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Abstract. In this paper, we improve the impossible differential attack
on 20-round LBlock given in the design paper of the LBlock cipher. Using
relations between the round keys we attack on 21-round and 22-round
LBlock with a complexity of 269.5 and 279.28 encryptions respectively. We
use the same 14-round impossible differential characteristic observed by
the designers to attack on 21 rounds and another 14-round impossible
differential characteristic to attack on 22 rounds of LBlock.
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1 Introduction

In recent years, lightweight cryptography has been getting prominent because of
the growing computation research area which uses resource constraint devices
such as RFID tags and sensor nodes. For this reason, many lightweight crypto-
graphic algorithms have been designed such as PRESENT [3], PRINTcipher
[5], and LED [4].

LBlock is a lightweight block cipher introduced at ACNS 2011 [7]. The num-
ber of rounds is 32 and the block and key lengths are 64 and 80 bits respectively.
The designers of the algorithm give a 14-round impossible differential character-
istic and attack on 20-round LBlock. To the best of our knowledge, there is only
one cryptanalytic study on the algorithm [6]. The analysis includes differential
attacks on 12 and 13 rounds and a related key impossible differential attack on
22-round LBlock.

In the impossible differential attack [1], the attacker tries to find a differential
characteristic with a probability of 0 while in the differential cryptanalysis [2] a
differential characteristic with a high probability is used.

In this paper, we improve the impossible differential attack given by the
designers, using relations between rounds keys. We attack on 21-round and 22-
round LBlock in a single key model with a complexity of 269.5 and 279.28 encryp-
tions. In the attack on the 21-round cipher we use only the relations in the first



4 rounds while in the 22-round attack we use all relations between the round
keys.

This paper is organized as follows. Section 2 includes the notation we use, a
short description of LBlock and an overview of the 20-round attack done by the
designers. We explain the impossible differential attack technique in Section 3.
In Section 4, we attack on 21-round LBlock. An attack on 22-round LBlock is
presented in Section 5. Finally, we conclude the paper in Section 6.

2 A Short Description of LBlock

Notation. Throughout this paper the following notations are used.
A : a bit string
A(i) : i-th nibble of A. The right most nibble is A(0).
A(i, j, ..., k) : concatenation of i, j, ... , k-th nibbles of A.
A(i− j) : concatenation of i, (i− 1), ..., j-th nibbles of A where i ≥ j.
A[i] : i-th bit of A. The right most bit of A is A[0].
A[i, j, ..., k] : concatenation of i, j, ..., k-th bits of A.
A[i− j] : concatenation of i, (i− 1), ..., j-th bits of A where i ≥ j.
A <<< i : i-bit cyclic shift of A.
A||B : concatenation of A and B.
Ki : round key used in the i-th round.
Ki : 80-bit value calculated in the key schedule.
Xi : the leftmost 32-bit of the input of i-th round where

X0 is the rightmost 32-bit of the input of the first round.

LBlock. LBlock is a block cipher with 64-bit block and 80-bit key length. It
consists of 32 rounds and one round is shown on the left in Figure 1. In the F
function depicted on the right in Figure 1, firstly round key Ki is exored to the
input of the function. After that, 4-bit S-Boxes and finally the permutation are
applied.
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Fig. 1. i-th round of LBlock

The Encryption Process is as follows.

1. (X1||X0) = P
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2. for i = 1, 2, ..., 32 do the following calculation
Xi+1 = F (Xi,Ki)⊕ (Xi−1 <<< 8)

3. C = (X32||X33)

The Key Schedule Process is as follows.

1. K0 = K
2. K1 = K0[79− 48]
3. for i = 1, 2, ..., 31 do the following calculations

-Ki = Ki−1 <<< 29
-Ki[79− 76] = s9[K

i[79− 76]]
-Ki[75− 72] = s8[K

i[75− 72]]
-Ki[50 − 46] = Ki[50 − 46] ⊕ [i]2 where [i]2 is the binary representation of
the round index
-Ki+1 = Ki[79− 48]

The S-boxes used in the encryption process and key schedule are given in
Appendix B. For a complete description of the algorithm one can refer to [7].

Previous Work. In the design paper of LBlock, the designers attack on 20-round
LBlock using the 14-round impossible differential characteristic (00000000, 00 ∗
00000)

149 (0 ∗ 000000, 00000000). They add 2 rounds at the top and 4 rounds
at the bottom of the characteristic and assume that the round keys guessed in
their attack are independent. This assumption doesn’t change the correctness of
the result but affects the complexity of the attack. The number of guessed key
bits is 68 and there is a 36-bit sieving. They use 263 chosen plaintexts and the
complexity of the attack is 272.7 encryptions. Using the relations between the
round keys we improve the attack on 21 and 22 rounds.

3 The Impossible Differential Attack Technique

In this method, first an impossible differential characteristic is found. After find-
ing a characteristic, several rounds are added at the top and at the bottom of
the characteristic. Let E1, E0, and E2 denote the encryption part which has the
impossible differential characteristic, the added part before, and the added part
after the characteristic respectively and the cipher E = E2◦E1◦E0. Also, let the
impossible differential be ∆α 9 ∆β. The attack can be done in two ways. The
first way is fallows. One plaintext pair P, P ′ is taken and guessing the keys in E0

and E2 the input and output differences of E1 is calculated. In the case the input
and output differences is the impossible differential characteristic, the guessed
key is removed from the candidate key space. These steps are repeated using
different plaintext pairs P, P ′ until a unique key is remained in the candidate
key space. The complexity of the attack can be reduced if there is independence
between guessed keys in E0 and E2 with the help of tables. One plaintext pair
P, P ′ is taken and the keys which lead to the difference ∆α at the end of E0 are
stored in a table whose name is A guessing the key bits used in E0. Similarly,
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the keys which lead to the difference ∆β at the top of E2 are stored in another
table whose name is B guessing the key bits used in E2 and partially decrypt-
ing corresponding ciphertexts. Then, the keys in A × B are removed from the
candidate key space.

The complexity of the attack can be calculated as follows. Let k and l denote
the bit lengths guessed for E0 and E2 respectively and we have n-bit elimination
in total. The number of pairs m required to eliminate all wrong candidates can
be calculated as

(1− 2−n)m × 2k+l ≤ 1⇒ m ≥ (k + l)× ln 2× 2n.

The time complexity of the attack will be max(2k ×m, 2l ×m).

4 An Attack on 21-Round LBlock

In this attack we use the impossible differential characteristic given by the de-
signers of the algorithm. This characteristic is (00000000, 00 ∗ 00000) 149 (0 ∗
000000, 00000000) which means that if there is a difference only in the 5-th nib-
ble it is not possible having a difference only in the 14-th nibble after 14 rounds.
We add 4 rounds at the top and 3 rounds at the bottom of this characteristic.
Let 21-round LBlock starts with the 1-st round and ends with the 21-th round
of LBlock. Attack on this 21-round LBlock can be executed using Algorithm 1.

Note that, in Algorithm 1 in Step 2, 3, 4, and 5 instead of guessing round
keys we guess the bits of K0 to use the relations between the round keys (see
Table 1).

Table 1. Guessed master key bits in Step 2, 3, 4, and 5 in Algorithm 1

Step the bits of K0 which affect the round keys # of guessed bits
2 K0[79− 72, 51− 48] 12-bit
3 K0[63− 56, 34− 31, 26− 23] 16-bit
4 K0[79− 78, 55− 52, 22− 19, 1− 0] 10-bit
5 K0[67− 61, 46− 43, 21− 18] 9-bit

In the attack, using 250 chosen plaintext pairs we try to find 75 bits guessed
and there exists 44-bit sieving. For a random key the probability of being re-
mained in the candidate key set using only one P, P ′ pair is (1 − 2−44). This
probability will be (1− 2−44)2

50 ≈ 2−92 when 250 plaintext pairs are used which
have the difference (∗ ∗ 00000∗, ∗0 ∗ 0 ∗ 0 ∗ ∗) in the plaintexts and the difference
(000 ∗ 0 ∗ ∗0, 00 ∗ 0000∗) in the ciphertexts. We guess 75 bits in the attack so
2−92 × 275 = 2−17 keys will remain in the candidate key set that means we can
find the correct key with a high probability.

To have 250 plaintext-ciphertext pairs which have the differences in the in-
put and output we need 250 × 244 = 294 pairs having the input difference
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Algorithm 1 Attack on 21-Round LBlock.
1: for all 250 plaintext pairs which have the difference ∆(X1, X0) = (∗ ∗ 00000∗, ∗0 ∗

0∗0∗∗) in the plaintexts and the difference ∆(X22, X21) = (000∗0∗∗0, 00∗0000∗)
in the ciphertexts for the reduced 21-round cipher do

2: for all K1(7, 6, 0), if ∆(X2, X1) = (0000 ∗ 0 ∗ 0, ∗ ∗ 00000∗) then do
3: for all K1(3, 2) and K2(3, 1), if ∆(X3, X2) = (00000 ∗ 00, 0000 ∗ 0 ∗ 0) then

do
4: for all K1(1), K2(0) and K3(2), if ∆(X4, X3) = (00 ∗ 00000, 00000 ∗ 00)

then do
5: for all K1(4), K2(6), K3(7) and K4(5), if ∆(X5, X4) = (00000000, 00 ∗

00000) then do
6: Insert the guessed key into the table A.
7: end for
8: end for
9: end for
10: end for
11: for all K21(5, 0), if ∆(X21, X20) = (00 ∗ 0000∗, ∗0000000) then do
12: for all K21(3) and K20(7), if ∆(X20, X19) = (∗0000000, 0 ∗ 000000) then do
13: for all K21(2), K20(1) and K19(6), if ∆(X19, X18) = (0∗000000, 00000000)

then do
14: Insert the guessed key into the table B.
15: end for
16: end for
17: end for
18: Remove the keys in the A×B from the candidate key set.
19: end for

(∗ ∗ 00000∗, ∗0 ∗ 0 ∗ 0 ∗ ∗). Using 232 pairs having the same structure we can
have 232 × 231 = 263 pairs. So we need to use 294/263 = 231 structures. Thus
231 × 232 = 263 plaintexts are required to apply the attack in Algorithm 1.

The time complexity of the attack can be calculated as follows. In Step 2
in the algorithm, we make 251 × 212 = 263 partial encryptions using 251 data
and guessing 12-bit key values. In Step 3, the number of operations is 263 ×
2−12 × 216 = 267 partial encryptions because of the sieving in Step 2 and 16-bit
key guessing in Step 3. In Step 4, the number of partial encryptions is 267 ×
2−8 × 210 = 269 due to the 8-bit sieving and 10-bit key guessing. In Step 5, we
perform 269 × 2−4 × 29 × 7 = 274 × 7 s-box operations. The dominant number
of operations is in Step 5. As a result, the complexity will be 274×7

21×8 ≈ 269.5

21-round encryptions.

5 An Attack on 22-Round LBlock

In this attack, we use the impossible differential characteristic (00000000, 000 ∗
0000)

149 (000000∗0, 00000000). We add 4 rounds at the top and 4 rounds at the
bottom of this characteristic. In this section, we use the relations between all
round keys guessed in the attack. Also, we recover K19 instead of the master key
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K = K0. It is trivial to recover the master key using K19. Algorithm 2 describes
the attack on 22-round LBlock. In the attack, we recover 76 bits of K19 and
there is 56-bit sieving.

Algorithm 2 Attack on 22-Round LBlock.
1: for all 257 plaintext pairs which have the difference ∆(X1, X0) = (000∗0∗∗0, 0∗0∗

0∗∗∗) in the plaintexts and the difference ∆(X23, X22) = (00∗∗∗0∗∗, 0000∗∗∗0)
in the ciphertexts do

2: Run Algorithm 3.
3: Run Algorithm 4.
4: Remove the K19[79 − 39, 37 − 10, 6 − 0]’s which lead to the round keys returned

by Algorithm 3 and 4 from the candidate keys. Table 4 in Appendix A depicts
the bits of K19 which determine the round keys.

