
HAL Id: hal-01534300
https://inria.hal.science/hal-01534300

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Recent Developments in Low-Level Software Security
Pieter Agten, Nick Nikiforakis, Raoul Strackx, Willem De Groef, Frank

Piessens

To cite this version:
Pieter Agten, Nick Nikiforakis, Raoul Strackx, Willem De Groef, Frank Piessens. Recent Developments
in Low-Level Software Security. 6th International Workshop on Information Security Theory and
Practice (WISTP), Jun 2012, Egham, United Kingdom. pp.1-16, �10.1007/978-3-642-30955-7_1�.
�hal-01534300�

https://inria.hal.science/hal-01534300
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Recent Developments in Low-Level Software
Security

Pieter Agten, Nick Nikiforakis, Raoul Strackx, Willem De Groef, and Frank
Piessens

IBBT-Distrinet, Katholieke Universiteit Leuven, Belgium,
firstname.lastname@cs.kuleuven.be

Abstract. An important objective for low-level software security research
is to develop techniques that make it harder to launch attacks that ex-
ploit implementation details of the system under attack. Baltopoulos and
Gordon have summarized this as the principle of source-based reasoning for
security: security properties of a software system should follow from re-
view of the source code and its source-level semantics, and should not
depend on details of the compiler or execution platform.
Whether the principle holds – or to what degree – for a particular system
depends on the attacker model. If an attacker can only provide input to the
program under attack, then the principle holds for any safe programming
language. However, for more powerful attackers that can load new native
machine code into the system, the principle of source-based reasoning
typically breaks down completely.
In this paper we discuss state-of-the-art approaches for securing code
written in C-like languages for both attacker models discussed above,
and we highlight some very recent developments in low-level software
security that hold the promise to restore source-based reasoning even
against attackers that can provide arbitrary machine code to be run in the
same process as the program under attack.

Keywords: software security, C language, full abstraction

1 Introduction

Programming languages are supposed to provide developers with a high-level
abstraction of the platform on which programs will eventually be executed.
The programmer should be able to reason about his code at source-code level,
and let the compiler and run-time system worry about the low-level execution
platform details.

Unfortunately, programming languages fail to do this from the point of view
of security. Attacks against software systems often depend in an essential way
on details of the platform on which the software is executed, and one can for
instance not understand the security consequences of a bug in the program
without understanding many details of the execution platform.



This is obviously the case for attacks that exploit memory errors in programs
written in unsafe languages such as C and C++. Understanding low-level at-
tacks such as stack smashing attacks, direct code injection attacks, jump-to-libc
attacks or return-oriented programming requires one to understand many de-
tails of the compiler, operating system or processor architecture [14].

But it is also true for attacks against any software system – including software
written in safe languages – where the attacker can interact with the program at
the machine code level. For instance a malicious natively implemented function
called from a Java program can attack the Java program in very powerful ways
and such attacks wil again depend essentially on many details of the execution
platform. In a similar way, a natively implemented browser extension can attack
any web page visited, or a malicious kernel module can install a root kit.

An important objective for low-level software security research is to correct
this situation, and restore what Baltopoulos and Gordon have called the principle
of source-based reasoning for security [5]. It should be sound to reason about
security properties of a software system on the level of source code. In this
paper we discuss state-of-the-art approaches for both attacker models discussed
above, and we highlight some very recent developments in low-level software
security that hold the promise to restore source-based reasoning even against
attackers that can inject arbitrary machine code.

The remainder of this paper is structured as follows. First, we illustrate low-
level software attacks in both attacker models in Section 2. Next, we briefly dis-
cuss the state-of-the-art in securing C programs in the first attacker model where
attackers can only provide input to the program. This is a well-understood prob-
lem with many mature solutions, and we provide an overview in Section 3. In
Section 4, we turn to the more challenging attacker model, and we discuss
two recent lines of research that make important steps forward against such
attackers.

2 An illustration of low-level attacks

We distinguish two different but related attacker models. In the first model, that
we call the interactive attacker model, an attacker can interact with the program
under attack by providing input and reading output. An interactive attacker
can for instance try to exploit a buffer overflow vulnerability if the program
was written in an unsafe language, or could try to do SQL injection, or exploit a
logic flaw against a program written in a safe language. The interactive attacker
model is a reasonable model for the case where an attacker is trying to subvert
a network service running on a hardened and well-protected server machine.

In the second model – the in-process attacker model – an attacker can load
arbitrary machine code in the process executing the program under attack. This
attacker can for instance scan memory for secrets, and overwrite control-flow
data, or non-control data of the program under attack, even when the program
was written in a safe language. The in-process attacker model is a reasonable
model for the case where applications can be extended at run-time with (binary)



plugins, or for the case where an application is built from components coming
from different stakeholders.

