
HAL Id: hal-01543151
https://inria.hal.science/hal-01543151

Submitted on 20 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Nonmonotonicity in Trust Management
Wojciech Pikulski

To cite this version:
Wojciech Pikulski. Nonmonotonicity in Trust Management. 18th European Conference on Infor-
mation and Communications Technologies (EUNICE), Aug 2012, Budapest, Hungary. pp.372-383,
�10.1007/978-3-642-32808-4_34�. �hal-01543151�

https://inria.hal.science/hal-01543151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Nonmonotonicity in Trust Management

Pikulski Wojciech

Institute of Control and Computation Engineering
Warsaw University of Technology, Warsaw, Poland

w.pikulski@elka.pw.edu.pl

Abstract. The work discusses nonmonotonicity in terms of trust management
systems and presents model allowing for credential revocation in the Role-
based Trust-management Framework. A freshness constraints have been
adopted into RT Framework in order to overcome nonmonotonicity and turn it
to be temporarily monotonic. The proposed model allows for freshness
requirements specification on policy level and utilises freshness graph in order
to perform propagation of freshness requirements along credential chains.
Finally, an evaluation of the model against real-life scenario has been
performed.

Keywords: Software security, trust management, RT Framework,
nonmonotonicity, credential chain, credential graph, freshness constraints

1 Introduction

Distributed systems have become very popular during the last decade. Due to the
expansion of the Internet access in the last few years, they have also become open to
the external environment. Global market and economy made companies set
partnerships which often need infrastructure that can provide access to the shared
resources and supply collaboration services.

Distributed design meets many issues that have to be solved in order to enable
application collaboration. Some of the most significant are security of shared
resources and provisioning of convenient access control mechanisms in distributed
environment, where subjects and resources are situated and operate in different
security domains also called administrative domains. Each of such domain controls its
subjects and resources.

To solve problems listed above, various access control models have been proposed.
Security mechanisms dedicated for utilisation in distributed environment are named
Trust Management. Researchers have also focused on creating Automated Trust
Negotiation mechanism that can establish trust between strangers in automated way.

This work is focused on nonmonotonicity issues in trust management models. The
monotonicity of the security model means that when access decision evaluates to true
at some point in time, it cannot evaluate to false in future when time lapses or new
information is added to policy. Model can introduce nonmonotonicity when it allows
for credential revocation or role negation. Currently, nonmonotonicity is regarded as

2 Pikulski Wojciech

undesirable [4][11]. However, in [6] authors proved that certificate revocation, that
used to be thought as nonmonotonic, can be implemented in monotonic manner by
introducing freshness constraints. This paper analyses the nonmonotonicity caused by
credential revocation. The work aims at introducing credential revocation in the Role-
based Trust-management Framework. This goal is achieved by creating the model of
freshness constraints propagation. The paper presents its formal description and
evaluates the idea against real-life scenario.

Because certificates and credentials are electronically signed documents containing
digital information, the freshness constraints can be implemented for both. As
certificates contain binding of an entity name to its private key, they are entity's
electronic identity. Credentials contain signed policy statements defining permissions.

The rest of the paper is outlined as follows. Section 2 describes related work. In
section 3 trust management is defined. Section 4 presents business problem which
would incorporate credential revocation. The RT Framework and freshness constraint
propagation model is presented and discussed in Section 5. Finally, in section 6 the
paper is summed up and future work is outlined.

2 Related Work

A significant effort has been carried out to address problem of trust in distributed
systems. There were presented many models for authorisation in such environment.
Few examples are KeyNote [2], PolicyMaker [1] and RT Framework [7]. Seamons et.
al. in [11] and Chapin et. al. in [4] point out the requirements for trust management
systems and perform survey of proposed models against them. One of the commonly
agreed requisite is monotonicity of the model, which is regarded to be one of the
factors allowing a practical implementation of the system. However, Li et. al. in [6]
proved that certificate revocation, which was thought to cause system nonmonotonic,
can be implemented in monotonic manner. Skalka et. al. [12] created RTR language
which takes into consideration a risk associated with each credential. The risk is being
propagated along credential chains. The notion is conceptually similar to the idea of
freshness constraints propagation presented in this work. Changyu et. al. in [15]
introduce a non-monotonic trust management model called Shinren. The concept is
different from RT framework analysed in the paper in the sense that Shinren utilises
multi-value logic with negative assertions in contrast to RT, which uses classic logic
with only positive statements. Furthermore, presented freshness constraints
propagation focuses on allowing for credential revocation instead of expressing
negative information in the security policy.

