N

N

BPRules and the BPR-Framework: Comprehensive
Support for Managing QoS in Web Service Compositions
Diana Elena Comes, Harun Baraki, Roland Reichle, Kurt Geihs

» To cite this version:

Diana Elena Comes, Harun Baraki, Roland Reichle, Kurt Geihs. BPRules and the BPR-Framework:
Comprehensive Support for Managing QoS in Web Service Compositions. 12th International Confer-
ence on Distributed Applications and Interoperable Systems (DAIS), Jun 2012, Stockholm, Sweden.
pp.222-235, 10.1007/978-3-642-30823-9_ 20 . hal-01527650

HAL Id: hal-01527650
https://inria.hal.science/hal-01527650

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01527650
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

BPRules and the BPR-Framework:
Comprehensive Support for Managing QoS in
Web Service Compositions

Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs

University of Kassel
Distributed Systems Group
Wilhelmshoeher Allee 73, 34121 Kassel, Germany
{comes,reichle, geihs}@vs.uni-kassel.de
baraki@student.uni-kassel.de
http://www.vs.uni-kassel.de

Abstract. For a successful collaboration between enterprises, Web ser-
vices and service compositions need to fulfill certain QoS (Quality of
Service) requirements so that they can be trusted by their clients. Thus,
the best services have to be chosen for the composition, the performance
of the composition needs to be monitored and in case of QoS deviations,
appropriate management actions are required. We propose the BPRules
language and the BPR-framework that offer novel capabilities and im-
proved flexibility for the management of BPEL processes with regard to
QoS concerns. The BPRules language allows to specify the QoS mon-
itoring of BPEL processes and offers a variety of management actions
for controlling the process and for the improvement of its QoS behavior.
Thereby, the BPR-framework provides the necessary components to per-
form the QoS monitoring and to execute the management actions. For
the selection of high quality services, the BPR-framework comes with effi-
cient selection algorithms, like our OPTIM _PRO algorithm. We present
the features of BPRules that we consider as indispensable for managing
the services’” QoS behavior.

1 Introduction

Web Services gained much interest through their reliance on XML based stan-
dards (e.g. SOAP, WSDL) and their accessibility over the Internet. Web services
from different partners may cooperate to form a business process that delivers
a higher business value to its clients. In a service oriented architecture (SOA),
business processes are commonly realized as Web service compositions. The Web
Services Business Process Execution Language, shortly WS-BPEL [7] (or BPEL)
has emerged as the standard technology for executing such a process. Services
need to offer and maintain adequate quality, also known as Quality of Service
(QoS) (e.g. response time, availability, reliability) to accomplish clients’ expec-
tations. Usually, the QoS values that were negotiated between the client and the

2 Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs

service provider are kept in a service level agreement (SLA). We assume that in
future service markets, there are multiple services offered from different service
providers having the same functionality but with different service levels. Thus,
choosing the services with appropriate QoS levels is an important issue for the
success of the business process. Unfortunately, undesired situations, like a service
becoming unavailable or not responding in the desired time frame, might hap-
pen in a dynamic environment like SOA. The malfunction of one single service
might cause the failure of the entire process and lead to clients’ dissatisfaction.
In order to avoid such situations, the business process needs to be continuously
monitored and immediate management actions have to be undertaken to im-
prove the business process behavior. In this paper, we address exactly these
challenges and propose the BPRules language (Business Process Rules Lan-
guage) and the BPR-framework which offer novel management capabilities and
flexible monitoring of QoS for BPEL processes. The rules specified with BPRules
are executed within our BPR-framework, which is responsible with the monitor-
ing of QoS and triggering appropriate corrective actions on the business process
when undesired QoS values are measured. Specifying the rules properly may pre-
vent possible SLA violations and ensures a better control of the BPEL process.
We especially designed BPRules with features that we envision as mandatory
for the QoS management of business processes. Among the features of BPRules
are: flexible QoS data retrieval, section control, instance-set handling, a correc-
tive actions set including flexible service selection methods and a dynamic rule
set change. The BPR-framework and BPRules go beyond the state of the art by
offering novel features like instance set handling and a dynamic rule set change,
but also by improving the flexibility of already established features as e.g. for
QoS data retrieval, section control and an advanced decision and control support
for the business analyst. With regard to these features BPRules provides more
sophisticated means to specify management rules compared to already existing
approaches. Improved flexibility is also achieved with regard to the service selec-
tion strategies, where for each section of the process a different service selection
algorithm can be employed depending on the section size (number of involved
services) and the expected number of service candidates. Since QoS dimensions
vary over time, we designed the BPR-framework to be flexible when new QoS
dimensions or new corrective actions need to be considered.

The remainder of the paper is structured as follows. In section 2 we present
some foundations about BPEL and QoS. Section 3 presents the BPRules lan-
guage and its features. The architecture of the BPR-framework is described in
section 4. Finally, we compare our approach with related works in section 5 and
conclude the paper in section 6.

2 Service composition and QoS

2.1 Overview

WS-BPEL [7] is a language for the specification of service compositions and
their execution. A BPEL process may consist of several activities, like invoke for

BPRules and the BPR-Framework 3

calling a Web service, activities for defining loops (e.g. while, repeatUntil) and
conditional activities (e.g. if). The activities can either be called sequentially
(nested inside a sequence activity) or in parallel (nested inside a flow activity).
A BPEL instance may be started with the arrival of a request message from the
client by the receive or the onMessage activity. After processing the request, the
response may be sent back to the client by the reply activity. As an example
we consider the bookshop process for buying books in an online shop, which we
implemented using BPEL. The process starts with the arrival of a request from
the client, which contains the list of books the client wants to purchase. Then,
the stock service is invoked and it verifies, whether all of the books from the
list are in stock. If this is not the case, the distributor service is invoked to
purchase the missing books from a book wholesaler. If the distributor service
returns several books with different prices, the books with the minimum prices
are selected to be bought. The books are assigned to the client’s bill and the
billing service is invoked for creating the bill. Finally a bank service is invoked
to make the withdrawal from the clients’ credit card to the shop account.

We considered QoS dimensions like availability, reliability, response time and
cost, but the framework is not limited to these dimensions as it can be easily
extended to other QoS properties as well. In our framework, we interpret the QoS
of a Web service as described by Zeng et al. [2]. Response time is computed as
the duration of the time when the service operation was requested and the time
when the result is received by the requestor. It is the sum of the transmission
time and the processing time. The cost of the service is the price of invoking
an operation of the service. Awvailability is the probability that the service is
accessible. Reliability is the probability that the request is responded correctly
in the expected time frame.

2.2 Service Composition representation

In the BPR-framework service compositions are represented as trees. This is
achieved by transforming the BPEL description file into a BPEL tree. The BPEL
activities are represented as tree nodes and the tree structure is built from the
BPEL XML file structure. We consider only the activities, which are relevant
for the QoS monitoring (e.g. partnerlinks are not included). The BPEL engine
creates a new process instance for every request that it receives from the client. In
the BPEL process, an abstract service represents the functionality of the desired
service. We assume that there are multiple concrete services that provide this
functionality but at different QoS levels. