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Security Adoption in Heterogeneous Networks:
the Influence of Cyber-insurance Market

Zichao Yang and John C.S. Lui

The Chinese University of Hong Kong
{zcyang,cslui}@cse.cuhk.edu.hk

Abstract. Hosts (or nodes) in the Internet often face epidemic risks
such as virus and worms attack. Despite the awareness of these risks
and the availability of anti-virus software, investment in security pro-
tection is still scare, and hence epidemic risk is still prevalent. Deciding
whether to invest in security protection is an interdependent process: se-
curity investment decision made by one node can affect the security risk
of others, and therefore affect their decisions also. The first contribution
of this paper is to provide a fundamental understanding on how “net-
work externality” effect with “nodes heterogeneity” may affect security
adoption. We characterize it as a Bayesian network game in which nodes
only have the local information, e.g., the number of neighbors, as well as
minimum common information, e.g., degree distribution of the network.
Our second contribution is in analyzing a new form of risk management
called cyber-insurance. We investigate how the presence of competitive
insurance market can affect the security adoption.

Keywords: heterogeneous network, security adoption, cyber-insurance,
Bayesian network game

1 Introduction

Network security is a major problem in communication networks. One of its
most common manifestations is in form of virus, worms and bonnet spreading,
which we call the epidemic risk. Epidemic risk is highly damaging, e.g., the Code
Red worm [21] has infected thousands of computers and induced huge financial
loss. To counter this risk, there have been great efforts in both the research and
industrial fronts to come up with techniques and tools (i.e., anti-virus software,
intrusion detection systems, firewalls etc) to detect virus/worms. Despite the
sophistication of these tools, only a small percentage of hosts adopt some form
of security protection, making epidemic risk still prevalent.

A node’s decision on adopting some security measures is not a simple individ-
ual and independent process, but rather, depends on the decisions of many other
nodes in the network. Nodes which decide not to invest in security protection,
also put other nodes at security risk. This network externality effect caused by
the spreading of epidemic influences the degree of adoption of security measure.
Our first contribution in this paper is to provide a theoretical understanding on
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how network externality effect with node heterogeneity may influence security
adoption in a network of interconnected nodes (i.e., the Internet).

Modeling such decision and security problem requires the combination of epi-
demic theory and game theory. While extensive studies in traditional literatures
have been dedicated to epidemic theory [22], few works have addressed the prob-
lems of strategic behavior of security investment. In a realistic situation, nodes
which make decision in security investment usually do not have complete infor-
mation like the network topology or knowledge of other nodes. In this paper,
we model the security investment as a Bayesian network game where nodes only
have the local information of their degree, as well as the minimum common in-
formation of network’s degree distribution. In contrast to graphical game [23], in
which complete topology is given and analysis is complicated, we show that using
Bayesian network game, one can elegantly tradeoff using partial topology infor-
mation while making the analysis tractable. We show how heterogeneous nodes,
characterized by their degree, can estimate their epidemic risk and make deci-
sions on security investment with incomplete information. We show that nodes
with higher degree are more likely to be infected by epidemic, making the secure
measure less effective for them in terms of the reduction in infection probability.
Moreover, nodes with higher degrees are more sensitive to externality effect.

While protection measures may limit the spread of virus/worms, another
way to manage the epidemic risk is to transfer the risk to a third-party, which
is called cyber-insurance [13]: nodes pay certain premium to insurance com-
panies in return for compensation in the virus outbreaks. One main challenge
in cyber-insurance is moral hazard [11, 13]. The combination of self-protection
and insurance raises the problem of moral hazard, in which nodes covered by
insurance may take fewer secure measures. Moral hazard happens when the in-
surance provider cannot observe the protection level of nodes. In this paper, we
investigate the effect of cyber-insurance on security adoption under competitive
insurance market without moral hazard1. Our second contribution is to show the
conditions under which cyber-insurance is an incentive for security adoption. We
find that cyber-insurance is an incentive for security adoption if the initial secure
condition is poor and the quality of secure measure is not very high.

This is the outline of our paper. In Section 2, we present the epidemic and
security investment models. In Section 3, we show how heterogeneous nodes can
determine their infection probability and decide on proper security investment.
In Section 4, we investigate the effect of insurance market without moral hazard
on security adoption. Validations and performance evaluations are presented in
Section 5. Section 6 gives related work and Section 7 concludes.

