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Abstract. The main contribution of this article is a new method of segmentation 
of carotid artery based on original authors inner path finding algorithm and ac-
tive contours without edges segmentation method for vessels wall detection. In-
stead of defining new force to being minimized or intensity metric we decide to 
find optimal weight of image – dependent forces. This allows our method to be 
easily reproduced and applied in other software solutions. We judge the quality 
of segmentation by dice coefficient between manual segmentation done by a 
specialist and automatic segmentation performed by our algorithm. We did not 
find any other publication in which such approach for carotid artery bifurcation 
region segmentation has been proposed or investigated. The proposed algorithm 
has shown to be reliable method for that task. The dice coefficient at the level 
of 0.949±0.050 situates our algorithm among best state of the art methods for 
those solutions. That type of segmentation is the main step performed before 
sophisticated semantic analysis of complex image patterns utilized by cognitive 
image and scene understanding methods. The complete diagnostic record (Elec-
tronic Health Record – EHR) obtained that way consists private biometric data 
and its safety is essential for personal and homeland security. 

Keywords: Active contours without edges, lumen segmentation, carotid bifur-
cation, computed tomography angiography, brain perfusion maps, computer - 
aided diagnosis. 

1 Introduction 

Extracting vessels from computed tomography angiography (CTA) is a key require-
ment for the display and analysis that type of modality [1]. CTA is a popular medical 
imaging method that is often used beside standard computed tomography (CT) in 
acute stroke imaging. Imaging of the carotid arteries is important for the evaluation of 
patients with ischemic stroke or Transient Ischemic Attack (TIA). There are many 
automatic methods to perform the task of segmentation that have been yet proposed in 
literature. That methods can be divided into two groups: model – based and intensity 
– based. The first group analysis the geometric specificity of vessels, in particular the 



notions of orientation and tubular shape. The common approach is utilizing some tube 
detection filters based on analysis of volume Hessian matrix eigenvalues [2]. Those 
methods are capable to detect any local tubular structure but are sensitive to noises 
and scanning artifacts. Algorithms among the second group are dedicated mainly for 
detailed extraction of continues tubular structures. Many of those algorithms are two – 
step procedures: at first algorithm finds the path within examined vessel, than detects 
its boundary.  In [3] authors finds minimal cost paths between the Common Carotid 
Artery (CCA) and both the External Carotid Artery (ECA) and the Internal Carotid 
Artery (ICA). Then the cylindrical tube around each path is created with a radius of 
0.5mm that is later used for the level set evolution algorithm with proper function of 
the image intensity. Method in [4] is based on a variant of the minimal path method 
that models the vessel as a centerline and boundary. This is done by adding one di-
mension for the local radius around the centerline. The crucial step of method is the 
definition of the anisotropic metric giving higher speed on the center of the vessels 
and also when the minimal path tangent is coherent with the vessels direction. Seg-
mentation is refined using a region-based level sets.  

The main contribution of this article is a new method of segmentation of caro-
tid artery based on original authors inner path finding algorithm and active contours 
without edges segmentation method for vessels wall detection. Instead of defining 
new force to being minimized or intensity metric we decide to find optimal weight of 
image – dependent forces. This allows our method to be easily reproduced and ap-
plied in other software solutions. We judge the quality of segmentation by dice coef-
ficient between manual segmentation done by a specialist and automatic segmentation 
performed by our algorithm. We did not find any other publication in which such 
approach for carotid artery bifurcation region segmentation has been proposed or 
investigated. 

That type of segmentation is the main step performed before sophisticated se-
mantic analysis of complex image patterns utilized by cognitive image and scene 
understanding methods. The complete diagnostic record (Electronic Health Record – 
EHR) obtained that way consists private biometric data and its safety is essential for 
personal and homeland security. 

The results presented in this article are extension of our previous work. Our 
latest researches were concentrated on automatic analysis of dynamic perfusion com-
puted tomography maps (CTP) in the event of brain stroke [5]. We decided to widen 
the area of our interest on CTA because the examination of carotid arteries is an im-
portant step during assessing the risk of brain stroke [6]. 

