N
N

N

HAL

open science

Distributed Content Backup and Sharing Using Social
Information
Jin Jiang, Claudio E. Casetti

» To cite this version:

Jin Jiang, Claudio E. Casetti. Distributed Content Backup and Sharing Using Social Information.
11th International Networking Conference (NETWORKING), May 2012, Prague, Czech Republic.

pp.68-81, 10.1007/978-3-642-30045-5 6 . hal-01531125

HAL Id: hal-01531125
https://inria.hal.science/hal-01531125

Submitted on 1 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01531125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Distributed Content Backup and Sharing
using Social Information

Jin Jiang and Claudio E. Casetti

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy

Abstract. This paper addresses the need for content sharing and backup
in household equipped with a home gateway that stores, tags and man-
ages the data collected by the home users. Our solution leverages the in-
teraction between remote gateways in a social way, i.e., by exploiting the
users’ social networking information, so that backup recipients are those
gateways whose users are most likely to be interested in accessing the
shared content. We formulate this problem as a Budgeted Maximum Cov-
erage (BMC) problem and we numerically compute the optimal content
backup solution. We then propose a low-complexity, distributed heuristic
algorithm and use simulation in a synthetic social network scenario to
show that the final content placement among “friendly” gateways well
approximates the optimal solution under different network settings.

Keywords: Content sharing, social networks, federated homes

1 Introduction and Motivation

The wealth of digital devices and appliances in everyday’s life has brought about
dramatic changes in our habits. Perhaps one of the most remarkable is the re-
liance on digital storage for whatever information content we own or produce. Of
course, no savvy user would rely solely on storing precious, irreplaceble data in
a single device and backup systems are now common in most households. More
recently, the availability of “cloud” storage services, aimed at consumers and
companies alike, such as Dropbox, Box.net, Ctera to name a few, has introduced
a new opportunity. In the latter case, a wideband Internet connection can be
exploited during idle periods to run background backups onto cloud storage.
One of the drawbacks of personal or cloud backup approaches is the fact that
data of potential interest of other users sit unused in a storage device. Let us
consider the following example. George has a set of pictures of the latest family
vacations and he wants to show them to his friend John, while, at the same time
backing them up. George remotely uploades the pictures to John’s NAS, where
a storage quota is reserved for such purpose; John is then notified that a copy
of the pictures now exists in his NAS and that he is welcome to have a look,
while keeping it in its NAS as a backup. For fairness, a similar quota for John’s
backups should be set aside at George’s. The example could be extended to a
close group of friends, as defined within social networks, and the potential of
such a scheme instantly become apparent. By leveraging typical social networks

indicators, such as interests, hobbies and preferences, and by having all personal
digital data appropriately tagged, the matching of remote users and content
to backup would allow to catch two birds with a stone: safe, redundant online
backup and social content sharing.

In this paper we will outline an architecture to realize this vision. In line with
recent “federated homes” networking architectures [1,2], we assume that home
is equipped with a gateway and a large number of interconnected devices within
the household. The gateway allows any content to be downloaded from outside
the household, stored on it, and accessed by satellite devices in communication
range of the home gateway. We also assume that, in keeping with the federated
home vision, multiple neighboring or remote home gateways can be connected
in a collaborative fashion, and can exchange various information. Although not
explored in this paper, let us assume that a home gateway can collect its users’
social networking data, e.g., a list of user’s friends and interests, friends’ locations
and whether they are in the federated home network or not.

The outlook is not as simple as the description implies, though. Firstly, there
are gateway selections issues. Choosing a friend’s gateway to back up data only
because mutual user interests match is not a sound policy from a networking
point of view. The remote gateway could have poor connectivity or it could
be overloaded. Even though friends in social networks are more likely to be in
nearby areas [3], the gateway could be located in a far away country. The remote
gateway should enforce a rigid quota management to avoid being swamped by
friends’ uploads. Additionally, there are management details to address: the user
must rely on the backed-up content to be readily available on the remote gateway
and it should be notified when the content is about to be deleted. If the content
is deleted, a second-best choice should be identified, based on the same criteria
that guided the former selection.

