N

HAL

open science

Predicate-Tree Based Pretty Good Privacy of Data
William Perrizo, Arjun G. Roy

» To cite this version:

William Perrizo, Arjun G. Roy. Predicate-Tree Based Pretty Good Privacy of Data. 13th Interna-
tional Conference on Communications and Multimedia Security (CMS), Sep 2012, Canterbury, United
Kingdom. pp.192-194, 10.1007/978-3-642-32805-3__16 . hal-01540891

HAL Id: hal-01540891
https://inria.hal.science/hal-01540891
Submitted on 16 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01540891
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Predicate-Tree based Pretty (Good Privacy of
Data

William Perrizo and Arjun G. Roy

Department of Computer Science and Operations Research
North Dakota State University
Fargo, ND 58102, USA

william.perrizo@ndsu.edu, arjun.roy@ndsu.edu

Abstract. Growth of Internet has led to exponential rise in data com-
munication over the World Wide Web. Several applications and enti-
ties such as online banking transactions, stock trading, e-commerce Web
sites, etc. are at a constant risk of eavesdropping and hacking. Hence, se-
curity of data is of prime concern. Recently, vertical data have gained lot
of focus because of their significant performance benefits over horizontal
data in various data mining applications. In our current work, we propose
a Predicate-Tree based solution for protection of data. Predicate-Trees
or pTrees are compressed, data-mining-ready, vertical data structures
and have been used in a plethora of data-mining research areas such as
spatial association rule mining, text clustering, closed k-nearest neighbor
classification, etc. We show how for data mining purposes, the scrambled
pTrees would be unrevealing of the raw data to anyone except for the
authorized person issuing a data mining request. In addition, we pro-
pose several techniques which come along as a benefit of using vertical
pTrees. To the best of our knowledge, our approach is novel and provides
sufficient speed and protection level for an effective data security.

Keywords: Predicate Trees, Data Mining, Data Security

1 Introduction

Data communication over the Internet is at an all time high. Online banking
transactions, realtime stock trading, ecommerce Web sites etc. rely completely
on the security of World Wide Web and are at a constant risk of eavesdropping
and hacking. Various data mining and analytic tools have come into existence
which extract knowledge or meaningful information from massive amount of data
stored locally or at a distant location. In this paper, we propose a Predicate-
Tree or P-Tree based security solution for protection of data. P-Trees have been
used in wide variety of data mining application. Our attempt in this paper is to
propose a way of keeping the data secure as well as reap the benefits of using
P-Trees. The next section gives a brief introduction on P-Trees followed by a
section on PGP-D or Pretty Good Privacy of Data.

We acknowledge partial financial support for this research from a Department of
Energy Award (award # DE-FG52-08NA28921).

II

2 P-Tree

P-Trees are data-mining-ready, compressed and lossless data structures. The sim-
plest form among them are the Peano-Trees which are bitwise trees comprising
of only Os and 1s. They can be 1, 2 or n-dimensional depending on the appli-
cation. For e.g. finding the occurrence of a tuple, say (7,0,1,4) in a 4-attribute
relational table can be efficiently computed by 1-dimensional P-Trees. For spa-
tial images, 2-dimensional P-Trees are often used. P-Trees have been used in a
wide variety of research areas as well including text mining [2], DNA Microarray
data analysis [4], association rule mining [1], etc.

Construction of P-Trees is as follows: Let us consider a dataset X with d
attributes represented as X = (A, As ... Ay) and the binary representation of
any k" attribute, Ay, be represented as by y,—1bk m—2bk,m—3...bx0. Here, m is the
number of bits required to represent values in Ag. For e.g., 12 can be represented
by 1100, so m = 4. Each of the attributes is decomposed into bit files, i.e. one file
for each bit position. The P-Tree is simply constructed by taking bit files (one at
a time) and recursively partitioning them into halves and sub-halves until each
sub-half is absolutely pure i.e. entirely 1-bits or 0-bits.