Another subject of research in the area is automated trust negotiation. Seamons et.
al. in [11] present the requirements for languages used to specify policies and for
compliance checkers which parse the policies and make access decisions. The idea of
automated trust negotiation is elaborated in [10] where authors present negotiation
strategies and policy graphs.

Nonmonotonicity in Trust Management 3

3 Access Control and Trust Management

The aim of access control is to prevent unwanted users from acquiring access to a
shared resource [9]. Trust management is an evolution of access control for
distributed systems. A decentralised design brings new problems and imposes
additional requirements for access control mechanisms. The main difference is that
subjects and resources can belong to various administrative domains. Another issue is
that the credentials are decentralised and its number is virtually unlimited. The
problem of creating access control for such environment is referred as trust
management, and was first introduced in [3].

Trust management research mainly focuses on two problems: authorisation and
trust negotiation. The former is answering a question whether a particular resource
access request should be allowed or denied. To achieve this models utilise credentials
defining subject permissions and inferencing rules that allow to evaluate an access
decision. Trust negotiation is a newer problem, whose point is to establish trust
between two stranger parties in automated manner. It is accomplished by a
bidirectional conversation with gradual exchange of owned credentials. Each party
has a policy defining for each credential what credentials have to be revealed by the
negotiating partner in order to be disclosed. Details can be found in [3][10][11][13].

4 Business Problem

This paper describes a problem of nonmonotonocity caused by credential
revocation. The issue is illustrated with a real-life scenario adopted from [5]. As work
is focused on the RT Framework, policies are presented in form of RT credentials.

The example demonstrates how nonmonotonicity is introduced into RT Framework
when it would allow for credential revocation. In such situation, each credential could
be revoked before its expiry time passes. As a consequence an unaware acceptor
would accept revoked credential. In the example, an eStore offers discount both to its
long-standing customers and also to students who are simultaneously members of
Superior Mountaineering Club (SMC). The student role definition is delegated to the
Accrediting Board for Universities and Schools (ABUS) which defines it for
universities and schools appropriately. Sample credentials are listed below:

 . (1)

 . (2)

 . (3)

 . (4)

 . (5)

 . (6)

 . (7)

4 Pikulski Wojciech

 . (8)

 . (9)

 . (10)

 . (11)

Evaluation of above credentials leads to conclusion that both Adam and John are
eligible for discount. The evaluation process is described in Section 5 and [8].

In real-life scenario, it would be reasonable if security model would allow to
revoke credentials. For example, if Adam does not meet semester requirements, his
student credential can be revoked. Similar situation would happen if Adam resigns or
is expelled from SMC. In any of both cases, eStore would unwittingly accept revoked
credentials and grant discount.

5 Nonmonotonicity in Trust Management

Monotonicity of a security model is defined as a feature that if an access decision
evaluates to true at some point in time, it should still be true if time lapses or
additional credentials are introduced into the policy. There are two types of
nonmonotonocity. If time lapse makes access decision false, system is nonmonotonic
in “ ”. Such situation can happen when model allows for credential
revocation, as revoking credential can cause that user will no longer be member of
specific role. When addition of new credentials makes access decision false, system is
nonmonotonic in “ z ”. This can happen when model allows to
negate roles in policy. When user becomes a member of a negated role, he loses
access to a resource. This paper presents the analysis of former type of
nonmonotonicity leaving the latter for future research.