Our work falls into the same category as several recent research efforts tacked
the problem of multiple backups across different resources [4-6]. None of these
works, though, leverages the potential of social networking. Related to our prob-
lem are also the works on content placement exploiting information from social
networking. [7] proposes ContentPlace, which is a social-oriented framework for
data dissemination taking into consideration user interest with respect to con-
tent. A similar approach is taken in [8] where it is shown that mobility and
cooperative content replication strategies can help bridge social groups. Another
relevant work on an efficient social-aware content placement in opportunistic
networks is [9] in which the authors model the content placement as a facility
location problem.

In our paper, we devise an efficient content placement scheme to determine
where to back up the content from a user’s gateway to remote gateways belonging
to his/her social friends. As remarked above, placing content replicas “outside”
the home (i) consumes transmission bandwidth for uploading the content and
(i) incurs a storage cost on the remote friends’ home gateways. So we aim at
a strategy that mazimizes the friends’ benefit by trying to match content type
and friends’ interests while taking into account both the bandwidth constraints

between gateways and the storage space at the remote gateway. Thus, we model
this optimization problem as a Budgeted Maximum Coverage (BMC) problem,
as preliminary introduced in [10], and numerically obtain the optimal content
placement solutions under a synthetic social networking scenario. Next, we pro-
pose and evaluate some heuristic distributed algorithms that federated gateways
can implement to realize a social backup strategy. We evaluate the heuristics and
discuss the conditions under which they can approximate the optimal solution.

2 Model description

We consider N federated home gateways, GW; (i = 1,2,...,N), each reachable
through an Internet connection. A home gateway stores content for all users in
the corresponding household, setting aside a “friend quota”, @;, defined as the
available storage capacity for the content uploaded by friends of its users. We
will generically indicate by Cj, the bandwidth from gateway GW; to gateway
GWy, and by Cj; the bandwidth in the opposite direction.

We then assume that totally there are M users in the network, and each one
is registered on a single home gateway through which the user can access/store
the content. For the purpose of identifying which users are registered on which
gateway, we define an N x M matrix P whose generic element is given by:
P { 1 if U; registered on GW; (1)
* 0 otherwise.

where ¢ indicates the gateways, ¢ = 1,2,..., N, while j is the user index, 5 =
1,2,..., M.

As explained earlier, we assume that home gateways somehow collect the so-
cial information of their users. In particular, we are interested in collecting user’s
friend list and user’s interests. Also, gateways can collect friends’ registration
information (i.e., which friend of U; is registered on which gateway).

We define E; as friend list of user Uj:

Ej={U;: F(j,f) =1} (2)

where a friendship function F(j, f) tracks whether user U; and user Uy are

friends:
1 if U; and Uy are friends, j # f;

FG. f) = {O otherwise. (3)

As we have seen, a user and its friends cooperate to back up content, which
we generically represent as items. Items can be videos, photos or any other digital
content. In order to handle the mathematics, we assume there is a maximum of K
different items. A generic item k, k = 1,2, ..., K, is characterized by its size D*)
and classified into a content type [(e.g., movies, books, outdoor photography
...). Content types too are finite, , i.e. [= 1,2,..., L, where L is the interest
area size, i.e., the total number of content types considered in our system. The

association between an item and its type is assigned according to a uniformly
random distribution.

The user’s interests, i.e., the distribution of content preferences of the user,
is captured by an interest vector, defined as follows. Given an item of type [let
I;; denote the interest factor that user U; has for it, with 0 < I < 1. Thus, we
can outline user U;’s profile through its interest vector:

Tj:(Ij17[j2;-~-aljla---7IjL) (4)

where Zlel L 2 1 — 9. 17 is the probability that user U; is interested in a
content type out of the interest area L. Without loss of generality, we will just
assume Zlel Ij;=1or rJ =0, i.e., users do not have interests outside the area
L.

For the sake of notation simplicity, we also assume that every user has the
same average number of items to back up.