2 Mathematical Models

Our models include: (a) epidemic model: to characterize the spread of virus or
malware in a network, (b) investment model: to characterize node’s decision in

1 We refer the readers to [27] for the analysis of the case with moral hazard.
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security investment, and (c) Bayesian network game: how nodes make decision
under the incomplete information setting.
Epidemic Model: The interaction relation of N nodes is denoted by the undi-
rected graph G = (V,E) with the vertex set V , |V | = N and the edge set E.
For i, j ∈ V , if (i, j) ∈ E, then nodes i and j are neighbors and we use i∼ j to
denote this relationship. Let S = {healthy, infected} represent the set of states
each node can be in. If node i is infected (healthy), then Si = 1 (Si = 0). Each
infected node can contaminate its neighbors independently with probability q.
Note that this is similar to the bond percolation process [22] in which every edge
is occupied with probability q. Each node has an initial state of being infected
or not. This can represent whether the node has been attacked by the adversary.
Let us denote it by si where si = 1 if node i is initially infected and si = 0
otherwise. Hence, at the steady state, a node is infected either because it is ini-
tially attacked, or it contracts virus from its infected neighboring nodes. The
final state of node i can be expressed in the following recursive equation:

1− Si = (1− si)
∏

∀j:j∼i
(1− θjiSj) ∀i ∈ V, (1)

where θji is a random variable indicating whether the edge (i, j) is occupied or
not. Since the infection will incur some financial loss, a node needs to decide
whether to invest in self-protection to reduce the potential financial loss. In the
following, we present a model which a node can use to make the decision.
Investment Model: Let’s say that node i has an initial wealth wi ∈ R+. A
node’s utility ui(w) is a function of wealth w ∈ R+. We consider nodes are
risk averse, i.e., the utility function is strictly increasing and concave in w, i.e.,
u′
i(w) > 0 and u′′

i (w) < 0. In this paper, we consider the constant relative risk
averse utility function commonly used in the literature [4]: u(w) = w1−σ/(1−σ),
for 0 < σ < 1, where σ is a parameter for the degree of risk aversion. The utility
function of node i is given by the above utility function with parameter σi. If
node i is infected, then it will incur a financial loss of li ∈ R+.

To reduce the potential financial loss, a node can consider adopting some
self-protection measures or purchasing insurance. In the first part of this pa-
per, we consider the case of self-protection. In the second part of this paper,
we consider both cases and study the influence of insurance market on security
protection. A node’s investment in self-protection can reduce the probability of
being infected initially. For the amount of investment x, the probability of being
infected initially is denoted as p(x), which is a continuous differentiable decreas-
ing function of x. In particular, we assumed the effort of security investment is
separable with the wealth, which is common in the literature [26]. The utility of
node i with investment xi in security protection is

piui(wi − li) + (1− pi)ui(wi)− xi, (2)

where pi is the final probability that node i will be infected. pi contains two parts:
the probability of being infected initially, given by p(xi) and the probability of
getting infected from neighbor nodes. For simplicity of analysis, we assume that
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the choice of node i regarding security self-protection is a binary decision: either
the node invests unit amount with a cost of ci, or it does not invest at all.
The cost may also include the inconvenience caused by the measure. We use
the action set A = {S,N} to denote the behavior, where S denotes taking
secure measure and N otherwise. If it decides to invest, the node can still be
infected with probability p−. Otherwise, it will be infected with probability p+.
Obviously we have 0 < p− < p+ < 1. Let a = (a1, ..., ai, ..., aN )= (ai, a−i) be
an action profile. Given the action profile a−i of other nodes, node i makes the
decision by maximizing its expected utility. If node i takes actionN , the expected
utility is: pi(N , a−i)ui(wi − li) + (1− pi(N , a−i))ui(wi), where pi(N , a−i) is the
final probability of node i being infected when it initially did not adopt security
protection. On the other hand, the expected utility of a node without security
protection (or action S) is: pi(S, a−i)ui(wi − li) + (1 − pi(S, a−i))ui(wi) − ci
where pi(S, a−i) is the final probability of a node being infected when it initially
subscribed to some self-protection measures with cost ci. Node i will choose to
invest in security protection if and only if

ci < (pi(N , a−i)− pi(S, a−i))(ui(wi)− ui(wi − li)). (3)

Bayesian Network Game: According to Inequality (3), each node needs to
have the complete information of the network topology G so as to make the
proper decision. However, it is almost impossible in practice for each node to
have the complete information of G. Instead, each node can only have some
local information, i.e., a node may only know its neighbors, and some cases, only
knows the number of neighbors it is to interact with. Secondly, it is impossible
to know the exact loss of other nodes in a large network.