5.1 Time Domain Nonmonotonicity

Li and Feigenbaum in [6] proved that the certificate revocation can be
implemented in monotonic manner. Thus, time domain nonmonotonicity is turned to
be monotonic. Typically, certificates are interpreted as: “valid from their issue time t0
to their expiry time tex”. When system supports certificate revocation, a certificate can
be cancelled before its expiry time. Such action introduces nonmonotonicity as
acceptors unaware of certificate revocation will still accept it. The nonmonotonicity is
temporal, because when certificate expiry time passes no authoriser will accept the
certificate anymore, even when it was revoked.

In order to solve this issue, certificate meaning should be modified to “at the time
of issuing t0, certificate is valid from t1 to t2”. This interpretation is true any time after
t0 and it does not change even when certificate is revoked. The introduction of t1
parameter is not crucial, but increases expressivity. Apart from new certificate
interpretation, a notion of fresh time (tf) of a certificate is introduced. Initially its
value is set to certificate issue time (tf=to). When acceptor ensures that certificate is

Nonmonotonicity in Trust Management 5

still valid at a later time tx, its fresh time is changed to it (tf=tx). Each acceptor defines
a parameter t which states the maximum age of accepted certificates. That is, if
tftnow-t, then certificate is regarded as valid. If the condition does not hold,
authoriser needs to reject certificate or verify its validity.

In this paper, the t parameter is called a freshness constraint or requirement.
Setting t to small value implies frequent certificates validity checks. Defining big
values limits validity verification but introduces risk of accepting revoked credential.
The exact value of t depends on application and level of risk it can accept.

Freshness Constraints. After closer look at the idea of fresh time, one can find that t parameter should be specified not globally, but on more grained plane such as
policy level. For example, some certificates can be treated as more vulnerable to
revocation than others. Moreover, t value can also be defined based on contextual
information available during policy evaluation, e.g. number of revoked certificates
from given issuer or customer order amount. Another issue is whether t value for a
credential should be defined by its issuer or authoriser. This is not a trivial problem.
The issuer is aware of credential meaning and circumstances under whose it can be
revoked. On the other hand, a freshness constraint can be regarded by acceptor as a
part of access policy and therefore should be specified by himself. To link two
solutions, system would allow issuers to specify hints about t, but let acceptor define
final value used in access decision evaluation. The paper focuses on freshness
constraints propagation leaving hints specification for future research.

5.2 Role-based Trust-management Framework

The RT Framework is a trust management model. Users, applications and resource
holders are called entities. Each entity can define roles and its members. To access a
resource, user must be a member of role that represents a shared resource. Entity can
also delegate authority over role to other users who will be able to define members of
the delegated role. The policy is expressed with a set of RT credentials. At the basis
of the RT Framework are sets:

─ or - a set of RT credentials.
─ - a set of RT entities for a given set of RT credentials C.
─ - a set of names of roles that can be used by entities to define roles

for a given set of RT credentials C.

Each RT credential has a form: : . Head contains a credential issuer
with role name. Body contains a role expression which depends on credential type. In
the framework, there are four types of credentials:

1. Simple membership: . With this statement A asserts that D is a member
of role A.r.

2. Simple inclusion: . Issuer A asserts that all members of B.s are also
members of A.r. This is a simple role delegation, since B can add new entities to
A.r role by adding them to B.s role.

6 Pikulski Wojciech

3. Linking inclusion: . Issuer A asserts that A.r includes all members of
B.t role for each B that is member of A.s. This type of credential allows for
authority delegation over A.r to members of A.s.

4. Intersection: . This credential allows A to assert that a member of
A.r is any entity that simultaneously is member of C.s and D.t.

Based on presented definitions, four sets can be defined:

─ : .
─ : .
─ : .
─ .
Authorisation procedure in the RT Framework utilises a credential graph, which is

built based on RT credentials. Each vertex corresponds to a role expression, while
edges represent credentials. If access should be granted, there should be a path linking
node corresponding to resource with vertex representing user. Such path is called a
credential chain.

Credential graph is defined below [5]. Notation denotes a graph edge
and represent path in a graph.