An interactive attacker against a program written in an unsafe language can
escalate to an in-process attacker by doing a code-injection attack as we will
discuss below.

2.1 The interactive attacker model

In this attacker model, the principle of source-based reasoning fails for unsafe
languages such as C or C++. This is well-known and many papers give ex-
amples; we refer the reader to Erlingsson et al. [14] for an overview. Here is
one simple example of a program in C for which the principle of source-based
reasoning fails.

Example 1. In the presence of memory errors such as buffer overflows, an inter-
active attacker can modify variables in ways that can not be explained by the
source code semantics, but that can only be explained by looking at details of
the compiler and execution platform.

Consider the example vulnerable function do maintenance of Code List-
ing 1. The purpose of the do maintenance function is to read the username
and password of the current user and if these credentials are valid then per-
form privileged operations. Source level reasoning can lead a programmer to
believe that privileged operations can only be executed after a succesful call to
valid credentials.

However, the program has a buffer overflow vulnerability: the programmer
has incorrectly used the size of the password buffer for reading in the user-
name, thus allowing the attacker to overflow four characters past the username
buffer. The source code semantics (in this case the C standard) says that further
behaviour of the program is then undefined.

However, by relying on details of the compiler and execution platform, an
attacker can perform a useful attack. Compilers will typically allocate the local
variables of a function one after the other on the stack, and hence by overflowing
the username, the attacker can modify the authenticated variable. Since any
non-zero value for this variable will be interpreted as true, this will give the
attacker access to the authenticated part of the program without the need of a
valid username and password combination.

It is often the case that memory errors in a C program can allow an inter-
active attack to escalate to an in-process attack. The attacker achieves this by
performing a so-called code injection attack.

Example 2. Code Listing 2 is vulnerable to a traditional code injection attack.
The purpose of the program is to read a string from the user, perform a trans-
formation on that string and then save it along with the original string, in an
object-oriented programming style. Since there could be many transformations,
the transformation function is called through a function pointer which is set



Code Listing 1 Code snippet vulnerable to a non-control data attack

int do_maintenance () {
int authenticated = 0;
char username[24];
char password[28];

fgets(username, sizeof(password), stdin);
fgets(password, sizeof(password), stdin);

if (valid_credentials(username,password) == 1)
authenticated = 1;

if (authenticated){
//Do privileged operations

}

}

by the programmer before the copying of the string. The code that reads the
string from the execution environment is vulnerable to a buffer overflow since
it doesn’t perform any checks whether the src buffer is large enough to hold
the contents of the command line argument. If the attacker provides a string
that is longer than 128 bytes, the string will spill out to the dst buffer. If the
provided string is longer than 256 bytes then the string will also overwrite the
function pointer that is called in the next line. The attacker can simply enter his
shellcode in the src buffer and overwrite the function pointer with the address
of the buffer. Thus the program, instead of calling capitalize, will jump to the
attacker-provided shellcode.

Again, the source code semantics would say that further execution of the
program after overflowing of the buffer is undefined. But relying on many de-
tails of the compiler and execution platform (including the layout of variables in
memory, and the fact that the program executes on a Von Neumann architecture
where code and data are in the same memory) the attacker can actually have
some of the data that he inputs to the program be interpreted as code. In other
words, the interactive attack escalates to an in-process attack.

2.2 The in-process attacker model

In this model, an attacker is given the ability to load and execute code in the
same process as the program under attack. For instance, when a user installs a
plug-in for an extensible program, the plug-in will traditionally run in the same
process. Also, as discussed earlier, an interactive attacker can inject code in a
process running a vulnerable C program.

Against an in-process attacker, the principle of source-based reasoning fails
completely. Consider for instance a browser that can be extended with new



Code Listing 2 Code snippet vulnerable to a heap-based buffer overflow

struct data_node {
char src[128];
char dst[128];
int (*transform_func)(char *, char*);

};

int main (int argc, char *argv[]) {
struct data_node *n;
int i;
n = malloc(sizeof(struct data_node));
n->transform_func = capitalize;

for(i=0; argv[1][i] != ’\0’; i++)
n->src[i] = argv[1][i];

(*n->transform_func)(n->src, n->dst);

}

features and functionality by loading native plug-ins. If the browser stores
secret information such as cryptographic keys or passwords in memory, then a
malicious plug-in can find and read all these secrets by scanning memory, even
in the case where the browser stored these secrets in variables or fields that –
according to the source code semantics – should be private.

Whereas the problem of restoring source-based reasoning for the interactive
attacker is well understood, the same problem for the in-process attacker is
much more challenging. Making source-based reasoning sound in the presence
of in-process attacks is very much an open problem. Recent advancements
however, allow a system to maintain certain security guarantees even when an
attacker can execute arbitrary code. These advancements will be explored in
Section 4, and may open up the possibility to restore the principle of source-
based reasoning even against in-process attackers.