2 Methods 

The proposed lumen segmentation method is consisted of two sub-algorithms. After 
preprocessing step the first algorithm detects the possible path between the start and 
the end point (it is similar to typical region growing algorithm). In the second step it 
performs the thinning of previously obtained path. The generated path between the 
start and point becomes 1 voxel width keeping the same length as path from first step. 
The second algorithm is an active contours without edges segmentation method. The 
role of this procedure is to segment the whole lumen of considered vessel. The active 



contours is computed in axial slices and the starting counter is the sphere with radius 
of 5 voxels. The center point of each sphere is a voxel taken from path from Algo-
rithm I. The algorithm requires manual indication of two initial points inside both 
sides of vessel to be segmented. In order to detect bifurcated structures (like CCA – 
ICA – ECA) three points have to be chosen and the path detection algorithm have to 
be run two times, ones for CCA – ICA part than for CCA – ECA. After computing 
both paths the further analysis is performed on all voxels from both obtained paths. 
 
List of symbols used in algorithm description: 

Freezed points:=• – already visited points. 
Narrow bandi:= • – points, that are visited in i-th step. 
Start point – starting point of the path.• 
End point – end point of the path. 
Delta value:=0 - maximal accepted difference between neighbor points. 
S(xj) - Surrandings of point xj with radius 1 (26 voxels). 
V(xj) - Value of vexel density in point xj. 
Path length - the length of the path (in voxels). 
Delta value - maximal accepted difference between two voxel densities. If the 

difference is greater than Delta value, the considered voxel is not included into the 
path. 

 
In the preprocessing step of first algorithm the volumetric image is convo-

luted with Gaussian kernel in order to remove noises and scanning artifacts. The im-
age is then thresholded in order to remove voxels that density do not belongs to range: 

[min(V(Start point), V(End point)) – 40, max(V(Start point), V(End point)) + 200]  
That step eliminates the uncontrolled propagation of path detection algorithm in 
regions where tissues has too low or too high density to be part of examined vessel. 

 
Algorithm I, step I – detection of path between Start point and End point. 

Delta value:=-1 
While (End point∉Freezed points) 
 Delta value:=Delta value+1 
i:=0 
Narrow band:= • 
Narrow band0:={Start point} 
Freezed point:={(Start point, I)} 
While ( #Narrow bandi>0 ∧ End point ∉Freezed points) 
i:=i+1 
∀xj∈Narrow bandi 
∀yk∈S(xj) 
 if(|V(xj)- V(yk)|<Delta value) 
  Narrow bandi:= Narrow bandi∪ yk 

  Freezed point:= Freezed pointi∪ (yk,i) 
Path length:=i 



End algorithm I, step I 

 
Because the algorithm stops immediately after detecting the end point it will 

not generate paths that are too long and it is unnecessary to add any penalization term 
of path length to the edges weighting function. 

 
Algorithm I, step II – thinning of path obtained in step I. The path generated 

in second step has the same length as previous path but is only one voxel width. 

Path:= • – path from End point to Start point 
Path:=Path∪End point 
k:=Path length -1 
i:=0 
xi:=End point 
While(Start point ∉ Path) 
 Xi+1:=(yj: |V(yj)-V(xi) |=min|V(yl)-V(xi) |, (yl,k) ∈Freezed 
points, yl∈S(xi)) 
 Path:= Path∪xi+1 
 i:=i+1 
 k:=k-1 
End Algorithm I, step II 

 
The second algorithm is based on active contours without edges segmentation proce-
dure [7]. The method requires rescaling the CT volume ISO values (densities) so that 
it does not consist any negative values of voxels. Beside of that the active contours 
algorithm does not require any preprocessing and is performed on “raw” CT volume 
data 
 
The basic idea in active contours models or snakes is to evolve a curve, subject to 
constraints from a given image in order to detect objects in that image [7]. Let Σ be a 
bounded open subset of R2. The algorithm is driven by optimization procedure of 
energy term: 
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Where: 
C is the curve that represents the boundary of segmented region in Σ. 
I(x,y) is pixel intensity value of image to be segmented with coordinates x, y. 
c1 is average value of pixels intensity inside region with boundary C. 
c2 is average value of pixels intensity outside region with boundary C. 
 
