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Abstract. The largest eigenvalue λ1 of the adjacency matrix powerfully
characterizes dynamic processes on networks, such as virus spread and
synchronization. The minimization of the spectral radius by removing
a set of links (or nodes) has been shown to be an NP-complete prob-
lem. So far, the best heuristic strategy is to remove links/nodes based
on the principal eigenvector corresponding to the largest eigenvalue λ1.
This motivates us to investigate properties of the principal eigenvector
x1 and its relation with the degree vector. (a) We illustrate and explain
why the average E[x1] decreases with the linear degree correlation co-
effi cient ρD in a network with a given degree vector; (b) The difference
between the principal eigenvector and the scaled degree vector is proved
to be the smallest, when λ1 = N2

N1
, where Nk is the total number walks

in the network with k hops; (c) The correlation between the principal
eigenvector and the degree vector decreases when the degree correlation
ρD is decreased.
Keywords: networks; spectral radius; principal eigenvector; degree; as-
sortativity

1 Introduction

Dynamic phenomena occurring on networks are affected by the structure of
networks, e.g., the absence of epidemic thresholds in large scale free networks
[2][3][6], the effect of the degree correlations on the percolation of networks [8].
The largest eigenvalue λ1(A) of the adjacency matrixA, called the spectral radius
of the graph, has been shown to play an important role in dynamic processes
on graphs, such as SIS (susceptible-infected-susceptible) virus spread [12] and
the Kuramoto type of synchronization process of coupled oscillators [11] on a
given network topology. For instance, in a SIS spreading model, the epidemic
threshold τ c ' 1

λ1(A)
separates two different phases of a dynamic process on a

network: if the spreading rate τ is above the threshold, the infection spreads and
becomes persistent in time; where τ < τ c, the infection dies out exponentially
fast [10][12]. In the past decade, researches have focused on how topological
changes, such as link (or node) removal, may alter the spectral radius. Milanese
et al. [7] studied the dynamical importance of the structural perturbation by
removing one node or link. Van Mieghem et al. [15] have proved that to minimize
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the largest eigenvalue by removing a set of links or nodes is a NP-hard problem
and have shown that the best strategy so far is based on the components of
the principal eigenvector x1, which underlines the importance of the principal
eigenvalue in characterizing the influence of link/node removal on the spectral
radius. Our main objective is to investigate the topological meaning of x1, which
has been rarely studied. Especially, we aim to understand the relation between
x1 and the degree vector/sequence1 d, the computationally simplest and mostly
studied property of a network.
The degree correlation, also called the assortativity ρD is computed as the

linear correlation coeffi cient of the degree of nodes connected by a link. It de-
scribes the tendency of network nodes to connect preferentially to other nodes
with either similar (when ρD > 0) or opposite (when ρD < 0) properties i.e.
degree [9]. The assortativity was widely studied after it was realized that the
degree distribution alone provides an insuffi cient characterization of complex
networks. Networks with the same degree distribution may still differ signifi-
cantly in various topological features. Degree-preserving rewiring [13] allows us
to either increase or decrease the assortativity of a network without changing
the degree of each node. The relation between the principal eigenvector and
the degree vector is systematically investigated in networks with various degree
distributions and degree correlations.
Section 2 illustrates the importance of the principal eigenvector in character-

izing the influence of link/node removal on the spectral radius by two key theories
developed in our early work and further simulations. Subsequently, we explore
the properties of the principal eigenvector and the relation between the (normal-
ized) degree vector and the principal eigenvector in networks with different de-
gree correlation and with the degree distribution derived from the Erdös-Rényi
random graphs2 [4], the Bárabasi-Albert graphs3 [1], and real-world networks
(see Section 3). Our major contributions are: (a) the average of the components
in the principal eigenvector E[x1] is shown and explained to decrease with the
assortativity ρD; (b) the difference between the principal eigenvector and the
degree vector is proved to be the smallest, when λ1 = N2

N1
, where Nk is the to-

tal number of walks with k hops in a network and (c) the correlation between
principal eigenvector and the degree vector decreases as the assortativity ρD is
decreased. These finds provide essential inspiration on when the degree vector
well approximates the principal eigenvector. Finally, we illustrate the possibility
to approximate the principal eigenvector based strategy to minimize the largest

1 The degree vector/sequence is composed of the degree of each node, following the
same ordering as the principal eigenvector.