3 Countermeasures against the interactive attacker

Low-level software vulnerabilities in the interactive attacker model are essen-
tially bugs in the program that allow an attacker to drive the program into a
state where – according to the source programming language semantics – fur-
ther behaviour of the program is undefined. In practice, this means that further
behaviour depends on compiler, runtime system or operating system details,
exactly the kind of thing that the principle of source-based reasoning argues
against.

For the interactive attacker model, this is a well-understood and widely
studied problem. Broadly speaking there are two types of solutions.



3.1 Safe languages

From a programming language point of view, defenses against the interactive
attacker are well understood. A programming language is safe if – informally
speaking – it is completely defined by its programmer’s manual [23]. This is
of course just another way of phrasing the principle of source-based reasoning.
Technically, safety is achieved by ruling out dangerous language features, and
through a combination of compile-time and run-time checks. The objective is
that any bug that could lead to implementation-dependent behaviour (such as
accessing an array out of bounds, or dereferencing a dangling pointer) is either
impossible to write in the language (e.g. dangling pointers do not exist in a
language with automatic garbage collection), will be detected at compile time
(e.g. casting an integer to a reference will be prohibited by the type checker), or
will lead to well-defined error behaviour at run-time (e.g. throwing an exception
on accessing an array out of bounds).

Many modern languages are safe, or at least provide very restricted access
to unsafe features. Examples include Java, C#, Haskell, Scala and so forth. There
is also a significant body of research on designing languages that are safe, but
try to stay very close to C, so-called safe dialects of C [17, 22].

Despite this important progress in language design, most software engineers
do not expect the C language to disappear any time soon, and hence the proposal
of new languages is only a partial solution.

3.2 More defensive execution of unsafe languages

A wide variety of techniques has been developed to execute unsafe languages
more defensively [14,34,35]. Roughly speaking, these techniques can be grouped
into two categories.

Additional run-time checks: the idea here is to detect source-level undefined
behaviour by means of run-time checks and to terminate the program. Proposed
techniques range from simple heuristics, such as canaries to fairly complete
bounds-checking.

The concept of canaries as a means of protection was first used by Stack-
Guard [12]. StackGuard added a new random value on the stack between the re-
turn address and stored stacked pointer which the function checked before using
the stored return address. If the canary was modified, that was a sign of a buffer
overflow and thus the program was terminated before the possibly-modified
return address was used. ProPolice [15] later re-implemented StackGuard and
added a series of new features that increased the overall security of the stack,
e.g. re-organizing the local variables and placing character buffers right next
to the canary. ProPolice-like countermeasures are widely used in modern op-
erating systems. Variations of the canary-principle have also been proposed to
protect a program’s heap [24, 37] and individual program variables [31].



In bounds-checking, countermeasures attempt to give to the C and C++ pro-
gramming language what they, by design, lack: memory safety. These counter-
measures insert additional bounds-checks before critical operations. Depending
on the frequency and types of checks, these checked programs can be signifi-
cantly slower than their unchecked versions. Even though the latest proposed
bounds checkers [3,36] are many times faster than their older versions [18], they
still impose a non-negligible performance overhead on running systems.

Finally, also techniques based on memory protection, such as setting data
memory to be non-executable can be seen as additional run-time checks to
terminate a program that has run into source-level undefined behaviour. Many
modern operating systems will make for instance the stack and/or heap non-
executable.

Randomizing or obfuscating execution platform details: The most popular
instantiation of this principle is Address Space Layout Randomization (ASLR)
which is currently implemented in all modern operating systems [7]. When a
process is fully protected with ASLR, its stack, heap and libraries are always
loaded in different memory offsets. The rationale is that even if an attacker can
trigger a memory error, and hence has the power to overwrite program variables
or hijack the control flow, he will not know where these variables are located or
where he should make the CPU jump to.

Instruction Set Randomization (ISR) is also popular within this domain [6,
19]. In ISR, each system or process has its own set of instructions so that attacker-
injected code will not be meaningful for the CPU of the attacked process. Point-
Guard [11] uses a similar principle to encrypt and decrypt all pointers within
a program. If an attacker overwrites a critical pointer with his own data, the
pointer, upon decryption, will be mangled, thus crashing the process instead of
running the attacker’s code.

Other instantiations of the randomization principle include the randomiza-
tion of all data in a program’s address space [8] and the randomization of the
operating system’s interface [10].

3.3 Conclusion

Hardening unsafe languages against the interactive attacker is a mature re-
search area, but it is still active. The fact that the security community came
up with ways to protect against the interactive attacker, fueled the evolution
of attacking techniques which circumvented the proposed countermeasures.
Several attacks were devised which circumvent ASLR [25, 27, 30]; return-to-
libc [33] and return-oriented programming [26] defeat the non-executable stack
or heap and indirect pointer overwrites can in some cases void the protection
of canary-based systems [9]. Thus today, even though many of the originally-
used attacking techniques no longer work, there are still scenarios which allow
an interactive attacker to bypass modern countermeasures and compromise a
vulnerable program.