Definition 1. Let C be a set of RT0 credentials. The basic credential graph GC relative
 fi w : NC=RoleExpressions and the set of edges
EC is the least set of edges over NC fi w
properties:

1. If then is called a credential edge.
2. If there exists a path

 , then A is
called a derived link edge, and the path

 is a support set for this edge.
3. If , and there exist paths

 , and
 in ,

then . This is called a derived intersection edge, and is a support set for this edge.

To illustrate the authorisation process of RT Framework Figure 1 presents a
credential graph corresponding to scenario described in Section 4. There exist
credential chains that link John and Adam entities with role representing accessed
resource, i.e. eStore.discount. This implies that those users are eligible for a discount.
Path for John contains only normal credential edges, whereas path for Adam also
contains a derived intersection edge. Not derived edges are labelled with
corresponding credentials numbers presented in example scenario policy. Derived
link and intersection edges are dashed and dotted respectively and are annotated with
their support sets names.

5.3 Freshness Constraints

The paper discusses the possibility to allow for credential revocation in the RT
Framework by introducing fresh time notion to it. The idea is to check during access
decision evaluation whether all credentials are fresher than a specified value.

Nonmonotonicity in Trust Management 7

Because RT Framework allows for authority delegation, the mechanism should
ensure that users to whom the authority over particular role has been delegated does
not grant access to entities whose credentials fresh time has exceeded requirements
defined in the policy. For instance, a freshness of credentials defining
ABUS.university.student members should not exceed freshness constraint defined for
eStore.discount role.

Fig. 1. Credential graph for example scenario

The idea of the propagation mechanism is based on a freshness graph, which is
constructed based on RT credential graph. The first step of the procedure is to
calculate a freshness constraint for node representing accessed resource. Then, this
value is propagated along edges of the freshness graph. If authorisation procedure
encounters a credential whose freshness exceeds the propagated constraint, the
credential validity is checked. Depending of the verification result, the credential is
accepted or rejected.

For the sake of easier understanding, a freshness graph is presented before the
formal model of freshness constraints propagation. The graphs for John and Adam
entities are depicted on Figure 2. They are based on credential graph presented on
Figure 1. In freshness graph, each node has associated a freshness constraint which is
denoted by fn. During credential validity verification this value is used as a freshness
requirement.

Definition 2. A freshness graph FGC is based on RT Framework credential graph .
Its set of nodes , and set of edges is constructed as follows:

8 Pikulski Wojciech

1. If , then , and it is called a freshness edge.
2. If , then , , and they are

called linked freshness edges.
3. If , then and
 , and they are called intersection freshness edges.

Fig. 2. Freshness constraints for Adam and John entities.

Defining Freshness Requirements. Policy creators should have possibility to define
freshness constraints on different levels of granularity:

─ role definition level – allows to define constraint value per role definition
(e.g. eStore.discount, ABUS.student);

─ entity level – defines freshness requirement value for specific entity and any
roles defined by it (e.g. ABUS, eStore);

─ global level – global value used when no other freshness requirement is defined.

In the paper a role representing shared resource to which user tries to get access is
called a root role. In the example, a root role is an eStore.discount role. Presented
levels are used in freshness constraint computation only when evaluating constraints

Nonmonotonicity in Trust Management 9

for a root role. This value is used as a starting point of the propagation process. Thus,
it is called an initial freshness constraint.

A global freshness constraint tg defines global level restriction. To define a
freshness constraints for entities and roles, a fc function is introduced. To allow for
using contextual information during defining freshness requirements, a set of
predicates is defined. Each predicate corresponds to a contextual
condition. For example, freshness constraints in eStore depend on order amount.
Therefore, P has one element, P={p1: order.amount>$100}.

Definition 3. Function defines freshness requirements on entities and roles level:
 : , where and is a predicate vector.
Values of define logical values of predicates.

