
HAL Id: hal-01538104
https://inria.hal.science/hal-01538104

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifying Timed BPMN Processes Using Maude
Francisco Durán, Gwen Salaün

To cite this version:
Francisco Durán, Gwen Salaün. Verifying Timed BPMN Processes Using Maude. 19th Interna-
tional Conference on Coordination Languages and Models (COORDINATION), Jun 2017, Neuchâtel,
Switzerland. pp.219-236, �10.1007/978-3-319-59746-1_12�. �hal-01538104�

https://inria.hal.science/hal-01538104
https://hal.archives-ouvertes.fr

Verifying Timed BPMN Processes using Maude

Francisco Durán1 and Gwen Salaün2

1 University of Málaga, Spain
2 University of Grenoble Alpes, LIG, CNRS, France

Abstract. A business process is a collection of structured activities
producing a particular product or software. BPMN is a workflow-based
graphical notation for specifying business processes. Formally analyzing
such processes is a crucial challenge in order to avoid erroneous execu-
tions of the corresponding software. In this paper, we focus on timed
business processes where execution time can be associated to several
BPMN constructs. We propose an encoding of timed business processes
into the Maude language, which allows one to automatically verify several
properties of interest on processes such as the maximum/minimum/av-
erage execution time or the timed degree of parallelism that provides
a valuable guide for the problem of resource allocation. The analysis is
achieved using the rewriting-based tools available in Maude, which also
provides other techniques (e.g., reachability analysis and model check-
ing) for verifying BPMN specifications. We applied our approach on a
large set of BPMN processes for evaluation purposes.

1 Introduction

Business Process Model and Notation (BPMN) [14] is a graphical modelling
language for specifying business processes. A business process is a collection
of structured activities or tasks that produce a specific product and fulfill a
specific organizational goal for a customer or market. More precisely, a process
aims at modelling activities, their causal and temporal relationships, and specific
business rules that process executions have to comply with. Business process
modelling is an important area in software engineering since it supports the
development of workflow-based software, such as information and distributed
systems. BPMN is the de facto notation for designing business processes and
was published as an ISO standard in 2013.

When modelling processes using BPMN, many questions arise: is my work-
flow precisely modelling what I expect from it? Is my workflow free of errors and
bugs? Are certain properties of interest preserved? What is the degree of par-
allelism of my process? What is the minimum execution time of my workflow?
All these questions are meaningful, but they are not that simple to answer, par-
ticularly when modelling complex processes involving many tasks and intricate
combinations of gateways. Some of these questions (and corresponding computa-
tions) may even turn out to be undecidable if the whole expressiveness of BPMN
is considered (e.g., cyclic behaviours, data aspects, or time).

2 Francisco Durán and Gwen Salaün

In this paper, we focus on software development based on a subset of BPMN
where we can model process behaviours (tasks, sequence flows, gateways) and
time aspects (duration associated to tasks and flows). We propose automated
analysis techniques for verifying that certain properties of interest are satisfied
for timed business processes modelled with BPMN. In this work, we focus on
properties that are application independent, which allows us to provide press-
button verification techniques without requiring any input from the developer.
Properties of interest are for instance the minimum/maximum/average execu-
tion time of a process and the timed degree of parallelism, which is a valuable
information for resource allocation. Our approach also enables one to carry on
other kinds of analysis such as reachability analysis to search, e.g., for deadlock
states, or state-based LTL model checking to verify the satisfaction of temporal
properties (safety and liveness). In these cases, since the properties depend on
the input process, they have to be provided by the developer, who can reuse
well-known patterns for timed properties as those presented in [15, 12].

Our approach relies on an encoding of the BPMN execution semantics into
the rewriting-logic-based language Maude [7]. The three challenges of this en-
coding were to properly translate all gateways (including the inclusive merge
gateway), to describe time durations and passing, and to support loops and
unbalanced workflows. Unbalanced workflows are those processes that exhibit
an unbalanced structure with no exact correspondence between split and merge
gateways. The expressive power of the Maude language allowed us to model
these features in a uniform way. Moreover, Maude is equipped with a large va-
riety of analysis tools, which can be used for automatically verifying properties
of interest such as the aforementioned execution time measures and the timed
degree of parallelism. We applied our approach on many business processes for
validation purposes and verification times turn out to be reasonable for real-size
examples.

To sum up, the main contributions of this work with respect to existing results
on this topic are the following: (i) an encoding into Maude of a subset of BPMN
including time aspects, inclusive gateways, looping behaviours, and unbalanced
workflows; (ii) automated analysis techniques for verifying properties of interest
on timed BPMN models using reachability analysis and model checking tools;
and (iii) tool support for automating the transformation to Maude and validation
of the approach by application to many BPMN processes.

The organization of the rest of the paper is as follows. Section 2 introduces
the BPMN notation and Maude. Section 3 explains our Maude encoding of the
considered subset of BPMN, with emphasis on the handling of time. In Section 4,
we present our techniques for automatically analyzing properties on BPMN pro-
cesses. This section also presents experimental results. Section 5 surveys related
work and Section 6 concludes the paper.

Verifying Timed BPMN Processes using Maude 3

2 Preliminaries

2.1 BPMN

BPMN is a graphical notation for modelling business processes as collections
of related tasks that produce specific services or products for particular clients.
BPMN is an ISO/IEC standard [14], and can be executed by using different
process interpretation engines (e.g., Activiti, Bonita BPM, or jBPM). The se-
mantics of BPMN is described informally in official documents [23, 14], and some
attempts have been made for giving a formal semantics to BPMN (see, e.g., [9,
29, 24, 20, 17]).

In this paper, our goal is not to consider the whole expressiveness of the
BPMN language, but to concentrate on the BPMN elements related to control-
flow modelling and on time aspects that can be represented in BPMN constructs.
This enables us to focus on those aspects and show how automated analysis is
possible for them. Specifically, we consider the node types event, task, and gate-
way, and the edge type sequence flow. Start and end events are used, respectively,
to initialize and terminate processes. A task represents an atomic activity that
has exactly one incoming and one outgoing flow. A gateway is used to control
the divergence and convergence of the execution flow. A sequence flow describes
two nodes executed one after the other, i.e., imposing the execution order.

Gateways are crucial since they are used to model control flow branching in
BPMN and therefore influence the overall process execution. There are five types
of gateways in BPMN: exclusive, inclusive, parallel, event-based and complex
gateways. We consider all of them except complex gateways, because they are
used to model complex synchronization behaviours especially based on data
control, and we do not take data objects, nor conditions on flows outgoing of
split gateways, into account.

Gateways with one incoming branch and multiple outgoing branches are
called splits, e.g., split inclusive gateway. Gateways with one outgoing branch
and multiple incoming branches are called merges, e.g., merge parallel gateway.
An exclusive gateway chooses one out of a set of mutually exclusive alternative
incoming or outgoing branches. For an inclusive gateway, any number of branches
among all its incoming or outgoing branches may be taken. A parallel gateway
creates concurrent flows for all its outgoing branches or synchronizes concurrent
flows for all its incoming branches. For an event-based gateway, it takes one of
its outgoing branches or accepts one of its incoming branches based on events.
In the following, we call the branches that are taken by a gateway during an
execution as active branches. In this work, we support unbalanced workflows,
meaning that each merge gateway does not necessarily have a corresponding
split gateway with an exact correspondence of the branches among outgoing
and incoming flows. We also support workflows with looping behaviours.

The execution semantics of BPMN constructs can be described using tokens
as depicted in Figure 1. The start event node can be triggered once at any
moment, which creates a token in its outgoing sequence flow. Whenever a token
is present in the incoming sequence flow of an end event, this execution flow

4 Francisco Durán and Gwen Salaün

can terminate by consuming this token. If a token is in a sequence flow, then
the destination node for this sequence flow can be triggered. The semantics
of gateways is also given, emphasizing that specific care should be taken when
considering inclusive split/merge gateways since all possible combinations should
be generated and all triggered branches should be awaited for at the merge
synchronization point. The inclusive merge is particularly problematic from a
semantic point of view as discussed in [6]. We will show in the next section how
our Maude executable semantics allows the encoding of these BPMN gateways.

In addition to these classic BPMN constructs, one can also specify notions
of time. In this paper, we consider time as a duration, which can be associated
to tasks or flows. When a flow has a duration d greater than zero, it means that
the destination node is triggered after d units of time. If the duration is zero,
that node is immediately triggered. Similarly, a task triggers its outgoing flow at
once for a duration equal to zero and waits for d units of time when a duration
d greater than zero is associated to that task.

In this paper, we assume that BPMN processes are syntactically correct. This
can be enforced using existing works, e.g., [11], or using a BPMN engine, e.g.,
the Activiti BPM platform, Bonita BPM, or the Eclipse BPMN Designer.

Running example. The process we use as running example (Figure 2) aims
at monitoring the organization of a business trip. The process starts by reserving
flight tickets and by completing the mission paperwork. Flight booking may take
some time, because in many companies this task is subcontracted to a third party
company. Once the flight tickets are issued, accommodation reservation and
other additional services (insurance, vaccines, etc.) are tackled in parallel. Visa
process is initiated only when all reservations (flights and hotel) are completed
and when the paperwork is finished. Once all the aforementioned prerequisites
of the trip are completed, the mission details are stored in a specific database.

2.2 Maude and Real-Time Maude

Real-Time Maude [22] is a rewriting-logic-based specification language and for-
mal analysis tool that extends the Maude system [7] to support the formal spec-
ification and analysis of real-time systems. Real-Time Maude provides support
for symbolic simulation through timed rewriting, and time-bounded temporal
logic model checking and search for reachability analysis.

Rewriting logic [18] is a logic of change that can naturally deal with states
and non-deterministic concurrent computations. A rewrite logic theory is a tuple
(Σ,E ∪ A,R), where (Σ,E ∪ A) is a membership equational logic [3] theory
with Σ its signature, E a set of conditional equations, A a set of equational
axioms such as associativity, commutativity and identity, so that rewriting is
performed modulo A, and R is a set of labeled conditional rules. In rewriting
logic, a distributed system is axiomatized by an equational theory, describing its
set of states as an algebraic data type, and a collection of conditional rewrite
rules, specifying its dynamics. Rewrite rules are written crl [l] : t => t′ if C, with l
the rule label, t and t′ terms, and C a condition. We may have rules without label

Verifying Timed BPMN Processes using Maude 5

Fig. 1. BPMN Execution Semantics

6 Francisco Durán and Gwen Salaün

Fig. 2. BPMN Running Example

or condition. An unlabelled unconditional rule would be written rl t => t′. Rules
describe the local, concurrent transitions that are possible in the system, i.e.,
when a part of the system state fits the pattern t, then it can be replaced by the
corresponding instantiation of t′. The guard C acts as a blocking precondition,
in the sense that a conditional rule can only be fired if its condition is satisfied.