2 An Erdős-Rényi random graph can be generated from a set of N nodes by randomly
assigning a link with probability p to each pair of nodes.

3 A Bárabasi-Albert graph starts with m nodes. At every time step, we add a new
node with m links that connect the new node to m different nodes already present
in the graph. The probability that a new node will be connected to node i in step
t is proportional to the degree di(t) of that node. This is referred to as preferential
attachment.
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eigenvalue by removing links/nodes by its corresponding degree based strategy
(see Section 4), which can be well explained by the findings in early sections.

2 The decrease of the spectral radius

We consider a network as a graph G = (N , L), where N is the set of nodes
and L is the set of links. The number of nodes is denoted by N = |N | and the
number of links is represented by L = |L|. The graph G can be represented by the
N ×N adjacency matrix A, consisting of elements aij that are either one or zero
depending on whether there is a link between nodes i and j. The eigenvalues
of the adjacency matrix are ordered as λN ≤ λN−1 ≤ · · · ≤ λ1, where λ1 is
the spectral radius and the corresponding eigenvector x1 is called the principal
eigenvector. Let Lm (or Nm) denote the set of the m links (or nodes) that are
removed from G, and Gm(L) = G\Lm (or Gm(N ) = G\Nm) is the resulting
graph after the removal of m links (or nodes) from G. We denote the adjacency
matrix of Gm(L) (or Gm(N )) by Am(L) (or Am(N )), which is still a symmetric
matrix.

Theorem 1. For any graph G and graph Gm(L) = G\Lm, by removing m links
from G, it holds that

2
∑
l∈Lm

(w1)l+ (w1)l− ≤ λ1 (A)− λ1 (Am(L)) ≤ 2
∑
l∈Lm

(x1)l+ (x1)l− (1)

where x1 and w1 are the principal eigenvectors of A and Am(L) corresponding
to the largest eigenvalues λ1 (A) and λ1 (Am(L)), respectively, and where a link
l joins the nodes l+ and l−.

Proof. [15] �
The decrease of the largest eigenvalue λ1 (A)−λ1 (Am(L)) tends to be larger

if the upper bound 2
∑
l∈Lm (x1)l+ (x1)l− is larger. This motivates the principal

eigenvector strategy to minimize the largest eigenvalue: removing the set of links
that maximizes 2

∑
l∈Lm (x1)l+ (x1)l− . Moreover, when only one link is removed,

removing the link with the maximum (x1)l+ (x1)l− , maximizes not only the upper
bound of (1), but likely the lower bound as well, since w1 is close to x1 in this
case. This eigenvector strategy performs almost optimally in this situation.

Theorem 2. For any graph G and graph Gm(N ) = G\Nm, by removing m
nodes from G, it holds that

0 ≤ λ1(A)− λ1 (Am(N )) ≤ 2
∑
n∈Nm

(x1)
2
n λ1(A)−

∑
j∈Nm

∑
i∈Nm

aij(x1)i(x1)j (2)

where x1 is the principal eigenvectors of A corresponding to the largest eigenval-
ues λ1 (A). In particular, if m = 1, then

0 ≤ λ1 (A)− λ1 (A1(N )) ≤ 2 (x1)2n λ1(A) (3)

where n is the node removed.
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Proof. [5] �

Theorem 2 implies that the decrease of spectral radius by removing a node or
a set of nodes is strongly related to the principal eigenvector components corre-
sponding to the removed nodes. Motivated by Theorem 2, the eigenvector based
one node removal strategy to minimize the largest eigenvalue simply removes
the node with the largest principal eigenvector component (x1)n.