4 Countermeasures against the in-process attacker

An attacker that can load and execute arbitrary machine code is very powerful,
which makes protecting against this kind of attacker very challenging. Unfor-
tunately, in-process attacks are also realistic, and so an important direction for
low-level software security research is to protect against such attacks.

A first important class of approaches for defending against in-process attacks
provides support for a trusted program to load untrusted machine code modules
in its address space. A critical assumption for these approaches is that the trusted
program can inspect or even modify the module before it enters the process. By
combinations of code analysis and code rewriting, the newly loaded module
can be sandboxed using techniques such as Software Fault Isolation [32]. These
approaches are fundamentally asymmetric: they protect a trusted host program
from untrusted modules, but modules are not protected in any way against
the host. While such sandboxing is an effective technique to protect against
dynamically loaded code that is potentially malicious, it can not guarantee for
instance the secrecy of sensitive information in a module. Cryptographic keys
used by a plug-in, for example, can still be accessed by the main application.

In order to restore the principle of source-based reasoning for both the host
program as well as the module, more symmetric solutions are needed. In the last
few years, two interesting lines of research results indicate potential directions.
In the systems security research community, new security architectures have
been developed that support the isolated execution of modules, protecting the
module against its host. Research on security foundations on the other hand has
shown how some of the existing low-level software security countermeasures
can provide sufficiently strong protection to restore the principle of source-
based reasoning, at least for simple source programming languages. We briefly
discuss both research tracks.

4.1 Isolated execution of security-critical modules

Various security architectures have been developed the past few years that
provide a more fine-grained protection than at the process level. The general
idea is that security sensitive code and data from applications are identified and
placed into different modules1. Each module has total control over the sensitive
information it protects and specifies when and how information leaves the
module. A cryptographic module for instance can prevent a private key from
ever leaving the module unencrypted. Moreover, these architectures achieve
this isolation with a very small trusted computing base (TCB). In particular, the
TCB does not include the operating system.

We discuss three influential examples.

1 The literature does not use a consistent name for this isolated code and data. De-
pending on the proposed security architecture, they are called AppCores [28], Piece of
Application Logic (PALs) [20,21], workloads [4], Self-Protecting Modules (SPMs) [29]
etc. We will use the name module to refer to the general concept.



Flicker McCune et.al. [21] proposed a security architecture based on the late
launch and TPM functionality present on modern computer platforms. Using
a late launch sequence, the CPU can be set in a known safe state, excluding
the BIOS and operating system from the TCB. After a late launch, Flicker will
initialize the system and execute the module. After termination of the module,
the memory allocated for the module is cleared (with the exception of the return
value) and the execution of the application is resumed.

The TPM chip is used to save sensitive information between the invocation of
two (possibly different) modules. The TPM chip provides secure storage based
on PCR registers. These registers contain a measurement of software that was
loaded. Whenever software is loaded on the system, its cryptographic hash is
calculated, appended with the contents of the PCR register and the register is
overwritten. The contents of these registers can never be set to a specific value.
However, they can be reset either through a reboot of the entire system or a late
launch sequence, depending on the type of the PCR register. When sensitive
data is stored on the TPM chip, the required content of the PCR registers on
retrieval of the data can be specified. This allows modules to store sensitive data
for themselves or for other modules of which the measurement is known.

Flicker relies on a TCB of only 250 lines of code. Relying heavily on the slow
TPM chip unfortunately also results in a significant performance overhead.

TrustVisor In subsequent work, McCune et.al. [20] reduced this overhead by
several orders of magnitude. Using virtual machine extensions of recent pro-
cessors, a small hypervisor guarantees the total isolated execution of modules.
When a module is started, Flicker’s late launch sequence is replaced with a
hypervisor call ensuring that only the module is executed and cannot be inter-
rupted. The hypervisor offers a software-based TPM implementation. It stores
and retrieves a single cryptographic key from the TPM chip when the security
architecture is loaded. This key can be used to store sensitive data on behalf
of modules encrypted and signed on disk. As the hypervisor remains loaded
in memory and is isolated from the rest of the system, the TPM chip has to be
accessed only when the security architecture is loaded, resulting in a significant
performance improvement over Flicker.

SICE Azab et.al. proposed [4] yet another technique to provide complete isola-
tion of modules (called workloads) based on system management mode (SMM).
SMM typically is used for system management such as power management,
system hardware control or proprietary OEM-designed code. Although it is
not intended to be used for general-purpose system software, its easily isolated
processor environment makes it an interesting choice for a security architecture.