In Maude, object-oriented systems are specified by object-oriented modules
in which classes and subclasses are declared. A class is declared with the syntax
class C | a1:S1, ..., an:Sn, where C is the name of the class, ai are attribute
identifiers, and Si are the sorts of the corresponding attributes. Objects of a class
C are then record-like structures of the form < O : C | a1:v1, ..., an:vn >,
where O is the name of the object, and vi are the current values of its attributes.

In a concurrent object-oriented system, the concurrent state has the structure
of a multiset made up of objects and messages. Such state evolves by concurrent
rewriting using rules that describe the effects of the communication events. The
general form of such rewrite rules is:

cr l [r] :
< O1 : C1 | atts1 > . . . < On : Cn | attsn >
M1 . . . Mm

=>

< Oi1
: C′

i1
| atts′i1

> . . . < Oik
: C′

ik
| atts′ik

>

< Q1 : C′′
1 | atts′′1 > . . . < Qp : C′′

p | atts′′p >

M ′
1 . . . M ′

q

i f Cond .

where r is the rule label, M1...Mm and M ′1...M
′
q are messages, O1...On and

Q1...Qp are object identifiers, C1...Cn, C ′i1 ...C
′
ik

and C ′′1 ...C
′′
p are classes, i1...ik

is a subset of 1...n, and Cond is a condition (the rule’s guard). The result of
applying such a rule is that: (a) messages M1...Mm disappear, i.e., they are
consumed; (b) the state, and possibly the classes of objects Oi1 ...Oik may change;
(c) all the other objects Oj vanish; (d) new objects Q1...Qp are created; and (e)
new messages M ′1...M

′
q are created, i.e., they are posted.

Verifying Timed BPMN Processes using Maude 7

Real-Time Maude provides a sort Time to model the time domain, which can
be either discrete or dense time (we use discrete time in this paper). Given a
constructor { , } of sort GlobalSystem, time passing is modelled by rewrite rules
known as tick rules:

cr l [l] : {t , T} => {t′ , T + τ} i f C .

where t is the state of the system, T is its global time, and τ is the duration of the
rewrite. Since tick rules affect the global time, in Real-Time Maude time elapse
is usually modeled by one single tick rule, and the system dynamic behaviour
by instantaneous transitions [22]. Although there are other strategies, the most
flexible one models time elapse by using two functions, namely, delta, which
defines the effect of time elapse over every model element, and mte (maximal
time elapse), which defines the maximum amount of time that can elapse before
any action is performed.

cr l [tick] : {t , T} => {delta (t) , T + τ} i f τ := mte (t) /\ τ > 0 /\ C .

In Maude, rule conditions may be given as a short-circuited conjunction of con-
ditional terms using operator /\. In the previous rule, Boolean expressions and
assignments are used as conjuncts (see [7] for further details).

3 Encoding into Maude

In this section, we present our encoding of our subset of BPMN into Maude. This
encoding consists of two parts: the syntactic encoding of a BPMN process into
Maude and the set of rewrite rules encoding the BPMN execution semantics.
The encoding of the BPMN process into Maude (Section 3.1) depends on the
example, so the corresponding Maude code has to be generated for each new
process. This transformation is fully automated by applying a Python script we
implemented. The rewrite rules have been encoded once and for all, and we will
present in Section 3.2 the rules corresponding to the handling of some of the
constructs in our BPMN processes. The complete Maude specification with all
the rules and examples of BPMN processes is available online [1].

3.1 Process Encoding

We represent a BPMN process as a set of flows and a set of nodes. A flow is
represented as a term flow(sfi, t), with sfi an identifier and t a duration. If there
is no duration associated to a flow, the duration value is zero. We distinguish
different kinds of nodes: start, end, task, split, and merge. A start (end, resp.)
node consists of an identifier and an output (input, resp.) flow identifier. A task
node involves an identifier, a task description, two flow identifiers (input and
output), and a duration (zero if no duration is associated to this task). A split
node includes a node identifier, a gateway type (exclusive, parallel, inclusive,
or event-based), an input flow identifier, and a set of output flow identifiers.
A merge node includes a node identifier, a gateway type, a set of input flow
identifiers, and an output flow identifier.

8 Francisco Durán and Gwen Salaün

1 eq fls = (flow (sf1 , 0) , flow (sf2 , 0) , . . .) . --- flows
2

3 eq nds = (start (initial , sf1) , --- nodes
4 end (final , sf13) ,
5 split (g1 , parallel , sf1 , (sf2 , sf14)) ,
6 . . .
7 task (t7 , " transportation " , sf6 , sf9 , 1) ,
8 task (t8 , " vaccination " , sf7 , sf10 , 14)) .
9

10 eq initSystem
11 = < p : Process | nodes : nds , flows : fls >
12 < s : Simulation | tokens : token (initial , 0) , gtime : 0 > .

Fig. 3. Running Example in Maude

These constructs are illustrated in Figure 3, which shows an excerpt of the
representation of the running example. Constants fls and nds represent, respec-
tively, its set of flows and its set of nodes.