Following the definitions above, each user has the objective of finding a se-
lection of friends from the friend list, on whose gateways to back up its items.
The matching of item and remote gateway should benefit both the hosting users,
i.e., by closely matching their interests, and, it should transfer data effectively,
i.e., by maximizing the utilization of available bandwidth between the respec-
tive gateways. Clearly, these objectives are not the only possible choices, and
they lead to somewhat arbitrary weight formulations in the optimization prob-
lem. Through far from unique, such formulations will attempt to enhance the
benefits we have outlined above.

As previously observed, we cast the optimization problem as a BMC problem.
In BMC problems, a collection of sets o = {01, 02, ..., 0.} have associated costs
{¢;}7. The o sets are defined to comprise elements X = {1, z2,...,z,} whose
associated weights are {w;}"_,. The goal is to find a collection of subsets o’ C o,
such that the total weight of elements in ¢’ is maximized and their total cost is
bounded by a budget L. The BMC problem is known to be NP-hard [11].

Gateway GW; is assumed to have already collected user U;’s friend list Ej.
We define 0; = {0j1,052,...,0jn,...,0;n} the collection of subsets o; for user
Uj; here, subset 0;, = {Uy € Ej : P,y = 1} denotes the set of friends of user
U; who are registered on gateway GWj,, h =1,2,..., N. We recall that P,y =1

means that user Uy is registered on gateway GWj,, and that Uy € E; means that
(k)
(o5n

the subset oy, is defined as the cost of uploading the content item & of size D*)
onto the gateway GW},, which can be defined as: K= p),

(ojn)

user Uy is in the friend list of user Uy, so o, C E;. The cost ¢) of selecting

J
The element set in our problem obviously is the user U;’s friend list ;. For

each element/user Uy € E; (user Uy is a friend of user U;), we can define the

(k)
(Uf)

onto gateway GW), where Uy is registered. Such benefit will chiefly depend on

the interest Iy; that Uy has in the uploaded content. The friend’s interest also

has a subtle implication for the content owner U;: the more Uy is interested in

the backed-up items, the longer it is likely to store them. Additionally, we factor

weight as the benefit w that element Uy can obtain when item £ is uploaded

in the ease of accessibily of the content when its owner U; wants to retrieve
it, i.e., the bandwidth between the hosting gateway and the uploader gateway.

The ease of accessibility is also a plus for Uy, because shorter retrievals are less
(k)

penalizing for its uplink capacity. We can thus define W,y as:
k
ng)f) =TI~ Ch (5)

where I; denotes the interest of Uy in items of type [which content k belongs
to and C; is the bandwidth of the link from the hosting gateway GW}, to the
uploader gateway GW;. Although bandwidth and user interests are, by defini-
tion, quantities that may vary over time, we can safely assume that the time
scale of their variations is larger than the time scale of the algorithm execution.

Our constraint is the gateway friend quota, @;, which we recall is the available
storage capacity for data uploaded by friends.

Finally, our problem can be formulated as follows:

o K k k
mazimize Y ., ZUfeEj wEU?f) . y;)

subject to Zszl D) -xglk) <Qpn

k k
Seatn 2 vy

o,y € {01}

where I’;Lk) = 1 indicates that gateway GWj}, is selected to host a backup of

content item k, while y(k) = 1 means that user U;’s associated home gateway is
chosen as backup for the content item k. The first constraint limits the limitation
of available friend quota on each home gateway; and the second one applies to
the case of one gateway with multiple associated users: if one user is chosen as
backup for one item k, its associated gateway must be selected too.

The number of Boolean decision variables (:r:gk) and y}k)) is O(K(N)), where
() denotes the average number of friends per user. The number of constraints is
O(K(N)+ M). The solution time required by the Gurobi solver for an instance
with approximately 1,000 gateways, 3,000 users and an average of 5 content
items for each user to share or backup, is about 30 minutes using a 4-core 2.3
GHz system and a 4 GB RAM.

3 Distributed Heuristics

The greatest hurdles in translating the optimization model into a working im-
plementation are (i) that the model paints a static picture, where all users take
instantaneous decisions and (ii) that decisions are taken by a centralized, knowl-
edgeable entity.