When the execution of a workload is requested, a system management in-
terrupt (SMI) is issued. This causes the processor to enter a known safe state
and SICE is executed. Then an isolated execution environment is prepared and
the workload is executed. The authors showed that SICE has a TCB of similar
size as Flicker but without the significant overhead incurred by a late launch.



Conclusions These security architectures show that it is feasible to build appli-
cations from components (modules) that live (at least conceptually) in the same
process but are isolated at the machine code level, and this without relying on
a trusted hosting application or operating system. The TCB is reduced to some-
thing between a few hundreds to a few thousands lines of code. Such low-level
isolation mechanisms are an essential ingredient to provide strong protection
against the in-process attacker, and hence are an important enabler for restoring
the principle of source-based reasoning.

4.2 Fully abstract compilation

Low-level isolation mechanisms, such as Flicker, TrustVisor or SICE, are by
themselves insufficient for making source-based reasoning sound. What is
needed is a correct mapping of source-level protection mechanisms to low-level
protection mechanisms.

Modern high-level programming languages such as Java, C#, ML or Haskell
offer protection facilities such as abstract data types, the private field modifier,
or module systems. These programming language concepts were designed to
enforce software engineering principles such as information hiding and en-
capsulation. But these can also be used as building blocks to ensure security
properties of programs. For instance, declaring a class instance variable private
in Java protects the integrity and confidentiality of that field towards instances
of other classes.

Unfortunately, these protection features are typically lost when the program
is compiled. Suppose for instance that we compile a Java program to native
machine code, then an in-process attacker can read or write any private variable,
thus violating that variable’s confidentiality and integrity. In other words, the
principle of source-based reasoning fails.

However, recent research has shown that it is possible to maintain the secu-
rity properties of a high-level program even after it is compiled into a lower-level
language (such as native code). The way to formalize this notion of security is
through full abstraction. Roughly speaking, compilation from a source language
to a target language is fully abstract if the equivalence of source programs
implies the equivalence of target programs and vice versa. That is, for full ab-
straction to hold, two source-level programs must be contextually equivalent if
and only if their corresponding low-level translations are contextually equiv-
alent as well. Two programs P1 and P2 are contextually equivalent if no third
program PT interacting with them can distinguish P1 from P2. At the high level,
two programs can typically only interact through method calls and returns,
while at the low level two programs can interact in less controlled ways, such
as directly reading from or writing to each others memory locations.

The contextual equivalence of two programs can express important security
properties. For instance, saying that the two classes shown in Fig.1 are con-
textually equivalent, is the same as saying that the value of a private instance
variable in a Java class is confidential. This is obvious at the source-code level,
but if we were to compile these two classes into native code using a standard



public class C {

private int f = 0;

public C() {

[...]

}

}

public class C {

private int f = 1;

public C() {

[...]

}

}

Fig. 1: Example of two contextually equivalent Java classes

compiler, their contextual equivalence would be lost. That is, the two resulting
native code modules could be differentiated by a low-level test module MT that
runs in the same address space: MT could simply inspect the memory location
storing the value of f. The essence of a fully abstract compiler is that contextual
equivalence is preserved at the low level. A fully abstract compilation scheme
effectively reduces the power of an in-process attacker to that of a source code-
level attacker. That is, any attack at the low level is also possible at the source
code level. One can think of full abstraction as the formal equivalent in this
setting to the principle of source-based reasoning.

Currently no production-class compiler for any programming language to
machine code on any platform is even close to be fully abstract. However,
recently two promising approaches have been proposed towards achieving full
abstraction.

Techniques based on randomization Abadi and Plotkin have shown full ab-
straction results for ASLR [1]. At the high level they consider a simple lambda-
calculus language that uses an abstract location type for memory locations. Each
location stores a single integer that can be read or written. Some locations are
public while others are designated as private, with the intent that an attacker
should not have direct access to the latter. A high-level program can preserve the
confidentiality and integrity of a variable by simply not exposing that variable’s
location.

The low-level target language is similar to the high-level language but uses
integers to address memory locations instead of the abstract location type. This
enables attackers to probe arbitrary memory locations. The low-level language
can be considered an abstract model of a real-world Von Neumann computer
architecture, as each memory location can be addressed using an integer.

To translate from the high- to the low-level language, each abstract location
must be mapped to a concrete integer address. ASLR is incorporated into the
low-level model by mapping private locations to random low-level addresses.
In their paper, Abadi and Plotkin show that the security properties provided by
the high-level language continue to hold at the low level, albeit in a probabilistic
sense. They prove this full abstraction result for two low-level memory models.
In the first model, accesses to unused addresses in memory are fatal violations
that terminate the program, while in the second model such accesses are not



fatal. For the non-fatal memory access model, these results assume a bound on
the number of erroneous accesses, for otherwise an attacker could iterate over
all addresses.