(a) (b)

(c)

0000 0.010.010.010.01 0.020.020.020.02 0.030.030.030.03 0.040.040.040.04 0.050.050.050.05 0.060.060.060.06 0.070.070.070.07 0.080.080.080.08 0000....00009999
10101010

12121212

14141414

16161616

18181818

20202020

22222222

24242424

(x1)n
2

λλ λλ 1(G
\{n

})

ρρρρD = ­0.4
ρρρρD = ­0.2
ρρρρD = 0
ρρρρD = 0.2
ρρρρD = 0.4

Power­law networks:
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Fig. 1. The spectral radius of graphs by removing a link (or node) as a function of
corresponding components in principal eigenvector (a), (b)in Binomial graphs,(c), (d)
in power-law graphs.

We perform further simulations to illustrate the importance of the principal
eigenvector components in characterizing the influence of the link/node removal
on λ1. We deduce networks with different assortativities but with a given degree
vector, which may follow a binomial or power-law degree distribution. Upon each
network, we try all possible one link (or node) removal and examine the largest
eigenvalue λ1(G\(l)) (or λ1(G\(n))) after removing one link (or node) as a func-
tion of (x1)l+ (x1)l− (or (x1)

2
n) corresponding to the link (or node) removed. By

the Perron-Frobenius theorem [14], all components of x1 and w1 are non-negative
(positive if the corresponding graph is connected). Interestingly, λ1(G\(l)) (or
λ1(G\(n))) decreases linearly as a function of increasing (x1)l+ (x1)l− (or (x1)

2
n),
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as shown in Fig. 1. In other words, the spectral radius will be decreased more if
the link (or node) removed has a larger (x1)l+ (x1)l− (or (x1)

2
n).

3 Relation between the principal eigenvector and the
degree vector

In view of the importance of the principal eigenvector in characterizing the in-
fluence of link/node on the spectral radius, in this section, we explore how the
average E[x1] as well the variance of x1 changes with the assortativity ρD when
the degree vector, which may follow the degree distribution of network models
or of real-world networks, remains the same. Moreover, we explore the difference
and the linear correlation coeffi cient between the principal eigenvector and the
degree vector, the simplest and mostly studies network metric, which as well pro-
vides important insights on under which condition the degree vector/sequence
well approximates the principal eigenvector.

3.1 Properties of the principal eigenvector

Two types of degree distributions have been so far widely studied: the bino-
mial and power-law degree distribution. The binomial degree distribution is
a characteristic of an Erdős-Rényi random graph Gp(N), which has N nodes
and any two nodes are connected independently with a probability p. Such
a random construction leads to a zero assortativity as proved in [13]. How-
ever, the class of graphs G(N, p) with the same binomial degree distribution
Pr[DG = k] =

(
N−1
k

)
pk(1 − p)N−1−k as Erdős-Rényi random graphs Gp(N)

and obtained, for instance, by degree-preserving rewiring feature an assorta-
tivity that may vary within a wide range. The power-law degree distribution
Pr[D = k] = ck−α, where c = 1/

∑N−1
k=1 k

−α has been widely observed in real-
world networks. Similarly, graphs with a given power-law degree distribution,
for example, generated by the Barabási-Albert power model [1] can be altered
by the degree-preserving rewiring to obtain different assortativity.
We explore the principal eigenvector components (see Figure 2) as well as

its average E[x1] (see Figure 3) in graphs with the same degree distribution
(i.e. binomial or power-law) but with different assortativities ρD obtained by
degree-preserving rewiring. Figure 2 shows that the variance of the principal
eigenvector increases with assortativity ρD. Furthermore, as shown in Figure 3,
E[x1] decreases with the increase of assortativity ρD. Similarly, we consider a
set of 11 real-world networks. We apply degree-preserving rewiring to each real-
world network to derive network instances with different assortativity. In other
words, we derive a class of networks that possess the same degree distribution as
a real-world network but different assortativities. Interestingly, we observe the
same, E[x1] decreases with increasing assortativity (see Figure 3(b)).

The decrease of E[x1] and the increase of the variance of the principal eigen-
vector components with increasing assortativity can be qualitatively explained
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Fig. 2. The components of the principal eigenvector in increasing order. Images (a)
(linear) (b) (semilogarithmic) are binomial graphs with different assortativity. Images
(c) (linear) (d) (semilogarithmic) are power-law graphs with different assortativity.
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as follows. As defined, the principal eigenvector x1 corresponds to the largest
eigenvalue λ1 follows

λ1(x1)j =

N∑
q=1

ajq(x1)q, (4)

where ajq = 1 if q is a neighbor of node j, or else ajq = 0. The j-th compo-
nent of the principal eigenvector (x1)j tends to be large if node j has a large
degree (number of neighbors) or if the components corresponding to its neigh-
bors are large. When ρD is large, high degree nodes prefer to link with other
high degree nodes. In this case, a high degree node possesses a large number of
neighbors, whose corresponding eigenvector components are again likely to be
large, whereas a low degree node connects to a small number of neighbors, whose
corresponding components tend to be small. Both a large variance in degree and
a large assortativity ρD contribute to a large variance V ar[x1] of the principal
eigenvector x1. This explains why variance V ar[x1] of x1 increases with ρD and
with a given assortativity, the power-law graphs have a larger V ar[x1] than the
binomial graphs (see Figure 2). Furthermore, since V ar[X] = E[X2]− (E[X])2
and xT1 x1 = 1,

E[x1] =

√
1

N
− V ar[x1], (5)

Correspondingly, both a large variance in degree and a large assortativity ρD
contribute to a small E[x1] of the principal eigenvector x1. Hence, E[x1] decreases
with increasing ρD and tends to be smaller when the degree variance is larger.
Moreover, considering Eq. (5), we can deduce the upper bound E[x1] ≤ 1√

N
.

Figure 2 compares as well the principal eigenvector x1 with the normalized
degree vector d = d√

dT d
in binomial graphs and power-law graphs (N = 500,

L = 1984) with different assortativities. The components of x1 and d are plotted
in the order of increasing magnitude. The difference between x1 and d is affected
by ρD, which will be further explored in the following part.

3.2 Relation between degree vector and principal eigenvector

In this section, we investigate the relation between the principal eigenvector and
the degree vector by their difference and linear correlation coeffi cient. The degree
vector has to be first normalized to quantify its difference with the principal
eigenvector. We propose two scalings of the degree vector d = d√

dT d
and d̃ = α

λ1
d,

where α is a constant. The corresponding difference vector between x1 and the
scaled degree vector is w = x1− d√

dT d
and y = x1− α

λ1
d, respectively. The overall

difference can be quantified by either the relative difference uTw (or uT y) or the
absolute difference wTw (or yT y), actually, the square sum or the sum of the
components in the difference vector respectively. The first scaling of the degree
vector d = d√

dT d
aims to obtain the same norm for the the degree vector and the

principal eigenvector:
√
dT d =

√
xT1 x1 = 1. The other d̃ =

α
λ1
d is motivated by

(x1)j =
1
λ1

∑N
r=1 ajr (x1)r ≤

di
λ1
and the constant α is determined (see Theorem
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3) as the one minimize the absolute difference yT y. Note that both linear scalings
of the degree vector will not change the linear correlation coeffi cient between the
principal eigenvector and the degree vector.

Theorem 3. The absolute difference wTw (or yT y) between the principal eigen-
vector and the degree vector is the smallest (wTw = 0 or yT y = 0) when the
spectral radius follows λ1 = N2

N1
, where Nk is the total number of k hop walks

between any two nodes which can be the same.

Proof. The absolute difference

wTw = (x1−
d√
dT d

)T (x1−
d√
dT d

) = xT1 x1−2
dTx1√
dT d

+
dT d(√
dT d

)2 = 2−2 dTx1√
dT d

.