3.2 Execution Semantics

The execution of BPMN activities is modeled using tokens, which are associated
to tasks and flows, and circulate along activities as the execution evolves. For
instance, split gateways produce tokens for their outgoing flows, and merge gate-
ways collect tokens from their incoming flows and produce one single token. This
simple approach allows us to support unbalanced workflows where there is no
strict correspondence between splits and merges, as well as looping behaviours.

The execution semantics of BPMN is defined using Maude rewrite rules,
which operate on systems composed of a process object and a simulation object.
The process object represents the BPMN process, and it does not change. The
simulation object keeps information on the execution of the process.

class Process | nodes : Set{ Node } , flows : Set{ Flow} .
class Simulation | tokens : Set{ Token } , gtime : Time .

A simulation involves a set of tokens and a global time (gtime) described using
a natural number (discrete time). Tokens are used to represent the evolution
of the workflow during its execution. These tokens correspond to flow or task
identifiers, plus a time that express a delay, used to model duration of flows and
tasks. Thus, a token token(t8, t) indicates that the task t8 has a token, and that
such task will be completed in t time units. The operator initSystem in Figure 3
represents the initial state for the process introduced in Figure 2.

Tick rule. A tick rule is necessary to simulate the time evolution, which is
modelled by the increase of the global time and the decrease of the tokens’ timers.
Given appropriate definitions of functions mte and delta, the tick rule is written
as in Figure 4. The delta function is straightforward, since it just increments the
global time present in the simulation object of the indicated amount of time and
decrements the timers of the tokens by the same amount. The mte function is
more subtle. Although one could think that it is enough taking the smallest of the

Verifying Timed BPMN Processes using Maude 9

1 cr l [tick] :
2 < PId : Process | nodes : Nodes , Atts >
3 < SId : Simulation | tokens : Tks , gtime : T >
4 =>
5 < PId : Process | nodes : Nodes , Atts >
6 < SId : Simulation |
7 tokens : delta (Tks , T1) , --- updates all tokens
8 gtime : (T + T1) > --- increments the global time
9 i f T1 := mte (Nodes , Tks)

10 /\ 0 < T1 .

Fig. 4. Tick Rule

1 r l [startProc] :
2 < PId : Process |
3 nodes : (start (NId , FId) , Nodes) ,
4 flows : (flow (FId , T) , Flows) >
5 < SId : Simulation |
6 tokens : (token (NId , 0) , Tks) , --- init token available
7 Atts >
8 =>
9 < PId : Process |

10 nodes : (start (NId , FId) , Nodes) ,
11 flows : (flow (FId , T) , Flows) >
12 < SId : Simulation | --- token for FId with flow duration
13 tokens : (token (FId , T) , Tks) ,
14 Atts > .

Fig. 5. Start Event Rule

tokens’ delays, notice that parallel and inclusive merges may require additional
delays in the incoming branches, requiring a more intricate calculation. A parallel
merge is not activated until all its incoming flows are active, meaning that there
can be tokens with time zero that have to wait until all these flows get their
tokens. The case of inclusive merges is similar, although in this case we do not
know beforehand how many tokens are to be expected. Thus, each incoming flow
must be traversed backwards to check whether that flow must be awaited for or
discarded in the calculation of the mte function.

The semantics we choose for describing time obliges to execute actions and
move tokens in the process as soon as possible. The time cannot elapse when
there are timers to zero and thus possible actions to be triggered in the process.

Start / end events. We assume that the initial set of tokens includes
a token token(initial, 0). Thus, the start rule (Figure 5) is triggered when this
token is available (line 6). When the startProc rule is applied, the initial token is
consumed and another one is added to the set of current tokens (line 13), which
indicates that the flow outgoing from the start event has been activated (FId).
The time assigned to this new token is the delay of the flow FId (line 11).

The end event rule is triggered when there is a token for the incoming flow
with zero time duration. In that case, the simulation consumes this token without
generating new ones, which terminates this flow execution. Note that there is no
specific rules for flows. It is enough to have tokens representing flow activations

10 Francisco Durán and Gwen Salaün

1 r l [execTask] :
2 < PId : Process |
3 nodes : (task (NId , TaskName , FId1 , FId2 , T) , Nodes) ,
4 flows : Flows >
5 < SId : Simulation |
6 tokens : (token (NId , 0) , Tks) , --- token available with 0 time
7 Atts >
8 =>
9 < PId : Process |

10 nodes : (task (NId , TaskName , FId1 , FId2 , T) , Nodes) ,
11 flows : Flows >
12 < SId : Simulation | --- new token for outgoing flow FId2
13 tokens : (token (FId2 , retrieveTimeFlow (FId2 , Flows)) , Tks) ,
14 Atts > .

Fig. 6. Task Completion Rule

and the tick rule we have presented before in this section makes the time evolves
for these tokens, thus for these flows once they are activated.

Tasks. A task execution is encoded with two rules to express the possibility
that a task may take time if a duration is associated to it. An initiation rule
activates the task when a token representing the incoming flow is available. In
that case, we generate a new token with the task identifier and the task duration.
A second rule is used for representing the task completion. This rule is triggered
when there is a token for that task with time zero. In that case, this token is
consumed and a new one is generated for the outgoing flow (Figure 6).