In this section we propose a set of distributed heuristic algorithms that strive
to achieve the same goal as the model outlined in the previous section. The
algorithms take two different viewpoints: that of participating content owners
who have data to share or back up and that of remote gateways who provide
their own storage space for their social friends. In both cases, we follow the same
arguments used in the optimization problem definition.

From the viewpoint of content owners, not only do they wish to back up or
restore the data as fast as possible, but, in the long run, they also wish that
the remote gateway keeps the content for as long as possible. Therefore, content
owners are naturally disposed to choose friends from whose gateways they can
retrieve the backed up items more quickly. Also, they would like friends to be
interested in the content they upload, because such friends are more inclined to
store it for a long time. If one wants to back up their kid’s pictures, what better
place than the grandparent’s gateway?

At the receiving end, the remote gateway can display two types of behavior
that are arguably worth investigating. One is a selfish behavior: regardless of the
backup requests received by friends of its users, the remote gateway will devote

its “friend quota” only to maximize the interests of its associated users, i.e.,
(k)
(Us)

cooperative behavior: the remote gateway fills up its friend quota while trying
to maximize the whole benefit of eq. (5), hence accounting for both its users’
interest and the bandwidth toward the content owner’s gateway.

We will address either viewpoint through a specific distributed algorithm: a
Greedy Placement Algorithm (GPA) run by content owner gateways in order to
identify the most suitable places where to back up their items, and the RePlace-
ment Algorithm (RPA), run by each remote gateway upon receiving a backup
request.

based only on the first factor in the benefit w of eq. (5). The other one is a

3.1 The Greedy Placement Algorithm

We assume that a user has available all items it wants to back up when the
GPA procedure is started. Further, we assume time to be slotted in intervals
of fixed length and that the starting time slot of GPA procedure on a gateway
is random. On each gateway, the sequence in which users start GPA is also
randomly determined. To achieve the fairness among all the users in the system,
each user can run GPA only once per time slot.

When starting the GPA, a gateway GW,; will have already collected the
following information from each of its associated users Uj:

— the friend list Ej;

— the remote friend gateway list RG; which includes the remote gateways on
which user U;’s friends are associated;

list K; of items to back up;

— for each item k € K, the benefit wE[k])f) of each friend Uy € Ej; as defined in

Section 2;

— for each remote friend gateway GW), € RG}, a quantity referred to as gate-
way aggregate benefit wzk) = ZUfeEj wgf])f) - Ppy (recall that Ppy = 1 indi-
cates the friend Uy is associated to gateway GWp,);

— a query list Z; where each element is a pair (k, GW},) representing an item
and the IDs of a remote friend gateways, sorted by their gateway aggregate
benefit w}bk).

The main idea behind GPA, detailed in Algorithm 1, is the following: every
time the algorithm is scheduled, user U; sends a backup request to the remote
friend gateway whose ID is in the element that tops the query list Z;. Such
element is then removed from the list if the request is accepted; otherwise, it
is pushed back to the bottom of Z;. After sending backup requests on behalf
of a user U; for a total item size of S bytes, GPA stops and it is rescheduled
randomly in the next time slot.

Algorithm 1 Greedy Placement GPA(U;, Z;)

Require: RETRY counters for all elements of Z;
size < 0
loop
pop_front element (k, GW}) from Z;
if RETRY (k, GW,) > MAX_RETRY then
continue
end if
if size+ D® > S then
insert_head element (k, GW}) into Z;

break loop
else

size = size + D™
end if

send Backup_ REQ to GW), for k
if Backup rejected then
push_to_back element (k, GW},) into Z;
RETRY (k, GW;) = RETRY (k, GW3) +1
end if
end loop
if Z;! =0 then
schedule GPA(Uj;, Z;) next time slot
end if
return RETRY counters for all elements of Z;

Since the query list Z; of user U; is sorted by the gateway aggregate benefit
for the corresponding remote gateway, the pop_front operation corresponds to
extracting from the list the item %k and the ID of the best candidate gateway
where it can be backed up in the current time slot. A Backup_RE(Q) message is
then sent to such gateway.