Consider the following 1-attributed data containing values 2, 3, 2, 2, 5, 2,
7, 7. This is converted to binary resulting in three vertical strips of data (since
each of the values can be represented by a 3-bit binary number). Py, Py and P
are the three P-Trees generated for the above data. The construction process of
each P-Tree is independant of other and thus can be parallelized over multicore
processors.

ofilo] [o][i]fe] [o] [o] [o]
ol1]1 [o][1][1]
ofo] [o][]fo]
ofilo| , folfilfel, () 2 0 [[s] (o]
iTol4) 7 [4][o][+]
B OBEE @)])
11101 ENERER
) O MO»E ™
Pa P1 Pz

Fig. 1. P-Tree Construction

The most frequently used operations in P-Tree are the AND, OR and NOT
logic operations. These operations are computed on a level by level basis start-
ing from the root node. There are certain rules associated with these P-Tree
operations. For example, an AND operation between a pure-0 node and any
subtree results in a pure-0 node, an OR operation between a pure-1 node and
any subtree results in the subtree itself, etc. Here, a P-Tree is said to be pure-1
if its subtree consists of only 1s and pure-0 otherwise. For more information on
P-Tree structure, construction and operations, please refer to [3].

111

3 PGP-D

In the previous section, we described how data can be stored in the form of P-
Trees which can readily be used for data mining. In this section, we propose how
the P-Trees can be secured from an attack. PGP-D is a mechanism in which we
scramble P-Tree information(location information) in such a way that data can
still be processed just as fast. For data mining purposes, the scrambled P-Trees
would be unrevealing of the raw data to anyone, but a person qualified to issue
data-mining requests (classification/ARM/clustering).

To retrieve P-Tree information, we require a) ordering - the mapping of the
bit position to the table row b) predicate - table column id and bit slice or bitmap
and c) location. The key of the data is an array of two tuples storing the location
and the pad. A typical key could be something like [{5, 54}, {7, 539}, {87, 3},
{209, 126}, {25, 896}, {888, 23}, ...]. We make all the P-Trees of the same length
and pad it in the front of each so that statistics can’t reveal the start position.
We also scramble the location of the P-Trees. For basic P-Trees, key K would
reveal the offset and the pre-pad. For example, in the above key, the first P-Tree
is found at offset 5, i.e. it has been shuffled forward 5 P-Tree slots from the slot
initially assigned and that the 54 bits are pad bits.

Since P-Trees are data-mining-ready data structures, we are never in favor
of making them go through the expensive process of encryption and decryption.
Instead we focus on securing the key. Also, more the number of P-Trees, better
is the protection. For a database with 5000 tables with 50 columns each and
each column being represented by 32-bits, we would have 8 millions P-Trees. In
distributed database scenario where we have multiple sites, it would make sense
to fully replicate thus allowing all the retrieval as local. A condition could arise
where the hacker extracts the first bit of every P-Tree (i.e. the 8,000,000,000 bits)
that is the first horizontal record. He/She could shuffle those bits until something
meaningful appears or starts to appear. From all the meaningful shuffles, he/she
might be able to break the key code (e.g. look next as 2nd bit, then 3rd, etc.).
To get around this possibility, we store the entire database as a massive ”Big Bit
String” and have it as a part of our key, the start offset of each P-Tree (which
would be shuffled randomly).

References

1. Ding Q., Ding Q., Perrizo W.: PARM - An Efficient Algorithm to Mine Association
Rules from Spatial Data. IEEE Transactions on Systems, Man, and Cybernetics,
Part B 38(6) 1513-1524 (2008)

2. Rahal 1., Perrizo W.: An optimized approach for KNN text categorization using
P-trees. ACM Symposium on Applied Computing 613-617 (2004)

3. Perrizo W: Predicate Count Tree Technology. Technical Report NDSU-CSOR-TR-
01-1 (2001)

4. Wang Y., Lu T., Perrizo W.: A Novel Combinatorial Score for Feature Selection
with P-Tree in DNA Microarray Data Analysis. 19th International Conference on
Software Engineering and Data Engineering 295-300 (2010)