Gateways. The semantics of exclusive (event-based, resp.) gateways is en-
coded with two rules, one rule for the split gateway and one rule for the merge
gateway. The rule for the exclusive split gateway fires when a token with time
zero is available in the input flow and non-deterministically generates a token for
one of the output branches. The exclusive merge gateway executes when there
is one token for one of the incoming flows. In that case, the token is consumed
and a token is generated for the merge outgoing flow.

The parallel split gateway rule is triggered when a token corresponding to
the input flow is available. If so, the token is consumed and one token is added
for each outgoing flow. The merge rule for the parallel gateway (Figure 7) is ex-
ecuted when there is a token for each incoming branch (function allTokensParallel

in Figure 7, line 12). In that case, these tokens are removed (function removeTo-

kensParallel, line 11) and a new token is generated for the outgoing flow.
The semantics of inclusive gateways is more intricate [6]. An inclusive split

gateway can trigger any number of outgoing flows (at least one). To do so, we
generate tokens for a non-deterministic number of outgoing flows to simulate
the concurrent execution of those flows. The inclusive merge gateway is one of
the most subtle parts of this encoding. This gateway is triggered when all ex-
pected tokens are available. However, we cannot know beforehand the number
of active branches, and therefore, the only way is to traverse the process back-
wards and look for active branches (available tokens), similar to the procedure
described for the mte function. Function allTokensInclusive (line 14, Figure 8) ex-

Verifying Timed BPMN Processes using Maude 11

1 cr l [mergeParallelGateway] :
2 < PId : Process |
3 nodes : (merge (NId , parallel , FIds , FId) , Nodes) ,
4 flows : (flow (FId , T) , Flows) >
5 < SId : Simulation | tokens : Tks , Atts >
6 =>
7 < PId : Process |
8 nodes : (merge (NId , parallel , FIds , FId) , Nodes) ,
9 flows : (flow (FId , T) , Flows) >

10 < SId : Simulation |
11 tokens : (token (FId , T) , removeTokensParallel (FIds , Tks)) , Atts >
12 i f allTokensParallel (FIds , Tks) . --- - all incoming flows activated

Fig. 7. Parallel Merge Gateway Rule

1 cr l [mergeInclusiveGateway] :
2 < PId : Process |
3 nodes : (merge (NId , inclusive , FIds , FId) , Nodes) ,
4 flows : (flow (FId , T) , Flows) >
5 < SId : Simulation | tokens : Tks , Atts >
6 =>
7 < PId : Process |
8 nodes : (merge (NId , inclusive , FIds , FId) , Nodes) ,
9 flows : (flow (FId , T) , Flows) >

10 < SId : Simulation |
11 tokens : (token (FId , T) , removeTokensInclusive (FIds , Tks)) ,
12 Atts >
13 i f atLeastOneToken (FIds , Tks)
14 /\ allTokensInclusive (FIds , Tks , (merge (NId , inclusive , FIds , FId) , Nodes)) .

Fig. 8. Inclusive Merge Gateway Rule

plores the process upstream looking for active flows and deduces whether all the
expected tokens are present in order to fire the merge gateway or if other tokens
must be expected before executing this gateway. To avoid unnecessary compu-
tations, this checking is only performed when a token has reached the gateway
(atLeastOneToken, line 13, Figure 8). Once this rule is executed, all expected
tokens are consumed and a fresh token is added for the outgoing flow.

4 Rewriting-based Verification of Timed Processes

In this section, we successively present the verification of properties on timed
processes, other kinds of analysis (simulation, reachability, model checking), and
experimental results. It is worth stressing that by using an encoding into an
existing framework (Maude here), we can reuse and take advantage of all the
existing tools without having to develop new algorithms (from scratch) for com-
puting execution times and checking timed properties.

Verification of timed properties. There are several properties of interest
to be checked on timed processes. We focused on the minimum/maximum/aver-
age execution time and on the degree of parallelism in this work. These metrics
are independent of any concrete BPMN process instance, which makes these
checks generic and easily reusable.

12 Francisco Durán and Gwen Salaün

Given a module M including a BPMN process to analyze and an initial sys-
tem I (Process and Simulation objects), the function execTime(M , I) generates all
solutions (states where an end node has been reached) and computes their min-
imum, maximum and average execution times. The calculation of these values
relies on the search and meta-programming capabilities of Maude. The search
takes place following a breadth-first strategy. In order to avoid infinite runs of
our system, which may happen when processes include infinite loops, one can
either bound the search depth or the global time. By using Maude’s facilities,
solutions are considered one by one, making the computation more efficient and
saving storage space.

As far as the parallelism degree is concerned, for a specific process, we traverse
all reachable states (and not only the final solutions) to search the state with
the maximum number of tokens, which corresponds to the degree of parallelism.

Simulation and reachability analysis. Simulation is very useful for ex-
ploring system executions. In Maude, simulation relies on rewriting, which con-
sists in successively applying equations and rewrite rules on an initial term (a
BPMN process here), with the possibility of using some strategy language to
guide the execution. Since systems may be rewritten in many different ways,
Maude also provides a search command, which allows us to explore the reach-
able state space up to a certain depth. Thus, we can perform analysis on the
reachability of states satisfying certain conditions, e.g., when searching for dead-
lock states or other undesired situations. For example, given our running example
in Figure 2, and its corresponding Maude representation InitSystem in Figure 3,
the following search command checks that there is no reachable final state with
tokens in it, which shows that there is no deadlock.