Once a gateway receives the Backup_REQ), it will first check whether it has
already cached this item. If not, and there is enough free space in its friend
quotal, it will set aside the corresponding size for this item in its storage space.
A Backup_RE P message is returned to the item owner notifying it whether the
backup request was accepted. If the request is accepted, the content owner will
start the upload. If the request is denied, or no reply is received, the correspond-
ing list element is pushed at the bootom of the query list, for a later retry, up
to a limit of MAX_RETRY times.

Upon reaching the S bytes backup limit, and if the query list is not empty, the
gateway schedules the next run of GPA, and the next batch of backup requests
for user Uy, at the next time slot. In order to achieve fairness across the federated
network, all users should use the same upper backup limit .S.

We finally remark that GPA can easily be modified so that the gateway
attemps to back up a single item k only onto a limited set of friends’ gateway. In
this paper, we have only considered the most general (and most challenging) case
in which the gateway tries to back up all items on all the friends’ gateways. Using
the above notation, when GPA evantually stops, an always successful gateway
will have dislocated |RG;| - | K| items across the federated network, for each of
its users.

3.2 The Replacement Algorithm

If remote gateways “passively” accepted all backup requests until their quota
is filled up, their collection of backed up items would not match the optimum
allocation, being strongly dependent on which users start the GPA procedure
first, hence which greedy requests they receive first. After all, the friends of the
users associated to a gateway share the quota on this gateway by competing with
each other. In order to alleviate such unbalancement, we introduce a second
algorithm, called RPA, RePlacement Algorithm, to be run by every gateway
upon receiving a backup request and discovering that the quota is already filled
up. We assume that a gateway GW; holds a list B; of items backed up in its
storage space, sorted by benefit, while we indicate by ¢; the free space still
available for backups out of the friend quota.

As explained above, when a gateway GW; receives a Backup_RE() message
for a new item k of size D®) | it will check whether it has the enough storage space
for it; if the space is not sufficient, the gateway will compute the aggregate benefit
wz(k) of the item according to eq. (5) and start the RePlacement Algorithm,
described in Algorithm 2.

The gist of the RPA procedure is the following. In order to maximize the
benefit of the users associated to the receiving gateway, the replacement strategy
considers the removal of backed up items with lower benefit than the incoming
item. The B; list is sorted by benefit, and RPA checks if there are enough items
with lower benefit than wl(k) that can be dropped to leave room for the incoming
item. A second check verifies if the product of the total benefit and total size of

1 'We will discuss the case of no free space in the next subsection.

Algorithm 2 The RePlacement Algorithm RPA(GW;, k)

Require: Bi,qi,wik),DU“)
replace < false, FreeSpace < q;
DropWeight < 0, DropSize < 0
while B; # () do
select k' € B; with the lowest benefit
DropWeight <— DropW eight + wgk,)
DropSize < Dropsize + D*)
FreeSpace + FreeSpace + D*)
if wik) < DropWeight then
replace < false
break
else if w§k> == DropWeight then
if DropSize < D™ then
replace < false
break
else
replace < true
break
end if
else
if D™ > FreeSpace then
continue
else
replace < true
break
end if
end if
if replace and D™ . wgk) < DropSize - DropWeight then
replace < false
end if
end while
return replace

the items selected for dropping is smaller than the benefit/size product on the
incoming item. If so, the latter replaces the dropped items in the storage space
of GW;. Ideally, the second check is aimed at preserving the network efficiency,
so that a large backed up item is not easily dislodged by much smaller item with
a marginally higher benefit.

If the remote gateway GW; replaces content item k', a Backup_D E L message
must be sent to inform the content owner that it needs to find a new gateway
where to store k’. The content owner will thus place a corresponding element in
the Z; queue of algorithm GPA (or start a new instance of GPA if Z; has been
emptied in the meanwhile).

10

The running time cost of GPA and RPA is minimal. For each user for which
GPA is run, the length of the query list Z; is O(KE), where K is the average
number of items per user and E is the average number of remote friend gateways.
So for the individual gateway the running time is O(K Em/n) with m/n denoting
the average number of users per gateway. As for the running time of RPA, the
algorithm searches the whole the backed up item list B; to check what can be
replaced, while the maximum number of iterations depends on the number of
remote friends and their own items to back up. So the complexity of RPA for
one gateway also is O(K Em/n).