(6)
Moreover, the generalized form of (4) for the k-th largest eigenvalue λk and
the corresponding eigenvector xk follow (xk)j =

1
λk

∑N
r=1 ajr (xk)r = α

dj
λk
−

1
λk

∑N
r=1 ajr (α− (xk)r), we will determine α so that yk = xk− α

λk
d has minimum

norm. Hence,

yTk yk =

(
xk −

α

λk
d

)T (
xk −

α

λk
d

)
= 1− 2 α

λk
dTxk +

α2

λ2k
dT d, (7)

is minimized with respect to α if − 2
λk
dTxk + 2

α
λ2k
dT d = 0 or α

λk
= dT xk

dT d
. Let

y = y1, we obtain

yT y = 1− (d
Tx1)

2

dT d
, (8)

using the α derived in the last step. In both Eq. (6) and Eq. (8), wTw = 0

and yT y = 0 if dTx1 =
√
dT d. In other words, when the principal eigenvector

is proportion to degree vector, w = 0 (or y = 0). Since Ax1 = λ1x1, dTxk =
λ1u

Tx1. The condition dTx1 =
√
dT d implies

λ1u
Tx1 =

√
dT d =

√
N2

where N2 = dT d. Since x1 = d√
dT d

, and uT d = N1, Lemma 3 follows. �

Notice that in some approximate mean-field models for virus spreading [10],
τ c ∼ N1

N2
= 1

λ1
. Furthermore, wTw = 0 (or yT y = 0) is a special case of uT yk = 0,

when λ1 = N2

N1
.

The relative difference wTu = uTx1 − dTu√
dT d

(yTu) is zero when the absolute
difference is zero. We explore the relative difference in general cases by consid-
ering the binomial graphs as an example. The sum of the principal eigenvector
uTx1 and the relative difference wTu as a function of the assortativity are shown
in Figure 4 to follow exactly the same trend, since the degree of each node, thus,
dTu√
dT d

remains the same when we change the assortativity by degree-preserving
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rewiring. When the assortativity ρD = 0, the binomial graphs are actually Erdős-
Rényi random graphs, for which λ1 ' N2

N1
when the network size is large [14].

Hence, both the absolute and relative difference are zero when the assortativity
is around zero. The sum of the principal eigenvector uTx1 decreases with the
assortativity ρD, as explained in Subsection 3.1.

3.3 Correlation between the principal eigenvector and the degree
vector

Recall that so far the best strategy to minimize the spectral radius by links/nodes
removal is based on the principal eigenvector. When the correlation ρ(x1, d)
between the principal eigenvector and the degree vector is positively strong,
we may use the degree vector instead of the principal eigenvector to determine
which links/nodes to remove, which will be further illustrated in Section 4. Here,
we investigate the linear correlation coeffi cient ρ(x1, d) between the principal
eigenvector and the degree vector as a function of ρD. Linear scaling of the
degree vector will not change the linear correlation coeffi cient. Hence, we consider
the original degree vector. When the absolute difference between the principal
eigenvector and the scaled degree vector is zero, the principal eigenvector is
proportion to degree vector. In this case, ρ(x1, d) = 1, which seldom occurs in
real-world networks. A strong positive correlation, not necessarily to be one, is
already interesting with respect to approximate the eigenvector strategy by the
corresponding degree vector strategy in minimizing the spectral radius.
Figure 5(a) depicts that ρ(x1, d) is mostly positively strong in the Erdös-

Rényi random graphs and Bárabasi-Albert graphs. However, ρ(x1, d) decreases
dramatically when the assortativity is decreased, actually around the minimal
assortativity. Similarly, we derive networks with different assortativities by ap-
plying degree preserving rewiring to each of the 11 real-world networks. As in
Figure 5(b), We are interested in how ρ(x1, d) changes with the assortativity
ρD in real-world networks. Figure 5(b) illustrates that, the correlation ρ(x1, d)
creases as the assortativity is decreased, especially around the minimal assor-
tativity, which is the same as observed in network models. In the simulations



10 Cong Li , Huijuan Wang and Piet Van Mieghem

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

­0.1

ρ(
x 1

,d
)