In here, we assume that nodes only have the minimum common information,
that is, the knowledge of the degree distribution of G, as well as the distribu-
tion of financial loss of nodes caused by virus. In this paper, we consider the
asymptotic case that N , the number of nodes, tends to infinity and the degree
distribution converges to the fixed probability distribution {pk}KK , where K is
the maximum degree and K is the minimum degree. For nodes with degree k, the
loss distribution is given by the CDF Fk(l). We assume that the cost of secure
measure is the same for all nodes which have the same degree, and we denoted
this as ck. Furthermore, these nodes have the same utility function uk and the
same initial wealth wk. Nodes make decision on security investment based on
the information of degree and loss.

3 Analysis for Strategic Security Adoption

Determining the final infection probability is a difficult problem because of the
complex network structure. In this work, we assume that a node only knows the
degree distribution and consider the network topology as a random graph [22]

with a given degree distribution {pk}KK . Although real networks are not random
graphs [22] and they have some characteristics, e.g., high clustering coefficient,
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community structure etc, that are not possessed by random graph, recent study
[19] has shown that random graph approximation is very often accurate for real
networks. Thus, it is reasonable to assume that the network topology is a random
graph, especially here we consider incomplete information.
Estimating the Probability: A node can calculate its final infection proba-
bility by constructing a local mean field tree [1]. Fig. 1 illustrates the local tree
structure of node i which has degree k. For the ease of presentation, let’s say that
none of these nodes will take secure measure, i.e., the initial infection probability
is p+ for all nodes in this subsection. We will show how to relax this later on.

i

v1 vk...

...

level 0

level 1v2

..

.
..
.

..

.

Fig. 1: Local mean field tree for node i with degree k

The children of node i in the local mean field tree are denoted as vc, c ∈ [1, k].
The triangle under each child node vc denotes another tree structure. Based on
the results in [1], for any node i, the local topology of a large random graph
G can be modeled as a tree rooted at node i with high probability. In other
words, we transform G to a tree rooted at node i. Node i can be independently
influenced by each subtree rooted at vc. For every subtree rooted at vc, it consists
of its subtrees. Using this recursive structure, one can derive the total infection
probability that other nodes in G can impose on node i.

Let us illustrate the derivation. First, we divide nodes into levels. The root
node i is at the zero level. The neighbors of node i is at the first level and so on.
Let Yj be the final state of node j, j %= i, conditioned on its parent in the tree
structure is not infected, and yj be the initial state of node j. For the root node
i, we use Si to denote its final state and si to denote its initial state, then

1− Si = (1− si)
∏

∀j:j∼i
(1− θjiYj). (4)

The above equation indicates the root node i is either initially infected, or it can
be infected by its neighbors. The state of its neighbors conditioned on that the
root node i is not infected is also determined by the state of the children of the
neighbors in the tree structure, or one can express it recursively as:

1− Yj = (1− yj)
∏

∀l:l→j
(1− θljYl) ∀j %= i, (5)
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where l → j denotes that l is a child of j in the tree structure. To solve Eq. (5),
we need to know the degree distribution of a child node. This degree distribution
can be expressed as: p̃k = kpk∑K

k=K kpk
= kpk

d̄
, where d̄ is the average degree of nodes

in G. The number of edges of a child excluding the edge connecting to its parents
is called the excess degree [22]. Let K ′ =max{0,K−1} and K

′
=max{0,K−1}.

The excess degree distribution is qk = p̃k+1 = (k + 1)pk+1/d̄, ∀k ∈ [K ′,K
′
].

As in [1], if nodes are at the same level of the tree structure, their states are
independent of each other. Let ρn, n ≥ 1 be the probability that a node at the
nth level is infected conditioned on its parent is not infected. By Eq. (5),

1− ρn = (1− p+)
∑K

′

k=K′
qk(1− qρn+1)

k.

ρ1 is the average probability that a child node of the root node i will be infected
conditioned on the root node is not infected. When we scale up the network (or
let n → ∞), define ρ ! limn→∞ ρ1, then ρ is determined by the solution of the
fixed point equation

1− ρ = (1− p+)
∑K

′

k=K′
qk(1− qρ)k.