4 Evaluating optimal model and distributed heuristics

We will now investigate the validity of our approach by following two main di-
rections. Firstly, we numerically solve the model and derive the maximal benefit
according to eq. (6). The results will be benchmarked against two other, simpler
backup (re)placement strategies, to evaluate the gain that comes at the expense
of extra complexity in the backup strategy. Secondly, we compare the content
allocation resulting from the optimal solution with what is achieved through the
distributed heuristics. In this case too, we will explore variants of GPA and RPA.
Our evaluation will necessarily target a synthetic scenario. Recreating all the
conditions and variables of an actual online social network would be a daunting
task. We thus extrapolate its essential features and create a scaled-down version
for our simulation following the procedure we outlined and validated in [10].

4.1 Optimization, heuristics and variants thereof

In order to extract meaningful comparisons between the optimization approach
and the distributed heuristics, sharing the same scenario is not enough. On
the one hand, we used Gurobi [12], which runs a variant of the branch-and-cut
algorithm, to numerically solve the BMC problem in eq. (6). The solution yielded
an optimal joint content item placement, i.e., the set of candidate home gateways
to be selected for each content item, as well as the optimal benefit value that each
user can obtain by being selected. On the other hand, we simulated the heuristic
approach on an ad-hoc simulator. The GPA and RPA algorithms were stripped
to their bare bones (i.e., not considering the actual content file transfer while
working on GPA timeslot granularity) so that we could focus on the resulting
allocation after requests, allocations and replacements have settled. Finally, we
compared the steady-state outcome to what the optimization had predicted.

We have tried to gauge the effectiveness of optimization and heuristics not
only by comparing one against the other, but also by running some variants of
either approach with the aim of catching a glimpse of what we would stand to
lose or gain, if we chose a simpler (or a more convolute) strategy than the ones
outlined in Sec. 2 and 3.

As far as optimization was concerned we evaluated three different content
placement strategies. The first strategy is the joint optimization method, de-
scribed in Section 2, in which the friends who have the largest interest in the

11

corresponding content item and the highest uplink bandwidth will be selected
first (assuming their quota is not used up). The second strategy is a bandwidth-
based method, in which friends reachable through gateways with the highest
bandwidth will be selected, regardless of their interests in the uploaded items.
The optimal bandwidth-based placement is still obtained from eq. (6) by chang-
ing the benefit definition into wglkj)f) = C};. The last one is a random method,
where users randomly choose what friends to share the content item with, as
long as enough quota is available, not considering any other factors.
Concerning the heuristics, we considered three versions of GPA:

— GPA-j, which corresponds to the definitions outlined for Algorithm 1;

— GPA-b, where the benefit of a friend Uy on GW}, just depends on the uplink
bandwidth from GW), to GW; (where Uj is located) , i.e., wg? = Chi;

— GPS-r, where elements in Z; are randomly sorted.

Likewise, we evaluated two versions of RPA, RPA-ns and RPA-s differing by the
sorting of B;. The former corresponds to the definitions outlined for Algorithm 2.
In the latter, the benefit is defined just as the sum of interests of the associated
users who are also friends of the content owner, disregarding the uplink band-
width to the owner gateway; This behavior is “selfish”, hence RPA-s, because
the receiving gateway only tries to maximize the interest of its own users.

One final variant, which affects the GPA procedure, concerns the size of
items to back up. At first, we assumed that all items have the same size. While
not realistic per se, it could be meaningful if the implementation of the backup
system were limited to a single class of items. In this case, tagged as “fixed size”
in our results, we assumed all items to have a 10 MB size. Then, we considered
items of any possible size within a bound. Such “variable size” case features
random item sizes following a truncated exponential distribution with expected
value of 10 MB and maximum size of 50 MB. While studying the latter case,
though, we soon found out that allocation results were dangerously biased toward
smaller items, so we introduced a fair item size balancing mechanism in GPA.
Items were divided into size groups of 10 MB each and GPA was modified so
that a backup request for one item was sent only if the total amount of data
already backed up in the item group did not exceed the total amount already
backed up for items of the first size group bigger than it. For instance, if a 15
MB item in the 10-20 MB size group increased the total amount of data already
backed up for that size group to 95 MB, and the total amount of the 20-30 MB
size group were still 90MB, the request would be put on hold.