> search InitSystem =>! Conf such that getNumberTokens (Conf) =/= 0 .
No solution .

Notice the use of ‘=>!’ to limit the check to final states. Variants of this command
allows us to carry on other types of search.

Model checking. We can also take advantage of our encoding for using
other analysis tools available in the Maude system. For instance, Maude’s Linear
Temporal Logic (LTL) explicit-state model checker [10] can be used for analyzing
all possible executions of a business process. Maude’s model checker allows one to
check whether every possible behaviour starting from a given initial state (the
start node in BPMN) satisfies a given LTL property. It can be used to check
safety and liveness properties of systems when the set of states reachable from
an initial state is finite. Full verification of invariants in infinite-state systems
can be accomplished by verifying them on finite-state abstractions [19] of the
original infinite-state system, that is, on an appropriate quotient of the original
system whose set of reachable states is finite. In our context, beyond classic
properties such as deadlock-freeness, the properties that can be verified depend
on the example and should be specified by the developer, e.g., a certain task
is always achieved after another specific task. In order to make the property
writing easier, the developer can rely on well-known patterns as those presented
in [15, 12] for timed properties.

Verifying Timed BPMN Processes using Maude 13

Table 1. Experimental Results

BPMN Size Exploration Proc. exec. time Parall. Analysis

Proc. Tasks Flows Sol. States Min Max Avg Degree Time

1 8 19 - 4 2 2 138 15 17 16 5 0.07s

2 7 14 2 2 - 2 59 4,837 5,322 5,079 2 0.02s

3 8 17 - 5 - 1 44 3,863 3,863 3,863 4 0.02s

4 8 16 - - 4 3 127 3,288 5,095 3,913 3 0.05s

5 12 24 - - 6 6 1,051 2,902 3,900 3,547 6 0.6s

6 20 39 - - 8 35 8,760 4,529 8,222 6,423 7 10.3s

7 20 43 - 6 6 7 2,653 5,649 7,341 6,453 7 3.7s

8 40 87 14 9 2 24 28,327 7,619 9,235 8,332 7 49.7s

9 40 87 12 9 4 24 55,693 7,619 9,235 8,332 8 1m48s

10 40 87 10 9 6 24 288,025 7,619 9,235 8,332 12 24m20s

11 16 31 - - 2 13 225,378 1,370 3,024 2,274 13 6m23s

12 213 215 4 6 4 22 5,844 4,189 21,199 17,367 6 16.8s

For instance, given propositions FlightBooking and VisaProcess, which are true

in states in which the process is executing these respective tasks, i.e., there is
a token in the corresponding task, we can check that the visa request is always
processed after a flight booking as follows:

> reduce modelCheck (InitSystem , [] (FlightBooking −> <> VisaProcess)) .
result Bool : true

Experimental evaluation. We made experiments on about 100 examples,
some of them taken from the literature on this topic, e.g., [31, 27, 24], or hand-
crafted for testing some special structures such as multiple nested gateways. Our
main goal was to see how our verification approach scales in terms of time and
explored state space depending on the size of the input process. We used a Mac
OS laptop running on a 2.9 GHz Intel Core i5 processor with 16 GB of memory.
We present in Table 1 some of these results. The table gives for each process the
number of tasks, the number of sequence flows, and the number of gateways.
The exploration is characterized giving the number of solutions and the total
number of states. As for verification, for each example, we give the results for
process execution times and for the degree of parallelism. The last column shows
the analysis time for the parallelism degree calculation, which is the operation
that takes longer.

First of all, it is worth noting that we made experiments varying time dura-
tions (durations between 0 and 10 units of time, between 0 and 100, between 0
and 1000). This does not impact analysis times because the function mte avoids
an execution where the time would elapse unit by unit. Therefore, this function
speeds up the time passing whatever maximum time is considered for task and
flow duration. Regarding the experimental results presented in Table 1, we set
flow and task durations between 0 and 1000 units of time.

14 Francisco Durán and Gwen Salaün

Example 1 is the running example. The minimum time (15 days) is obtained
when the vaccination task is not executed in the inclusive gateway. When this
task is required, we obtain the maximum time (17 days). The degree of paral-
lelism (5) corresponds to the case where both hotel reservation and paperwork
tasks are not yet completed, and the three tasks in the inclusive gateway are all
triggered in parallel.

The analysis time is short for small and medium size examples, even when
there are several nested inclusive or parallel gateways (see examples 5-7 in the
table). Example 3 exhibits the same minimum, maximum, and average times
because it involves only parallel gateways, and in that case, all behaviours are
systematically executed. We made experiments with variants of the same exam-
ple (rows 8-10) to observe how our approach scales. These examples are quite
large, involving 40 tasks and more than 20 gateways (most of them nested). We
can see how, by increasing the number of inclusive gateways and reducing the
number of exclusive gateways, the analysis time goes from 52 seconds (exam-
ple 8) to over 24 minutes (example 10). These times are long because the number
of states to explore is rather large. Let us emphasize that we may encounter re-
alistic processes larger than those ones in terms of number of tasks, but we have
not seen yet a real example with as many nested gateways as in those examples
(8-10). Example 12 shows an example with more than 200 tasks. This process
mainly exhibits sequential behaviours. In that case, we can see that the number
of states is lower and thus the analysis time is quite short (16 seconds).