The equation (1) may also consist regularization terms [7] and becomes: 
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The first term depends on length of the curve, the second on area inside it. Parameters 

:, <, 81 and 82 ( 0, ≥νμ , 0, 21 >λλ ) are constants. 
 
In [8] the authors proposed an effective implicit representation for evolving curves 
and surfaces, which has found many applications, because it allows for automatic 
change of topology such as merging and breaking, and the calculations are made on a 
fixed rectangular grid. A given curve C is represented by zero level set of a scalar 

Lipschitz continuous function R→Ω:φ such that: 
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The energy from (2) might be rewritten as: 
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H is the Heaviside function 
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Dirac measure. 

In numerical solution the non-zero value of ∗0 is defined in range ( )εε +− zz , , 
where ε is a small 0>ε  value. 

In the rest of this article we assume that 0=ν  and we do not consider area regu-
larization term into calculations. 

In order to minimize ),,( 21 φccF  with respect to Ν we have to solve Euler-
Lagrange equation for Ν [9]. 
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Where: 
n  is the exterior normal of the boundary Ωδ  

nδ
δφ

 is the normal derivative of Ν at the boundary. 
The parameters < (curve smoothing term), 81 and 82 affects results of optimiza-

tion procedure. In our case we wanted to verify the hypothesis that term 81 should 
have the higher value than 82 to perform proper lumen segmentation. That is because 
we wanted to restrain the excessive grown of segmented area especially when the 
borders between area of interest and another tissue with similar density is very nar-
row. In our experiment the smoothing term is set to 55.0=μ  that we assumed prop-
er for considered segmentation task. 

3 Results 

The proposed algorithm was tested on a set of four CTA volumes of carotid artery 
with size 512x512x415, 512x512x425, 512x512x432 and 512x512x433 voxels 
scanned by SOMATOM Sensation 10 CT scanner. The distance between axial slices 
was 0.7 mm. The segmentation was performed on left and right carotid artery sepa-
rately. Because of that the experimental set was consisted of eight tubular structures. 

The volume to be segmented was determined similarly as in comparison pro-
tocol in [10]. It is defined around the bifurcation slice, which was marked as the first 
(caudal to cranial) slice where the lumen of the CCA appears as two separate lumens: 



the lumen of the ICA and the lumen of the ECA (external carotid artery). The seg-
mentation contain the CCA, starting at least 20 mm caudal of bifurcation slice, the 
ICA, up to at least 40 mm cranial of bifurcation slice, and the ECA, up to between 10 
and 20 mm cranial of the bifurcation slice. The segmentation was performed at first 
on CCA – ICA section, than on CCA – ECA, the final segmentation result is the 
common part of those two. The 81 that we took into account was: 1, 2, 4, 6, 8 and 10. 
In figure 1 the carotid arteries segmentation results of all considered CTA volumes 
are presented ( 101 =λ ). 

 

 

Fig. 1. The carotid arteries segmentation results of all considered CT volumes ( 101 =λ ). 
Each column consists different CTA volume. Top row visualize left carotid artery, the bottom 
the right one. 

The TP, FP, TN and FN coefficients values as the function of 81 parameter for CTA 
from figure 1 (B), bottom row (right artery) are shown in table 1. The visualized re-
sults of the same artery are presented in figure 2 and figure 3. 

Table 1. The TP, FP, TN and FN coefficients values as the function of 81 parameter for CTA 
from figure 1 B, bottom row (right artery). 

81 TP FP TN FN 

1 12596 5380 116111768 48 

2 12496 3538 116113610 148 

4 12542 2042 116115106 102 

6 12516 1223 116115925 128 

8 12446 617 116116531 198 

10 12427 238 116116910 217 

 
 



 
Fig. 2. Detailed view of segmentation results for CTA from figure 1 B, bottom row (right ar-
tery). Red line marks the axial slice that is presented later in figure 3. 

 
Fig. 3. Detailed view of segmentation results for CTA from figure 1 B, bottom row (right ar-
tery). Red regions are the segmented ICA and ECA tissues. 