4.2 Performance Evaluation

Our first set of plots aims at comparing the optimization results, in their three
variants, with the corresponding three variants of the distributed heuristics in
which the GPA algorithm alone in employed. The rationale of such comparison
is to show the importance of the replacement management introduced by RPA
(which is not used in these first results). For reason of space, we cannot show

12

the whole possible parameter space, so we will just focus on a few representative
cases to prove our point. Throughout the section, the number of gateways is
N = 1000, the number of users is M = 3000 and the number of item types is
L = 10. Results with L = 50 and L = 100 were qualitatively similar.

45

451
——Joint optimal
407 ——Bandwidth-based optimal} -~ —7 - ——e———
-o--Random IUP LS S
351 -~ GPA-j 5 " L
- 400 -

_ GPA-b 3 o
5% o GPAr s
c
& 25 c§ -
© o 35 T
& 20 g [it ettt Setietts SR
[o
L g K///——

10 sor —GPA-j

[S e -~ GPA-j + RPA-s
5 P ---GPA-j + RPA-ng
o~ —Joint optimal
050 100 150 200 250 300 350 400 450 500 %7700 200 300 400 500 600 700 800 900 1000
Quota Size of Each Gateway (MB) Time Slot
(a) Variable quota, fixed item size. (b) Q:=500MB, fixed item size.

50

- - 50r
—Joint optimal

45| —— Bandwidth-based optimal

40l| o Random / P I e s
s

-&- GPA-j
GPA-b

o GPA-r st

N
S

Average Benefit
3
Average Benefit
w
&

(%)
S

[—GPA
10 - - GPA-j + RPA-s
I D S 25} ---GPA-j + RPA-ns
5 g @R TITEONT GPA-j (no faimess) + RPA-ng
—om 0T — Joint optimal
0 50 100 150 200 250 300 350 400 450 500 2 500 1000 1500 2000 2500 3000
Quota Size of Each Gateway (MB) Time Slot

(c¢) Variable quota, variable item size. (d) Q;=500MB, variable sizes.

Fig. 1: Avg. user benefit obtained by different methods under different cases.

The plot in Fig. 1a clearly ranks the optimization and heuristics variants in
terms of average user benefit as defined in eq. (5), for various quota constraints
and fixed item size. It shows that jointly optimizing bandwidth and benefit is a
clear winner. Even though the average benefit is low (due to the an average of
three users per gateway sharing the same quota), the advantage of finding an
optimal allocation for backed-up content depending on interest and bandwidth
is clearly visible. Additionally, GPA heuristics alone do not match the joint opti-
mization results, as expected. Similar conclusions can be drawn for the variable
item size case in Fig. 1c, where GPA-j fares even worse.

13

In the next set of results, we let receiving gateways run the replacement
algorithm, RPA, in its two (selfish and non-selfish) versions. Fig. 1b plays out
the @ = 500M B quota case over time, in the same scenarios just examined.
It shows that, given some time to converge, GPA-j and RPA-ns together yield
an allocation that progressively corrects the initial uneven backup distribution
provided by the distributed implementation of GPA-j alone. The selfish version
of RPA, RPA-s, instead shows that if the owner and the storing gateway are not
on the same page, as it were, when deciding what items are preferable to backup,
the performance reverts to that of GPA-j alone. The selfishness of RPA, however,
seems to have a lesser impact in the variable item size case, shown in Fig. 1d,
where we also plotted a run of GPA-j without the fair item size balancing (tagged
“no fairness” in the legend). The use of size balancing, though of marginal impact
on the average user benefit, comes in handy in order to control the size of backed
up items, as will be shown below.