5 Related Work

Several works focus on providing formal semantics and verification techniques
for business processes using Petri nets. [16] proposes to formalize business pro-
cesses and more specifically composition of Web services using Petri nets. Decker
and Weske present in [8] an extension of BPMN 1.0 (iBPMN) in the direction
of interaction modelling. They also propose a formal semantics for iBPMN in
terms of interaction Petri nets. [9] presents a mapping from BPMN to Petri nets
that enables the static analysis of BPMN models. [26] presents a double trans-
formation from BPMN to Petri nets and from Petri nets to mCRL2. This allows
one to use both Petri nets based tools and the mCRL2 toolset for searching
deadlocks, livelocks, or checking temporal properties. [2] describes how BPMN
processes can be represented using the Reo coordination language, which admits
formal analysis using model checking and bisimulation techniques. Compared to
these results, our encoding also gives a semantics to BPMN by translation to
Maude, yet it was not our primary goal. The main difference with respect to
these related works is our focus on timed aspects.

Another line of works aimed at using process algebras for formalizing and
verifying BPMN processes. The authors of [29] present a formal semantics for
BPMN by encoding it into the CSP process algebra. They show in [30] how this
semantic model can be used to verify compatibility between business participants
in a collaboration. This work was extended in [31] to propose a timed semantics

Verifying Timed BPMN Processes using Maude 15

of BPMN with delays. [21, 5, 20] focus on the semantics formalized in [29, 31]
and propose an automated transformation from BPMN to timed CSP, as well
as composition verification techniques for checking properties using the FDR2
model checker. In [25], the authors present an encoding of an untimed subset
of BPMN into the LNT process algebra for supporting the analysis of process
evolution. [24, 13] address the issue of checking whether a BPMN choreography
is realizable by computing participant implementations using projection. We go
one step farther compared to these related works because we provide verifica-
tion techniques for a timed version of BPMN including all main gateways (in
particular inclusive gateways), loops, and unbalanced structures for workflows.

Another paper [11] attempted to translate BPMN to Maude for verification
purposes. In this work, the authors focus on data objects semantics and data-
based decision gateways, and provide new mechanisms to avoid structural issues
in workflows such as flow divergence. To do so, they introduce the notion of
well-formed BPMN processes, which allows one to guarantee structural prop-
erties of the workflows. This paper mainly handles syntactic issues and aims
at avoiding incorrect syntactic patterns. The main difference compared to our
contributions here is that the authors have a specific interest on data-centric
workflows whereas we look at behavioural and timed features of processes. One
can also take advantage of our Maude encoding and verification framework for
checking other timed properties, such as those presented in [4, 28] (sojourn time,
synchronization time, waiting time).

[17] proposes a general approach for computing the degree of parallelism of
BPMN processes using model checking techniques. To do so, the authors propose
a transformation to process algebra and a low-level model for BPMN processes
based on Labelled Transition Systems. However, the subset of BPMN considered
in [17] makes abstraction of times and durations possibly associated to tasks
and flows. [27] focuses on timed aspects and proposes several algorithms for
directly calculating the degree of parallelism of a BPMN process. In this work,
a duration constraint is associated to each task. They do not consider inclusive
gateways and propose different algorithms for special cases of processes, e.g.,
processes with only one type of gateways or acyclic processes with only parallel
gateways. Our work focuses on BPMN processes with time constraints too, but
we associate durations not only to tasks but also to flows. In addition, we consider
any combination of gateways as well as cyclic processes.

6 Concluding Remarks

BPMN is now widely used by companies for supporting the workflow-based
development of their information and management systems. However, we are
still far from having press-button analysis techniques integrated in the existing
modelling and development BPMN frameworks. This work is a contribution in
that direction, that is, to provide automated techniques for analyzing BPMN
processes. In this paper, we have focused on a subset of BPMN containing the
main behavioural constructs (tasks, sequence flows, gateways) and time aspects

16 Francisco Durán and Gwen Salaün

associated to flows and tasks. We have proposed an encoding of this BPMN
subset into the input language of the rewriting-based system Maude. Maude
was expressive enough for representing unbalanced BPMN processes with mod-
erate effort using a token-based semantics. The whole approach consisting of the
translation to Maude and of the verification of several properties of interest on
concrete BPMN processes is fully automated. In particular, we have showed how
several measures of execution time (minimum, maximum, average) or the degree
of parallelism can be computed with Maude. Several other tools can be used,
such as simulation, reachability analysis, or LTL model checking. Our encoding
and verification approach was validated through experiments we achieved on a
significant number of BPMN processes, showing that these checks are completed
in a reasonable time for real-size examples.

A first perspective of this work is to extend our approach with other BPMN
constructs. We have focused in this paper on the behavioural part of BPMN,
which allows us to formally analyze important properties, and we have discarded
data aspects. Dataless models are over-approximations of the corresponding pro-
cesses. This may generate false negative results, that is, our approach may return
that a process has a deadlock for example whereas it is not the case because the
blocking case actually never occurs. We plan to take data into account and in
particular conditions that may be associated to outgoing flows for split gate-
ways. As far as activities are concerned, we would like to support not only tasks
but also interactions and message sending/reception. This extension would re-
quire to accept the description of distributed systems using BPMN collaboration
diagrams. Finally, we intend to extend our time analysis capabilities by consider-
ing inter-activity and inter-process temporal constraints (e.g., process deadline,
timers, or time conflicts).