5: end for

The complexity of Algorithm 3 can be calculated as follows. In Step 2, we
guess 4 bits and perform two s-box operations for one pair in each guess and
on the average one guess passes the condition. Thus we perform 2 × 24 s-box
operations in Step 2. Similarly the total number of operations in Step 2-15 will
be 2×(24+24+24+24+28+28+212+212+216+220+220+221+225+226) ≈ 227.65

s-box look-up’s which is approximately equivalent to 220.19 22-round LBlock
encryptions. Note that the number of guessed key bits in Step 13 and 15 is 1
because of the relations between the round keys (see Table 2).

Table 2. The number of bits of K0 guessed in Step 2-15 in Algorithm 3

Step round keys the bits of K0 # of bits Step round keys the bits of K0 # of bits
2 K1(4) K0[67− 64] 4 3 K1(2) K0[59− 56] 4
4 K1(1) K0[55− 52] 4 5 K1(5) K0[71− 68] 4
6 K2(4) K0[38− 35] 4 7 K1(0) K0[51− 48] 4
8 K2(2) K0[30− 27] 4 9 K1(7) K0[79− 76] 4
10 K2(5) K0[42− 39] 4 11 K3(4) K0[9− 6] 4
12 K1(6) K0[75− 72] 4 13 K2(7) K0[50− 47] 1
14 K3(5) K0[13− 10] 4 15 K4(4) K0[60− 57] 1

The complexity of Algorithm 4 is approximately equivalent to 219.59 22-round
encryptions (see Table 3 for the relations between round keys guessed in Algo-
rithm 4). Thus the complexity of Algorithm 2 is 257 × (220.19 + 219.59) ≈ 277.92

encryptions. When we use 257 different pairs the number of 76-bit keys in the
candidate space will be (1−2−56)2

57 ×276 ≈ 274,56 because of the 56-bit sieving.
Thus the total complexity to recover 80-bit K19 is 277.92 + 274.56+4 ≈ 279.28

encryptions.
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Algorithm 3 Finding the keys which lead to the difference ∆α.
1: A plaintext pair which has the difference ∆(X1, X0) = (000 ∗ 0 ∗ ∗0, 0 ∗ 0 ∗ 0 ∗ ∗∗)

is given.
2: for all K1(4), if ∆S4[X1(4)⊕K1(4)] = ∆X0(4) then do
3: for all K1(2), if ∆S2[X1(2)⊕K1(2)] = ∆X0(1) then do
4: for all K1(1), if ∆S1[X1(1)⊕K1(1)] = ∆X0(6) then do
5: for all K1(5) calculate X2(4) and do
6: for all K2(4), if ∆S4[X2(4)⊕K2(4)] = ∆X1(4) then do
7: for all K1(0) calculate X2(2) and do
8: for all K2(2), if ∆S2[X2(2)⊕K2(2)] = ∆X1(1) then do
9: for all K1(7) calculate X2(5) and do
10: for all K2(5) calculate X3(4) and do
11: for all K3(4), if ∆S4[X3(4)⊕K3(4)] = ∆X2(4) then do
12: for all K1(6) calculate X2(7) and do
13: for all K2(7) calculate X3(5) and do
14: for all K3(5) calculate X4(4) and do
15: for all K4(4) check if ∆S4[X4(4)⊕K4(4)] = ∆X3(4) then do
16: Store the round keys in Table A.
17: end for
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for
30: end for
31: Return Table A.

To have 257 pairs having the input difference (000∗0∗∗0, 0∗0∗0∗∗∗) and the
output difference (00∗∗∗0∗∗, 0000∗∗∗0) 257×232 = 289 pairs having the input
difference (000∗0∗∗0, 0∗0∗0∗∗∗) are required. Using 232 pairs having the same
structure we can have 232 × 231 = 263 pairs. Thus 289/263 = 226 structures are
needed. As a result, 226 × 232 = 258 plaintexts are required to apply the attack.