By Eq. (4), for a node with degree k, the infection probability is

φk = 1− (1− p+)(1− qρ)k. (6)

Security Adoption: In the previous subsection, we show how a node can com-
pute the infection probability with incomplete information. The calculation is
based on the assumption that none of the nodes take secure adoption, so that
the initially infection probability is p+. In here, we show how to use this infection
probability for strategy selection. Let λk be the fraction of nodes with degree k
which take action S. Then by applying the method shown above, we have

Proposition 1. If λk fraction of the nodes with degree k take secure measure,
ρ is given by the unique solution of the fixed point equation in [0, 1]:

ρ = 1−
∑K

′

k=K′
qk(1− p+ + λk+1(p

+ − p−))(1− qρ)k. (7)

For a node with degree k, if it decides to take secure measure, then by Eq.
(6), the infection probability is φk(S, λK , ..., λK) = 1 − (1 − p−)(1 − qρ)k. If
it does not invest in protection measure, the probability for this node to get
infected is φk(N , λK , ..., λK) = 1− (1− p+)(1− qρ)k. The infection probability
reduction for a node with degree k by taking secure measure is

φk(N )− φk(S) = (p+ − p−)(1− qρ)k. (8)

Note that infection probability reduction decreases as degree increases. This im-
plies that higher degree nodes have less incentive to invest in protection measure.
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Corollary 1. ρ, given by the solution of fixed point Eq. (7), has a unique solu-
tion in [0, 1], and ρ(λK , ..., λK) is a decreasing function of λk, ∀k ∈

[
K,K

]
.

Sensitivity Analysis: Nodes with different degrees have different sensitivity to
the externality effect. Define φ̃k = φk(N )−φk(S) = (p+−p−)(1− qρ)k. Assume

ρ decreases by a small amount ∆ρ, then ∆φ̃k = (p+ − p−)(1− qρ)k−1kq∆ρ, and

the relative change is given by ∆φ̃k

φ̃k
= kq∆ρ

(1−qρ) , indicating that sensitivity to the

network externality effect is proportional to the degree.
A node with degree k will invest if and only if the utility with secure measure

is higher than that without secure measure, or

ck < (p+ − p−)(1− qρ)k(uk(wk)− uk(wk − l)).

Note that the loss distribution of nodes with degree k is Fk(l). Since the infec-
tion probability varies with the fraction of security adopters, we consider the
self-fulfilling expectations equilibrium [6] in analyzing the final adoption extent.
Nodes form a shared expectation that the fraction of the nodes has adopted secu-
rity measure and if each of them makes decision based on this expectation, then
the final fraction is indeed the initial expectation. Let l∗k be the minimum value
that satisfies the above inequality in the equilibrium, then λ∗

k, the fraction of node
of degree k taking the secure measure, is given by the equation λ∗

k = 1−Fk(l∗k).
Summarizing the previous analysis, we have the following proposition.

Proposition 2. Nodes with degree k will take the secure measure if their loss
is greater than l∗k. The final fraction of nodes with degree k that invest in self-
protection is λ∗

k. l
∗
k and λ∗

k are solutions of the following fixed point equations:

λ∗
k = 1− Fk(l

∗
k), (9)

ck = (p+ − p−)(1− qρ∗)k(uk(wk)− uk(wk − l∗k)), (10)

where ρ∗ is given by the solution of the following equation

ρ∗ = 1−
∑K

′

k=K′
qk(1− p+ + λ∗

k+1(p
+ − p−))(1− qρ∗)k. (11)

Corollary 2. Fixed point equations (9)–(11) has at least one solution.

Corollary 3. The equilibrium points given by fixed point equations (9)–(11) are
monotone, i.e., if Λ∗1 = (λ∗1

K , ..., λ∗1
k , ..., λ∗1

K
) and Λ∗2 = (λ∗2

K , ..., λ∗2
k , ..., λ∗2

K
) are

two equilibrium points, then we have either Λ∗1 ≥ Λ∗2 or Λ∗1 ≤ Λ∗2 and there
exists at least one k ∈ [K,K] such that λ∗1

k %= λ∗2
k .