References

1. http://maude.lcc.uma.es/MaudeBPMN/.

2. F. Arbab, N. Kokash, and S. Meng. Towards Using Reo for Compliance-Aware
Business Process Modeling. In Proc. of ISoLA’08, volume 17 of Communications
in Computer and Information Science, pages 108–123. Springer, 2008.

3. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and Proof in Mem-
bership Equational Logic. Theoretical Comput. Sci., 236(1):35–132, 2000.

4. R. Bruni, A. Corradini, G. L. Ferrari, T. Flagella, R. Guanciale, and G. Spagnolo.
Applying Process Analysis to the Italian eGovernment Enterprise Architecture. In
Proc. of WS-FM’11, volume 7176 of LNCS, pages 111–127. Springer, 2011.

5. M. I. Capel and L. E. M. Morales. Automating the Transformation from BPMN
Models to CSP+T Specifications. In Proc. of SEW’12, pages 100–109. IEEE Com-
puter Society, 2012.

6. D. R. Christiansen, M. Carbone, and T. T. Hildebrandt. Formal Semantics and
Implementation of BPMN 2.0 Inclusive Gateways. In Proc. of WS-FM’10, volume
6551 of LNCS, pages 146–160. Springer, 2011.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude - A High-Performance Logical Framework, How to Specify,

Verifying Timed BPMN Processes using Maude 17

Program and Verify Systems in Rewriting Logic, volume 4350 of LNCS. Springer,
2007.

8. G. Decker and M. Weske. Interaction-centric Modeling of Process Choreographies.
Information Systems, 36(2):292–312, 2011.

9. R. Dijkman, M. Dumas, and C. Ouyang. Semantics and Analysis of Business
Process Models in BPMN. Inf. Softw. Technol., 50(12):1281–1294, 2008.

10. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker.
In Proc. of WRLA’02, volume 71 of ENTCS, pages 115–142. Elsevier, 2002.

11. N. El-Saber and A. Boronat. BPMN Formalization and Verification using Maude.
In Proc. of BM-FA’14, pages 1–8. ACM, 2014.

12. V. Gruhn and R. Laue. Patterns for Timed Property Specifications. Electr. Notes
Theor. Comput. Sci., 153(2):117–133, 2006.

13. M. Güdemann, P. Poizat, G. Salaün, and L. Ye. VerChor: A Framework for
the Design and Verification of Choreographies. IEEE Trans. Services Comput-
ing, 9(4):647–660, 2016.

14. ISO/IEC. International Standard 19510, Information technology – Business Pro-
cess Model and Notation. 2013.

15. S. Konrad and B. H. C. Cheng. Real-time Specification Patterns. In Proc. of
ICSE’05, pages 372–381. ACM, 2005.

16. A. Martens. Analyzing Web Service Based Business Processes. In Proc. of
FASE’05, pages 19–33, 2005.

17. R. Mateescu, G. Salaün, and L. Ye. Quantifying the Parallelism in BPMN Processes
using Model Checking. In Proc. of CBSE’14, pages 159–168. ACM, 2014.

18. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Comput. Sci., 96(1):73–155, 1992.

19. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational Abstractions. In Proc.
of CADE’03, volume 2741 of LNCS, pages 2–16. Springer, 2003.

20. L. E. M. Morales, M. I. Capel, and M. A. Pérez. Conceptual Framework for Busi-
ness Processes Compositional Verification. Information & Software Technology,
54(2):149–161, 2012.

21. L. E. M. Morales, M. I. C. Tuñón, and M. A. Pérez. A Formalization Proposal
of Timed BPMN for Compositional Verification of Business Processes. In Proc. of
ICEIS’10, volume 73 of Lecture Notes in Business Information Processing, pages
388–403. Springer, 2010.

22. P. C. Ölveczky and J. Meseguer. Semantics and Pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

23. OMG. Business Process Model and Notation (BPMN) – Version 2.0. January
2011.

24. P. Poizat and G. Salaün. Checking the Realizability of BPMN 2.0 Choreographies.
In Proc. of SAC’12, pages 1927–1934. ACM Press, 2012.

25. P. Poizat, G. Salaün, and A. Krishna. Checking Business Process Evolution. In
Proc. of FACS’16, LNCS. Springer, 2016.

26. I. Raedts, M. Petkovic, Y. S. Usenko, J. M. van der Werf, J. F. Groote, and
L. Somers. Transformation of BPMN Models for Behaviour Analysis. In Proc. of
MSVVEIS’07, pages 126–137, 2007.

27. Y. Sun and J. Su. Computing Degree of Parallelism for BPMN Processes. In Proc.
of ICSOC’11, volume 7084 of LNCS, pages 1–15. Springer, 2011.

28. W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen. Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

18 Francisco Durán and Gwen Salaün

29. P. Wong and J. Gibbons. A Process Semantics for BPMN. In Proc. of ICFEM’08,
volume 5256 of LNCS, pages 355–374. Springer, 2008.

30. P. Wong and J. Gibbons. Verifying Business Process Compatibility. In Proc. of
QSIC’08, pages 126–131. IEEE, 2008.

31. P. Y. H. Wong and J. Gibbons. A Relative Timed Semantics for BPMN. Electr.
Notes Theor. Comput. Sci., 229(2):59–75, 2009.