While the lambda-calculus language used by Adadi and Plotkin is relatively
simple, Jagadeesan et al. [16] have shown that the same results hold for a
more complex language supporting dynamic memory allocation, first-class and
higher-order references (references that can be compared and can hold other
references) and control operators (the ability to perform callbacks to attacker-
controlled code). These features increase the power of the attacker, as he now
has an influence on the control flow of a program and can build up knowledge
on the layout of memory by comparing public references. Furthermore, the
extended language can model a number of system hardening principles such as
instruction set randomization, enabling one to analyze their security properties
in the presence of ASLR.

Even though these results are based on low-level languages that are only
very rough models of a real-world low-level execution platform, they indicate
that ASLR has the potential to be a very valuable technique for making the
principle of source-based reasoning sound.

Techniques based on low-level memory access control Agten et al. have re-
cently shown that it is possible to rely on low-level memory access control
techniques instead of randomization, to achieve full abstraction [2]. The high-
level source language for which this has been shown is a small, single-threaded
object-based language with a syntax similar to Java. It supports the basic con-
structs expected of a modern programming language, such as branches, loops,
local variables and indirect method calls (by using typed function pointers). In
this language, a program consists of a number of interacting objects, each of
which consists of private fields and public methods.

The low-level target language is an assembly language for an x86-like com-
puter architecture, consisting of a program counter, a register file (including a
stack pointer register), a flags register and a memory space. This basic machine
model does not suffice as the target language of a fully abstract compiler. In
order to support full abstraction, a program counter-dependent memory ac-
cess protection scheme is added as part of the target language. This protection
scheme divides memory into protected and unprotected memory, the former of
which is further divided into a code and a data section. Within the code section,
a variable number of memory addresses are designated as entry points, which
are the only points through which execution of code in protected memory can
start. Table 1 shows the memory access control rules enforced by this protection
scheme.

Like in any object-based language, in the high-level language, the internal
representation of an object is hidden from outside of that object’s definition.
This means two high-level objects can be equivalent from an external point of
view, even though they have a different internal implementation. This maps
naturally to contextual equivalence.



from \ to Protected Unprotected
Entry point Code Data

Protected r x r x r w r w x
Unprotected x r w x

Table 1: Memory permissions enforced by the low-level language

In order to achieve full abstraction, we need to use a compiler that takes
advantage of the memory protection features provided by the low-level machine
model. First of all, the data and code of the compiled object must be placed into
the data and code parts of protected memory respectively. Next, an entry point
must be created for the first low-level instruction of each method. Because the
protected memory can only be entered through an entry point, one additional
return entry point must be created to support returning from a callback (i.e. a
call from protected to unprotected memory). The address of this entry point
should be used as the return address for all callbacks. To prevent private data
leakage or control flow tampering through the stack, the protected module must
use its own secure stack in protected data memory. Consequently, the runtime
stack must be switched from the unprotected stack to the secure stack and vice
versa on each entry to or exit from the protected module. Relevant parameters
and control flow information must be moved between these stacks on entry
and exit points. Private data can also leak through other channels, such as the
register file or the flags register. The compiler must ensure that these registers
are cleared when exiting the protected module. To further preserve control flow
integrity, the compiler must verify the destination of any jump to an externally
supplied address (such as a callback). A valid address is either the address of
the first instruction of one the protected module’s own methods or an address in
unprotected memory. Finally, the compiler must also ensure that any parameter
value or return value passed to the protected module has a corresponding high-
level value. For instance, if a boolean false is mapped to low-level value 0
and true is mapped to 1, then the compiler must verify that boolean-typed
parameters and return values are confined to these values at run time.

This compilation scheme, in combination with the program counter-depend-
ent memory access control scheme of the low-level language, has been proved to
be fully abstract. Hence, with this compilation scheme, the principle of source-
based reasoning holds, even for the in-process attacker model.

Implementations For this full abstraction result to have practical relevance, the
program counter-dependent memory protection scheme must have an efficient
real-world implementation. Both hardware and software implementations are
possible. Strackx et al. [29] propose a hardware implementation for self-protecting
modules, which uses a low-level memory protection scheme similar to the one
needed to achieve full abstraction. El Defrawy et al. [13] have developed a
hardware-based program counter-dependent memory protection scheme for
their implementation of SMART, which is an architecture for establishing a



dynamic root of trust in embedded devices. This protection scheme provides
the necessary primitives to support full abstraction and can be implemented
relatively easily on current low-end microcontrollers.

For software based implementations, an interesting avenue for future work
is to investigate whether the security architectures discussed in Section 4.1 can
be used as building blocks. It seems likely that the kind of isolation provided
by these architectures can be used to provide a suitable low-level protection
mechanism as required by the secure compiler proposed by Agten et al. [2].