In the real world scenarios, freshness constraints will be specified only for a subset
of the D and not all predicates will be used in definition for given D member.
Therefore, can be defined in simplified form presented in Table 1. It contains only a
subset of D for whom freshness constraints are explicitly defined. For each member
of D, a list of optionally negated predicates is constructed. If all elements in the list
evaluate to true, then given value is used. If table does not contain row for given
role or entity, an infinite value is assigned. When the predicate list is empty, it means
that freshness constraint does not depend on logical values of any predicates.

Table 1. Sample freshness constraints definition matrix

D predicates
A 5
A 10
B.r 40

Freshness Constraints Propagation. The propagation process starts with calculation
of initial freshness constraint. This value is propagated along freshness graph edges.

To compute a propagated freshness constraints, a propagation operator ∇ is
introduced. It can be defined in many ways, but the function should be commutative,
monotonically decreasive and associative. In this paper a minimum function is used as
a propagation operator: x ∇ y = min(x,y).

A final freshness constraint for each node of freshness graph is stored in fn
function. This value is used during credential freshness verification. To propagate
freshness requirements from root role to all nodes of freshness graph, two steps have
to be performed. Firstly, a freshness constraint for role expression that is represented
by processed node has to be evaluated. This is achieved by calc function. It utilises
constraints defined by policy creator in form of fc function.

Definition 4. A calc function calculates freshness constraint for a given role
expression:

 : . (12)

10 Pikulski Wojciech

 . (13)

 ∇ . (14)

 ∇ . (15)

 ∇ . (16)

The second step of propagation is to take into consideration a freshness constraint
 ’ The result is stored in fn function.

Definition 5. A fn function represents a freshness constraint for each node of FGC.

Each node that is a root role, has a freshness constraint of value:

 ∇ . (17)

Each node that is vertex of a freshness edge and
is not a root role, has a freshness constraint of value:

 ∇ ∇
 ∇

 :

 . (18)

The fn definition for node that does not represent a root role contains a case for
 w ’
 ’ aken into consideration. This strategy
separates freshness constraints propagation of each intersection element. For example,
in Figure 2 if freshness constraint calculation for node 8 would include intersection
present in node 5, then fn=30 value would be propagated to node 8. This is
undesirable as this value is defined for SMC.member role but not eStore.student role.

Freshness Constraints Interpretation. Freshness constraints are propagated along
edges of FGC. At the end of the process, each node contains associated freshness
requirement. Because credential head contains its issuer, during its validity
verification system should use a freshness constraint defined for node
corresponding to credential head. Credential containing an entity in its body states
that an entity is a member of role defined in credential head. Therefore, freshness
constraint associated with node representing this entity should be used during
verification of user public key certificate binding user identity to an entity.

5.4 Example Scenario Analysis

Table 2 contains freshness constraints defined in eStore policy. Constraint for
eStore.discount depends on order amount. Table also contains constraints for roles
defined by ABUS and SMC. As eStore delegates authority to these entities, it may
decide to define freshness constraints for their roles. Since eStore and SMC are

Nonmonotonicity in Trust Management 11

partners, eStore is aware that SMC collects fees on monthly basis and sets constraint
for SMC.member role to this period.

Table 2. Freshness constraints for example scenario

global constraint: tg=100 function matrix
D predicates t [days]

eStore 70

eStore.discount order.amount > $100 20
eStore.discount (order.amount > $100) 50

ABUS.university.student 180
SMC.member 30

Figure 2 presents freshness graphs for John and Adam entities with propagated
freshness constraints. It was assumed that John has made an order of amount greater
than $100, whereas Adam has purchased goods for less than that amount.

The situation with John entity is straightforward. A freshness constraint for root
role is 20 and the value is propagated along all freshness edges. Finally, node
representing John has freshness constraint fn=20. This value should be used for
verification of John public key certificate binding this user to John entity.

Freshness graph for Adam entity contains freshness link edges and freshness
intersection edges. They are a consequence of link and intersection derived edges in
the RT credential graph. Because Adam entity is a solution to intersection node
 , it has two predecessors, whose freshness constraints
are combined using propagation operator. Final Adam' freshness constraint is fn=30
and this value should be used for verification of his public key certificate.