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

ρD

ER graph (N = 500, L = 1984)
BA graph (N = 500, L = 1984)

(a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

­0.1

ρ(
x 1

,d
)

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

ρD

American football
ARPANET80
ArpaNet
Dolphins
Florida
CElegansNeural
Gnutella3
Karate
LesMis
Surfnet
WordAdj

(b)

Fig. 5. The linear correlation coeffi cient between the degree vector and the principal
eigenvector as a function of the assortativity (a) in both binomial graphs (red marks
and line) and power-law graphs(blue marks and line); (b) in network instances derived
from real-world networks via degree-preserving rewirings.

of both network models and real-world networks, the most evident decrease is
observed in networks with a power-law degree distribution such as the C. elegans
neural network, the Gnutella 3 network and the WordAdj network.
These observations can be explained similarly as we explain the average/variance

of the principal eigenvector versus assortativity in Section 3.1. In general, if a
node has a large degree, its corresponding principal eigenvector component tends
to be large even when the assortativity is zero, due to (4). A large positive as-
sortativity implying large (or small) degree nodes tend to connect to other large
(or small) degree nodes, further enforces a large degree node to have more likely
a even larger principal eigenvector component compared to a small assortativity.
Hence, a negative assortativity will weaken the correlation ρ(x1, d). Note that
the correlation coeffi cient is not necessarily the maximum at the maximal as-
sortativity as shown in Figure 5, because here we examine the linear correlation
coeffi cient but not the rank correlation.

4 Application: degree vs. principal eigenvector strategy
in minimizing the spectral radius

In this section, we illustrate the possibility to replace the principal eigenvector
strategy by the degree vector in minimizing the spectral radius λ1 via an ex-
ample of node removal in power-law networks with different assortativities. As
mentioned in Section 2, so far the best node removal strategy removes the node
with the largest principal eigenvector component (x1)j . A widely applied strat-
egy to minimize λ1 by removing m nodes (a) removes the set of m nodes with
the highest component in the principal eigenvector of the original graph. The
corresponding degree vector strategy (b) removes the set of m nodes with the
highest degree in the original graph. We compare these two strategies in remov-
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ing m ∈ [1, 200] nodes in graphs with positive, zero and negative assortativity
(see Fig. 6) but with the same power-law degree distribution as in Fig. 5(a).
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Fig. 6. The decrease of the spectral radius by successively removing m nodes in power-
law networks. The square and circle dot dash lines show the decrease of the spectral
radius by strategies (a) and (b) separately.

Figure 6 shows that the decreases of λ1 by removing nodes with strategy (a)
and (b) are almost same when ρD is large. The eigenvector strategy (a) decreases
the spectral radius more thus performs better than the degree vector strategy
(b) when the assortativity is small. When the assortativity is large, the degree
vector is positively and strongly correlated with the principal eigenvector. In such
a case, the degree vector strategy, the simplest to compute, well approximates
the principal eigenvector strategy in minimizing the spectral radius.

5 Conclusions

The principal eigenvector is essential in characterizing the influence of link/node
on the spectral radius, whereas its topological meaning is far from well un-
derstood. This work, via both theoretical analysis and systematic simulations,
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contributes to the following aspects: (a) the average E[x1] (or variance) of the
principal eigenvector is shown and explained to decrease (or increase) with the
assortativity ρD; (b) the difference between the principal eigenvector and the
degree vector is proved to be the smallest, when λ1 = N2

N1
and (c) we illustrate

and explain why the correlation between principal eigenvector and the degree
vector decreases as ρD is decreased. In general, both a large variance (heterogene-
ity) in nodal degree and a large degree correlation (homogeneity in connection)
contribute to a large average and a small variance of the principal eigenvector
and a strong correlation between the degree and the principal eigenvector. As a
straightforward application of these finds, we illustrate that when the assorta-
tivity is large, we could approximate the well performance principal eigenvector
based strategy (to minimize λ1 by removing links/nodes) by the corresponding
degree vector, which is the simplest network property to compute.
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