The volume lumen segmentations is evaluated using the dice similarity measure: 
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Where rpv  and ppv
 are the reference and an algorithmically determined arteries 

tissues. Table 2 presents values of dice coefficient between manual segmentation 
performed by specialist and automatic segmentation performed by our algorithm. The 
last column consists average value of coefficient for all considered CTA volumes for 
given 81 value (± standard deviation). 

Table 2. Values of dice coefficient between manual segmentation performed by specialist and 
automatic segmentation performed by our algorithm. The last column consists average value of 
coefficient for all considered CTA volumes for given 81 value (± standard deviation). 

81\case 1 2 3 4 5 6 7 8 AVG 

1 0.648 0.535 0.835 0.823 0.764 0.785 0.806 0.745 0.743±0.0

96 

2 0.765 0.649 0.879 0.872 0.795 0.825 0.863 0.829 0.810±0.0

71 

4 0.879 0.823 0.924 0.921 0.822 0.886 0.913 0.903 0.884±0.0

39 

6 0.927 0.899 0.951 0.949 0.835 0.876 0.947 0.929 0.914±0.0

40 

8 0.953 0.945 0.959 0.968 0.829 0.907 0.969 0.953 0.935±0.0

44 

10 0.977 0.970 0.956 0.982 0.827 0.923 0.986 0.973 0.949±0.0

50 

4 Discussion 

The detail analysis of segmentation results (table 1) shows that increasing of 81 
causes increasing of true negative (TN) and false negative (FN) classification of ves-
sel tissues. From the other hand true positive (TP) and false positive (FP) coefficient 
decreases. That is because less voxels are captured into region surrounded by active 
contours during algorithms second step. That behavior is also clearly visible in figure 
2 if we compare (A) and (F). The segmented region in (F) is thinner and it also does 
not consist additional false segmented tissue region. The same situation in the axial 
view is visualized in Figure 3 (A) and (F). The increasing of 81 parameter causes also 
as expected increase of dice coefficient as it is shown in table 2. From the value of 81 
above 6 we observe the increasing of standard deviation between averaged results. 
That is because not always the higher value of 81 causes the improvement of segmen-



tation results (case 5 in table 2). That is because above some value the expansion of 
counters might be stopped by the force weighted by 82. 

5 Conclusions 

The proposed algorithm has shown to be reliable method for the task of carotid bifur-
cation region segmentation. The dice coefficient at the level of 0.949±0.050 situates 
our algorithm among best state of the art methods for those solutions. What is more 
our proposition can easily be implanted using popular image processing libraries that 
consists parameterizes active contours without edges algorithm. The proposed method 
has some drawbacks. The first is that the value of 81 that results in optimal from med-
ical point of view solution may differ between examined CTA. The second one is 
long performance time of the segmentation procedure. What is more the first part of 
the algorithm – the path finding procedure may be difficult to parallelize on SIMD 
machines (like GPU processors) because that algorithm is highly sequential (not pa-
rallel). It is difficult to predict how the region growing procedure will evolve in each 
step. 

Our method requires further investigation in order to find optimal value not 
only for 81 but also 82 and curvature – steering μ. The validation of the segmentation 
should be performed on bigger set of control data. If the result of evaluation will be 
on acceptable rate we will use this algorithm as the baseline for the further researches 
on automatic diagnosis of carotid structures. In order to accomplish this task we are 
planning to create appropriate semantic description of carotid artery similarly to those 
proposed in  [11], [12]. After correct identification of possible lumen abnormality we 
will try to integrate the results with already developed by us CTP diagnosis frame-
work. That approach will allow us to create more complex and complete diagnostic 
records (Electronic Health Record – EHR) that might be very helpful for radiologist 
in decision - making process. Nowadays EHR becomes a standard in hospital infor-
mation systems and in the future might be accessed by wireless personal devices in 
the area of hospital using low-power personal area networks [13]. The proper infor-
mation flow policy model will forbid a doctor from mixing the personal medical de-
tails of the patients [14]. What is more EHR consists private biometric data and its 
safety is essential for personal and homeland security. 
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