactly the time Ptolemy II invokes postfire. To accomplish 
this, as shown in figure 4, we invoke  isStepSizeAccurate to ask NS-2 to check that if 
there are packet receiving events in the scheduler before the current simulation time 
(the time Ptolemy II is going to ask NS-2 to "runTo" if all actors' isStepSizeAccurate 
return true). If existing these events, return false and return the earliest time of all 
events when the upcoming command "refinedStepSize" is invoked, else return true. 
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Fig. 3. The synchronization between Ptolemy II and NS-2 
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Fig. 4. The processing flow of isStepSizeAccurate for simulating 802.11 ad-hoc networks 

Actually, to NCCPIS, only application packets matter. While invoking isStepSize-
Accurate, we can check the event queue of the scheduler in NS-2 to see if there are 
packet receiving events going to happen in the Application Layer. But there is a de-
pendency problem needs to be considered, that after some related packet events in 



router, data link layer, physical layer, etc., being scheduled, packet receiving events in 
Application Layer may appear. By analyzing the simulation mechanism of NS-2, we 
found that before a packet received in application layer, it is either in the event queue 
of the scheduler for the upcoming scheduling, or blocked in a queue, a MAC layer, a 
physical layer and a channel for waiting to be put in the event queue. This means that 
we should check the event queue and the NS-2 components which may block the 
application packets for isStepSizeAccurate invoking. Specifically, figure 4 depicts the 
isStepSizeAccurate process flow for simulating 802.11 ad-hoc networks. There is a 
TolerableError in NCCPIS due to the timeResolution in Ptolemy II meaning the time 
precision. The default value of timeResolution is 1e-10. As we can see, the time syn-
chronization between Ptolemy II and NS-2 is within this time precision. 

5 CASE STUDY 

NCCPIS in this work is intended to provide a co-simulation of dynamic control sys-
tem and network communication. In this section, we present a simulation scenario to 
validate NCCPIS as well as show how the realistic network performs such as time-
varying delays and packet losses and how they affect the overall system. 

5.1 Experiment Setup 

We consider a platoon of 16 vehicles running on a highway with 15 vehicles followed 
a lead vehicle. The lead vehicle transmits its position, velocity and acceleration meas-
ured by sensors periodically through an 802.11 wireless ad-hoc network to all the 
vehicles within the platoon. All vehicles are assumed to be initially traveling at the 
steady-state velocity of v0 = 17.9m/s. Beginning at time t = 0s, the lead vehicle's ve-
locity increases from its steady-state value of 17.9m/s until it reaches its final value of 
25.9m/s: the maximum jerk and the peak acceleration values corresponding to this 
velocity time profiles were 2m/s3 and 2m/s2, respectively. We adopt the control law in 
[17] and choose the same values for the coefficients: ca1 = 15, cv1 = 74, cp1 = 120, ka1 

= -3.03, kv1 = -0.05; ca = 5, cv = 49, cp = 120, ka = 10, kv = 25, and the coefficients of 
vehicle dynamics are, for  i = 1,2,…, Kdi = 0.3, τ i= 0.2, dmi = 5,mi = 1464. 

Figure 5 depicts the detail inside the Wireless component configured in Ptolemy II 
for each vehicle. The NS2MobileNode is the entity of NS2Node as discussed above. 
The Recorder records all the packets NS2MobileNode received, but outputs the cur-
rently received packet of a specific node which here is set to the lead vehicle until a 
new packet arrives, in fact, the Recorder is a ZeroHolder. 

In NS-2, we set the network parameters consistent with IEEE 802.11p as shown in 
table 2, and employ the public available highway patterns and ns traffic trace genera-
tion tools presented in [5] to obtain a realistic scenario with a dynamic network topol-
ogy. We consider a 6km long highway composed of 6 lanes (3 in each direction) with 
high traffic density, where in total 523 vehicles pass along the road in both directions 
with an average speed of 120km/h (33.3m/s). For this scenario, we add a 7-th lane for 
the platoon with the lead vehicle's initial position at 2.5km of the highway. All the 



normal vehicles in the highway periodically broadcast packets, thus they interfere the 
communication of the platoon. We conduct three experiments with the normal vehi-
cles broadcasting at different rates and packet sizes: (a) 500 bytes per packet, 5 pack-
ets per second; (b) 500 bytes per packet, 10 packets per second; (c) 1500 bytes per 
packet, 10 packets per second. The lead vehicle of the platoon broadcasts its state 
every 100ms by setting the interval of the PeriodicSampler shown in figure 5 to 0.1. 

 

Fig. 5. The detail of the Wireless component configured in Ptolemy II for each vehicle 

Table 2. Simulation configuration in NS-2 

Category Parameter Value 
Frequency 5.9 GHz 
Power Monitor Threshold -102 dBm 
Transmission Power 1 mW 
SINR Preamble Capture 4 dB 

PHY 

SINR Data Capture 10 dB 
Slot Time 13 us 
SIFS Time 32 us 
Header Duration 40us 
Symbol Duration 8us (3 Mbps) 

MAC 

Modulation Scheme BPSK 

5.2 Evaluation 

Figure 6, 7 respectively shows the delays and loss of packets that the platoon vehicles 
received from the lead vehicle. We can see that broadcasting of non-platoon vehicles 
have obvious effect on communication of platoon.Figure 8 shows the co-simulation 
results. Compared to [17], we can infer that our co-simulation results are valid. 
Compared to [18], our platoon performances are better, because in our law, we used 
the information of the lead vehicle by adding the wireless network communication to 
the simulation. In addition, due to the delay and loss of packets, the performances of 
experiment a, b and c shown in figure 8 are worse and worse. That also proves the 
validation of our co-simulation. In this case study, Ptolemy II and NS-2 are both 
running on a RedHat virtual machine with 1GB memory on an XP host with 2GB 
memory and a 2.80GHz dual-core CPU. The overall 18 seconds co-simulation has 
taken five minutes. The communications of the 523 MobileNodes for the normal 
vehicles in NS-2 and the frequent "rollback" in Ptolemy II cost most all of the time. 



 

Fig. 6. The delays of packets (Experiment a, b, c, respectively) 

 

Fig. 7. The losses of packets (Experiment a, b, c, respectively) 

 

Fig. 8. The platoon performances of △1, △2, △3 and △15 (Experiment a, b, c, respectively) 

6 Conclusion 

In this work we present NCCPIS, a co-simulation tool integrating a control system 
simulator, Ptolemy II and a network simulator, NS-2. By studying the architectures of 
them, we have designed the framework of NCCPIS, developed data exchange and 
time synchronization mechanism. At the same time, we demonstrate the validation of 
the tool by presenting case studies of platoon longitudinal control in AHS. As 
Ptolemy II is a tool orienting multi-domains and aiming to simulate hybrid systems, 
we will import the co-simulation of multi-domains to NCCPIS and validate it. 
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