4 Analysis for Cyber-insurance Market

Supply of Insurance: Let’s say the insurance provider offers insurance at
the price of π < 1. Nodes which buy insurance at the premium of πX from
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the insurance provider will be compensated X for the loss incurred if they are
infected. Given the price π, node will choose to buy the amount of insurance that
maximizes its utility. Define φk(S)(φk(N )) as the probability that a node with
degree k is infected if it subscribes (does not subscribe) to a secure measure.
In this paper, we consider cyber-insurance without adverse selection, in which
the insurance provider can observe the degree of a node, hence the risk type of
a node (high degree indicates high risk level). Thus, in the following, we drop
the subscript k where the meaning is clear for general presentation. A node will
choose the amount of insurance that maximizes

U(π,X)=φu(w− l + (1− π)X)+(1− φ)u(w− πX)−x, (12)

where x is the cost of security protection. When a node chooses N (or S), φ
becomes φ(N )(or φ(S)), x = 0(or c). Assume the insurance provider is risk
neutral, so they only care about the expected wealth. If a node buys X amount
of insurance, then the profit of the insurance is (π − φ)X. In here, we consider
a competitive market so the insurance provider has to offer the insurance at the
price π=φ, or the actuarially fair price [7].

Lemma 1. When the insurance is offered at the actuarially fair price, the opti-
mal insurance coverage is a full insurance coverage, i.e., a node will buy insur-
ance amount equal to the loss l. The maximal expected utility is u(w − φl)− x.

Remark: Lemma 1 shows that the expected utility with insurance market is
u(w − φl)− x > φu(w − l) + (1− φ)u(w)− x. The utility of a node is improved
by the insurance market with the fair price.

One problem with the combination of insurance and self-protection is moral
hazard, which happens when the insurance provider cannot observe the pro-
tection level of a node. Insurance coverage may discourage the node to take
self-protection measure to prevent the losses from happening. In here, we exam-
ine the effect of the insurance market on the self-protection level. In this paper,
we consider the case without moral hazard, where the insurance provider can
observe the protection level of a node. We refer the reader to [27] for the anal-
ysis of the case with moral hazard, where insurance provider does not have any
information about the protection level of a node. Without the moral hazard, the
insurance provider can discriminate against the nodes with protection measure
and those without protection measure. We investigate whether the insurance
market will help to incentivize nodes to take secure measure.
Security Adoption with Cyber-insurance Market: Because the insurance
provider can observe the protection level of a node, the insurance provider will
offer insurance price of φ(S) (or φ(N )) for those nodes with (or without) security
protection. According to Lemma 1, nodes will buy the full insurance regardless of
its protection level. As a result, the expected utility for nodes without protection
is u(w − φ(N )l) and the expected utility for nodes with protection is u(w −
φ(S)l)−c. Thus, with insurance market, a node will invest in security protection
if and only if

c < g(l, ρ) ! u(w − φ(S)l)− u(w − φ(N )l).

Here g(l, ρ) is a function of ρ because φ(S) and φ(N ) can be expressed in ρ.
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Lemma 2. g(l, ρ) ! u(w − φ(S)l) − u(w − φ(N )l) = u(w − (1 − (1 − p−)(1 −
qρ)k)l)− u(w − (1− (1− p+)(1− qρ)k)l) increases with l, decreases with ρ.

Lemma 2 indicates that nodes with higher loss are more likely to invest in
security. It also shows that positive network externality still exists even in the
presence of insurance market.
Incentive Analysis: According to previous analysis, a node will take secure
measure if c < cNI ! (φ(N )− φ(S))(u(w)− u(w − l)), where cNI is the thresh-
old without insurance market. With insurance market, nodes will take secure
measure if and only if c < cI ! u(w − φ(S)l)− u(w − φ(N )l), where cI denotes
the threshold with insurance market. In order for insurance market to be a good
incentive for self-protection, we should have cNI <cI , i.e.,

cI − cNI =u(w − φ(S)l) + φ(S)(u(w)− u(w − l))

− [u(w − φ(N )l) + φ(N )(u(w)− u(w − l))] > 0.

Define r(p) ! u(w − pl) + p(u(w) − u(w − l)), then the above condition be-
comes r(φ(S)) > r(φ(N )). Next we investigate under what condition the above
inequality will hold. Consider the function r(p), we have the following lemma.

Lemma 3. r(p) is a concave function of p and has a unique maximum at p∗.

Proposition 3. If the infection probability without secure measure φ(N ) is greater
than p∗ and the quality of self-protection is not too high, i.e., φ(N ) − φ(S) is
bounded, insurance will be a good incentive for self-protection.

Remark: If φ(N ) is smaller than p∗, cyber-insurance is not a positive incen-
tive for security. If φ(N ) is greater than the p∗ and φ(S) is within the region
[φ∗, φ(N )], where φ∗ be the minimum value such that r(φ∗) = r(φ(N )), then
cyber-insurance is a positive incentive. From the analysis, we can see that in-
surance will be more likely to be a positive incentive with large φ(N ) and small
φ(N ) − φ(S). Hence, if the initial secure situation is bad and the protection
quality of secure measure is not too high, then insurance market is a positive
incentive for self-protection; otherwise, insurance market is a negative incentive.