101
59* »_//,,»«f-""
g -
< gl SR
1%2] -
2 B
2 7
3 ’
2 6
o
S st
HE
N

L D gl

. o 3
L & ol
oz f — Joint optimal g ? —— Joint optimal
01F 7 - - GPA-j < 4L -- GPA-j + RPA-ns
L, ! ---GPA-j + RPA-ng GPA-j (no fairness) + RPA-ng
% 1 2 3 4 5 9750 100 150 200 250 300 350 400 450 500
Backup Redundancy Quota Size of Each Gateway (MB)

Fig. 2: Backup redundancy CDF; fixed item size and @; = 500MB (left). Avg.
backed-up item size as a function of gateway quota; variable item size (right).

We next plot the backup redundancy, i.e. the average number of a user’s
own items that have been replicated onto its friend gateways, upon reaching
convergence of the distributed heuristics. The CDF of the redundancy is useful
to understand the thoroughness of the backup process. In the left plot of Fig. 2,
RPA-ns allows the remote gateway to replace the items (all of the same size) with
smaller benefit and improve the storage thoroughness as much as the optimal
method (the two curve indeed overlap). Finally, the right plot of Fig. 2 reports
the average size of items backed up in the “friend” storage quota at remote
gateways, when convergence is reached. Recalling that the average item size in
the variable item case is 10MB, we can conclude that the loss of average user
benefit with respect to the optimal case shown in Fig. 1d is offset by a fairer
distribution of item sizes in the gateway storage across the federated network
(i.e., the average size of backed up item achieved by GPA-j and RPA-ns is just
10% smaller than the average item size in the system, as opposed to 30% smaller

14

in the joint optimization case). Also, the use of fair item size balancing with GPA
proves of some consequence to achieve this result.

5 Conclusions

In this work we addressed a novel approach to content sharing and backup in
home networks. We envisioned a system where content is placed “outside the
home” in a cloud formed by federated home networks and its location is selected
exploiting the user’s social networking information. We studied its performance
in terms of the benefits that remote gateways and their users can enjoy when
friends choose them to back up (and share) their content. We defined an op-
timization problem and compared its numerical solution with several flavors of
distributed heuristics.

6 Acknowledgments

This work was partly funded by the European Union FP7, under grant agreement
258378 - FIGARO project and by the Italian Ministry of Education and Research
under the PRIN project GATECOM.

References

1. The FIGARO FP7 ICT project. http://www.ict-figaro.eu/

2. S. Defrance, R. Gendrot, J. Le Roux, G. Straub, T. Tapie. Home Networking as a
Distributed File System View. HomeNets, August 2011.

3. L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improving geographical
prediction with social and spatial proximity. 19th ACM WWW, April 2010.

4. N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula,
and J. Zheng. PRACTI replication. USENIX Symposium on Networked Systems
Design and Implementation (NSDI), May 2006.

5. V. Ramasubramanian, T. Rodeheffer, D. Terry, M. Walraed-Sullivan, T. Wobber,
C. Marshall, and A. Vahdat. Cimbiosys: A platform for content-based partial repli-
cation. NSDI, August 2009.

6. A. Post, P. Kuznetsov, and P. Druschel. PodBase: Transparent storage management
for personal devices. USENIX International Workshop on Peer-to-peer Systems,
February 2008.

7. C. Boldrini, M. Conti, and A. Passarella. ContentPlace: social-aware data dissemi-
nation in opportunistic networks. ACM MSWiM 2008, ACM, October 2008.

8. E. Jaho and I. Stavrakakis. Joint interest-and locality-aware content dissemination
in social networks. IEEE/IFIP WONS 2009, February 2009.

9. P. Pantazopoulos, I. Stavrakakis, A. Passarella, and M. Conti. Efficient Social-aware
Content Placement in Opportunistic Networks. IEEE/IFIP WONS 2010, February
2010.

10. J. Jiang, C. Casetti. Socially-aware Gateway-based Content Sharing and Backup.
HomeNets, August 2011.

11. S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39-45, 1999.

12. Gurobi optimizer. http://www.gurobi.com/html/products.html.