6 Conclusion

In this work, we have improved the attack done by the designers and attacked on
21-round and 22-round LBLock having a complexity of 269.5 and 279.28 respec-
tively. In the designer’s attack, it is assumed that all round keys are independent.
In the proposed 21-round attack we use the relation between the rounds keys in
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Algorithm 4 Finding the keys which lead to the difference ∆β.
1: A ciphertext pair which has the difference ∆(X23, X22) = (00∗∗∗0∗∗, 0000∗∗∗0)

is given.
2: for all K22(3), if ∆S3[X22(3)⊕K22(3)] = ∆X23(1) then do
3: for all K22(2), if ∆S2[X22(2)⊕K22(2)] = ∆X23(2) then do
4: for all K22(1), if ∆S1[X22(1)⊕K22(1)] = ∆X23(0) then do
5: for all K22(7) calculate X21(3) and do
6: for all K21(3), if ∆S3[X21(3)⊕K21(3)] = ∆X22(1) then do
7: for all K22(5) calculate X21(2) and do
8: for all K21(2), if ∆S2[X21(2)⊕K21(2)] = ∆X22(3) then do
9: for all K22(0) calculate X21(0) and do
10: for all K21(0) calculate X20(0) and do
11: for all K20(0), if ∆S0[X20(0)⊕K20(0)] = ∆X21(2) then do
12: for all K22(6) calculate X21(5) and do
13: for all K21(5) calculate X20(2) and do
14: for all K20(2) calculate X19(1) do
15: for all K19(1), if ∆S1[X19(1)⊕K19(1)] = ∆X20(0) then do
16: Store the round keys in Table B.
17: end for
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for
30: end for
31: Return Table B.

the first 4 rounds. Also, we use all of the relations between the round keys in
the first 4 rounds and the last 4 rounds to attack on 22 round-LBlock.
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A The Bits of K19 which Determines the Round Keys
Guessed in Algorithm 3 and 4

Table 4. The bits of K19 which determines the round keys guessed in Algorithm 3
and 4

Round keys The bits of K19 Round keys The bits of K19

K1(7) [71-68,66-63,61] K19(1) [4-1]
K1(6) [67-61,59-56,54] K20(2) [59-56]
K1(5) [64-54,52-50] K20(0) [51-48]
K1(4) [60-54,52-50] K21(5) [42-39]
K1(2) [53-46] K21(3) [34-31]
K1(1) [49-41,39] K21(2) [30-27]
K1(0) [45-39,37-34,32] K21(0) [22-19]
K2(7) [42-39,37-34,32] K22(7) [21-18]
K2(5) [35-25,23-21] K22(6) [17-14]
K2(4) [31-25,23-21] K22(5) [13-10]
K2(2) [24-17] K22(3) [5-2]
K3(5) [79-76,74-72,6-0] K22(2) [79,78,1,0]
K3(4) [79-76,74-72,2-0] K22(1) [77-74]
K4(4) [53-46] K22(0) [73-70]

B The S-Boxes Used in LBlock

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
s0[x] 14 9 15 0 13 4 10 11 1 2 8 3 7 6 12 5
s1[x] 4 11 14 9 15 13 0 10 7 12 5 6 2 8 1 3
s2[x] 1 14 7 12 15 13 0 6 11 5 9 3 2 4 8 10
s3[x] 7 6 8 11 0 15 3 14 9 10 12 13 5 2 4 1
s4[x] 14 5 15 0 7 2 12 13 1 8 4 9 11 10 6 3
s5[x] 2 13 11 12 15 14 0 9 7 10 6 3 1 8 4 5
s6[x] 11 9 4 14 0 15 10 13 6 12 5 7 3 8 1 2
s7[x] 13 10 15 0 14 4 9 11 2 1 8 3 7 5 12 6
s8[x] 8 7 14 5 15 13 0 6 11 12 9 10 2 4 1 3
s9[x] 11 5 15 0 7 2 9 13 4 8 1 12 14 10 3 6
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