5 Simulation and Numerical Results

Validating Final Infection Probability: We consider a large graph with
power-law degree distribution [8]. We want to verify the accuracy of using the
mean field on these power law graphs. We use the popular Generalized Linear
Preference (GLP) method to generate power law graphs [5]. Parameters were se-
lected so that the power law exponent γ=−3. We generate graphs with 10, 000
nodes and approximately 30, 000 edges. The minimum degree is 3 and the max-
imum degree is approximately 200. The result is shown in Fig. 2. Initially, every
node is infected with the same probability p and every edge is occupied with
probability q. We calculate the probability that nodes with certain degree is
infected. Fig. 2 shows the simulation verifies the theoretical results.
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Fig. 3: Externality effect

Security Adoption: In here we investigate how parameters can influence the
fraction of adopters with different degrees. We consider a graph G with power
law distribution with γ = −3, minimum and maximum degree are 3 and 13. Here
maximum degree is set small for the convenience of selecting other parameters
without affecting the result in general case. With very large maximum degree,
even a small q will make the final infection probability in Eq. (6) very big because
of the power relationship. We set σ = 0.5 for all nodes. The initial wealth of nodes
with degree k is wk = 10 ∗ k + 50. The loss follows uniform distribution from
0 to half of the initial wealth. The cost of secure measure of all nodes is c =
0.3. Initially, all nodes without (with) secure measure are infected initially with
probability p+ = 0.3 (p− = 0.2). Having fixed the above parameters, we choose
to change q to calculate the fraction of adopters with different degrees because
nodes with different degrees are mainly differentiated via the term (1− qρ)k.

We show the initial fraction and final fraction of adopters in Fig. 3. Here the
initial fraction means that every node assumes that other nodes will not adoption
secure measure and makes its decision on this assumption. Final fraction means
the fraction given by the minimum equilibrium point in Proposition 2. Due to
the positive externality effect, final fraction is greater than initial fraction. We
plot them to examine the externality effect. In Fig. 3a and Fig. 3b, we set q to
be 0.05 and 0.10 respectively. In Fig. 3a, the adoption fraction increases with
degree, in Fig. 3b, the adoption fraction initially increases, then decreases with
degree. Comparing the two figures, we see that there is no general rule regarding
the fraction of adopters as a function of the degree. It greatly depends on the
parameters. However, in both figures the gap between the final fraction and the
initial fraction increases with degree, which agrees with our previous result that
higher degree nodes are more sensitive to the externality effect.

6 Related Work

Recently there has been growing research in the economic of information secu-
rity [2, 3]. Some models consider the security investment game without incor-
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porating the effect of network topology, i.e., [9, 10, 14]. Others assume that the
graph topology is given [12, 20, 24]. [15, 16] are closely related to our work. The
network topology is modeled as a Poisson random graph while real networks are
with power law distribution. Also, they fail to consider the interaction among
those nodes. In contrast, we consider the interaction of nodes by studying a
Bayesian network game. Our modeling result provides significant insight on the
influence of node heterogeneity on the adoption extent, sensitivity to network
externality and cyber-insurance as an incentive. [28] is our previous extended
abstract in considering network heterogeneity, which is defined by setting de-
gree thresholds to divide the nodes into classes. Insurance was studied in the
economic literature long time ago [7] [25]. But these literatures lack to consider
many characteristics specific to computer network, such as the interdependence
of security, heterogeneity considered in this work. Cyber-insurance was proposed
to manage security risk [18] but is only modeled recently [13,17,26]. A key con-
cern is whether cyber-insurance is an incentive for security adoption. In [17],
the authors do not consider the heterogeneity in modeling cyber-insurance. [26]
assume the effort on security protection is continuous and do not consider the
network topology.

7 Conclusion

Modeling strategic behavior in security adoption helps us to understand what
are the factors that could result in under investment. In this paper, we show, via
a Bayesian network game formulation, how “network externality” with “node
heterogeneity” can affect security adoption in a large communication network.
We also investigate the effect of cyber-insurance on protection level. We establish
the conditions under which cyber-insurance is a positive incentive for security
adoption. This work provides the fundamental understanding on the economic
aspect of security adoption, and sheds light on a new Internet service which is
economically viable.
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