During RT credentials validity verification, a fn value associated with role
expression of credential head should be used. For example, during verifying a fn(eStore.student)=50 is utilised.

6 Summary

In the paper an analysis of time domain nonmonotonicity has been performed. It
was explained how credential revocation causes it. Afterwards, a freshness constraints
have been introduced and it was pointed out that credentials are in fact certificates but
they convey different type of information. A formal model of freshness requirements
propagation has been proposed. It was implemented in the RT Framework to allow
for credential revocation. The model allows to define freshness constraints in the
policy on different levels of granularity. The solution constructs a freshness graph that
is based on credential graph. Freshness requirements are propagated along freshness
graph edges. Finally, the model has been evaluated against to real-life example.

In future work, a verification of proposed freshness constraints propagation model
will be performed. In order to process authorisation requests search algorithms have
been created. Further research will focus on modifying those algorithms in order to

12 Pikulski Wojciech

supplement them with freshness constraint propagation. Additionally, a possibility for
credential issuers to specify freshness requirements hints will be analysed. The work
focused on time domain nonmonotonicity. Future work will also include an analysis
of system size domain nonmonotonicity.

References

1. Blaze, M., Feigenbaum, J., Strauss, M.: Compliance Checking in the PolicyMaker Trust
Management System. In: 2nd International Conference on Financial Cryptography, pp. 254-
274 (1998)

2. Blaze, M., Feigenbaum J., Ioannidis J., and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. IETF RFC 2704, September 1999.

3. Blaze, M.; Feigenbaum, J. & Lacy, J. Decentralized trust management Proc. IEEE Symp
Security and Privacy, 164-173 (1996)

4. Chapin, P. C.; Skalka, C. & Wang, X. S. Authorization in trust management: Features and
foundations ACM Comput. Surv., 2008, 40

5. Czenko, M., Etalle, S., Li, D., Winsborough, W.: An Introduction to the Role Based Trust
Management Framework RT. LNCS vol. 4677, pp. 246--281, Springer, Heidelberg (2007)

6. Li, N., Feigenbaum, J. Syverson, P. F. (Ed.) Nonmonotonicity, User Interfaces, and Risk
Assessment in Certificate Revocation Financial Cryptography, Springer, 2339, 157-168
(2001)

7. Li, N., Mitchell, J., Winsborough, W.: Design of a Role-Based Trust-Management
Framework. In: IEEE Symposium on Security and Privacy, IEEE Computer Society Press,
pp. 114-130 (2002)

8. Li, N., Winsborough, W., Mitchell, J.: Distributed Credential Chain Discovery in Trust
Management. J. Computer Security 1, pp. 35-86 (2003)

9. National Information Assurance (IA) Glossary, CNSS Instruction No. 4009, 26 April (2010)
10. Seamons, K. E.; Winslett, M. & Yu, T. Limiting the Disclosure of Access Control Policies

during Automated Trust Negotiation NDSS, The Internet Society (2001)
11. Seamons, K. E.; Winslett, M.; Yu, T.; Smith, B.; Child, E.; Jacobson, J.; Mills, H. & Yu, L.

Requirements for policy languages for trust negotiation Proc. Third Int Policies for
Distributed Systems and Networks Workshop, 68-79 (2002)

12. Skalka, C.; Wang, X. S. & Chapin, P. C. Risk management for distributed authorization
Journal of Computer Security, 15, 447-489 (2007)

13. Winsborough, W. H. & Jacobs, J. Automated trust negotiation technology with attribute-
based access control Proc. DARPA Information Survivability Conf. and Exposition, 60-62
(2003)

14. Yuan, E. & Tong, J. Attributed based access control (ABAC) for Web services Proc. IEEE
Int. Conf. Web Services ICWS (2005)

15. Changyu D.; Naranker D., Shinren: Non-monotonic Trust Management for Distributed
Systems; Proc. IFIP Advances in Information and Communication Technology (2010)