5 Conclusions

The field of low-level software security is an exciting and high-impact area of
research. For the interactive attacker model, several decades of research have
resulted in a good understanding of the problems and solutions, and some
of these solutions already have found their way into mainstream operating
systems and compilers.

But some important and realistic attacks against software systems are not
covered by the interactive attacker model, in particular those attacks where an
attacker has the possibility to load arbitrary machine code in the same process
as the software under attack. An important challenge for research in low-level
software security is to address this new class of attacks modeled in the in-process
attacker model. We have shown in this paper that several important first steps in
defending against this style of attacker have been taken recently.

Acknowledgments This research is partially funded by the Interuniversity Attrac-
tion Poles Programme Belgian State, Belgian Science Policy, IBBT, IWT, the Re-
search Fund K.U.Leuven and the EU-funded FP7-project NESSoS. Pieter Agten
holds a Ph. D. fellowship of the Research Foundation - Flanders (FWO).

References

1. Abadi, M., Plotkin, G.D.: On protection by layout randomization. In: CSF. pp. 337–
351. IEEE Computer Society (2010)

2. Agten, P., Strackx, R., Jacobs, B., Piessens, F.: Secure compilation to modern proces-
sors. In: CSF (2012)

3. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In: Proceedings of
the 18th USENIX Security Symposium. Montreal, QC (Aug 2009)

4. Azab, A., Ning, P., Zhang, X.: Sice: a hardware-level strongly isolated comput-
ing environment for x86 multi-core platforms. In: Proceedings of the 18th ACM
conference on Computer and communications security. pp. 375–388. ACM (2011),
http://www4.ncsu.edu/˜amazab/SICE-CCS11.pdf

5. Baltopoulos, I.G., Gordon, A.D.: Secure compilation of a multi-tier web language.
In: TLDI. pp. 27–38 (2009)

http://www4.ncsu.edu/~amazab/SICE-CCS11.pdf


6. Barrantes, E.G., Ackley, D.H., Forrest, S., Palmer, T.S., Stefanović, D., Zovi, D.D.:
Randomized instruction set emulation to disrupt binary code injection attacks. In:
Proceedings of the 10th ACM Conference on Computer and Communications Secu-
rity. pp. 281–289. Washington, D.C. (Oct 2003)

7. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach to
combat a broad range of memory error exploits. In: Proceedings of the 12th USENIX
Security Symposium. pp. 105–120. Washington, D.C. (Aug 2003)

8. Bhatkar, S., Sekar, R.: Data space randomization. In: Proceedings of the 5th Confer-
ence on Detection of Intrusions and Malware & Vulnerability Assessment. Lecture
Notes in Computer Science, vol. 5137. Paris, France (Jul 2008)

9. Bulba, Kil3r: Bypassing Stackguard and Stackshield. Phrack 56 (2000)
10. Chew, M., Song, D.: Mitigating buffer overflows by operating system randomization.

Tech. Rep. CMU-CS-02-197, Carnegie Mellon University (Dec 2002)
11. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: protecting pointers from

buffer overflow vulnerabilities. In: Proceedings of the 12th USENIX Security Sym-
posium. pp. 91–104. Washington, D.C. (Aug 2003)

12. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier,
A., Wagle, P., Zhang, Q.: StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In: Proceedings of the 7th USENIX Security Symposium
(1998)

13. El Defrawy, K., Francillon, A., Perito, D., Tsudik, G.: Smart: Secure and minimal
architecture for (establishing a dynamic) root of trust. In: Proceedings of the Network
& Distributed System Security Symposium (NDSS), San Diego, CA (2012), http:
//francillon.net/˜aurel/papers/2012_SMART.pdf

14. Erlingsson, U., Younan, Y., Piessens, F.: Low-level software security by example. In:
Handbook of Information and Communication Security. Springer (2010)

15. IBM: Gcc extension for protecting applications from stack-smashing attacks. http:
//www.trl.ibm.com/projects/security/ssp/

16. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout randomiza-
tion. In: CSF. pp. 161–174. IEEE Computer Society (2011)

17. Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W., Cheney, J., Wang, Y.: Cyclone: A
safe dialect of c. In: Proceedings of the General Track of the annual conference on
USENIX Annual Technical Conference. pp. 275–288. ATEC ’02, USENIX Association,
Berkeley, CA, USA (2002), http://dl.acm.org/citation.cfm?id=647057.713871

18. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays and
pointers in C programs. In: Proceedings of the 3rd International Workshop on Au-
tomatic Debugging. pp. 13–26. Linköping, Sweden (1997)

19. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM Conference on Com-
puter and Communications Security. pp. 272–280. Washington, D.C. (Oct 2003)

20. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor:
Efficient TCB reduction and attestation. In: Proceedings of the IEEE Symposium on
Security and Privacy (May 2010), http://www.ece.cmu.edu/˜jmmccune/papers/
MLQZDGP2010.pdf

21. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An
execution infrastructure for TCB minimization. In: Proceedings of the ACM
European Conference in Computer Systems (EuroSys). pp. 315–328. ACM
(Apr 2008), http://www.ece.cmu.edu/˜jmmccune/papers/mccune_parno_perrig_
reiter_isozaki_eurosys08.pdf

http://francillon.net/~aurel/papers/2012_SMART.pdf
http://francillon.net/~aurel/papers/2012_SMART.pdf
http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/
http://dl.acm.org/citation.cfm?id=647057.713871
http://www.ece.cmu.edu/~jmmccune/papers/MLQZDGP2010.pdf
http://www.ece.cmu.edu/~jmmccune/papers/MLQZDGP2010.pdf
http://www.ece.cmu.edu/~jmmccune/papers/mccune_parno_perrig_reiter_isozaki_eurosys08.pdf
http://www.ece.cmu.edu/~jmmccune/papers/mccune_parno_perrig_reiter_isozaki_eurosys08.pdf


22. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: Ccured: type-safe
retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27(3), 477–526 (May
2005), http://doi.acm.org/10.1145/1065887.1065892

23. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
24. Robertson, W., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-based

overflows. In: In Proceedings of the 17th Large Installation Systems Administrators
Conference. pp. 51–60. USENIX Association (2003)

25. Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to random-
ized lib(c). In: 25th Annual Computer Security Applications Conference (2009)

26. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proceedings of the 14th ACM conference on Computer
and communications security. pp. 552–561. Washington, D.C., (October 2007)

27. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the Effective-
ness of Address-Space Randomization. In: Proceedings of the 11th ACM conference
on Computer and communications security. pp. 298–307. Washington, D.C. (October
2004)

28. Singaravelu, L., Pu, C., Härtig, H., Helmuth, C.: Reducing tcb complexity for security-
sensitive applications: three case studies. In: EuroSys ’06: Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006. pp. 161–174.
ACM, New York, NY, USA (2006), http://www.cs.kuleuven.ac.be/conference/
EuroSys2006/papers/p161-singaravelu.pdf

29. Strackx, R., Piessens, F., Preneel, B.: Efficient isolation of trusted subsystems in em-
bedded systems. In: Jajodia, S., Zhou, J. (eds.) SecureComm. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engi-
neering, vol. 50, pp. 344–361. Springer (2010)

30. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.: Break-
ing the memory secrecy assumption. In: EUROSEC. pp. 1–8 (2009)

31. Van Acker, S., Nikiforakis, N., Philippaerts, P., Younan, Y., Piessens, F.: Valueguard:
Protection of native applications against data-only buffer overflows. In: Proceedings
of the Sixth International Conference on Information Systems Security (ICISS) (2010)

32. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. SIGOPS Oper. Syst. Rev. 27(5), 203–216 (Dec 1993), http://doi.acm.org/
10.1145/173668.168635

33. Wojtczuk, R.: Defeating solar designer non-executable stack patch. Posted on the
Bugtraq mailinglist http://www.securityfocus.com/archive/1/8470 (Jan 1998)

34. Younan, Y., Joosen, W., Piessens, F.: Code injection in C and C++ : A survey of
vulnerabilities and countermeasures. Tech. Rep. CW386, Departement Computer-
wetenschappen, Katholieke Universiteit Leuven (2004)

35. Younan, Y., Joosen, W., Piessens, F.: Runtime countermeasures for code injection
attacks against C and C++ programs. ACM Computing Surveys to appear (2012)

36. Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., Joosen, W.: Paricheck:
an efficient pointer arithmetic checker for c programs. In: ASIACCS. pp. 145–
156. ACM (2010), http://dblp.uni-trier.de/db/conf/ccs/asiaccs2010.html#
YounanPCSPJ10

37. Zeng, Q., Wu, D., Liu, P.: Cruiser: concurrent heap buffer overflow monitoring using
lock-free data structures. In: Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation. pp. 367–377. PLDI ’11, ACM,
New York, NY, USA (2011), http://doi.acm.org/10.1145/1993498.1993541

http://doi.acm.org/10.1145/1065887.1065892
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p161-singaravelu.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p161-singaravelu.pdf
http://doi.acm.org/10.1145/173668.168635
http://doi.acm.org/10.1145/173668.168635
http://www.securityfocus.com/archive/1/8470
http://dblp.uni-trier.de/db/conf/ccs/asiaccs2010.html#YounanPCSPJ10
http://dblp.uni-trier.de/db/conf/ccs/asiaccs2010.html#YounanPCSPJ10
http://doi.acm.org/10.1145/1993498.1993541

	Recent Developments in Low-Level Software Security

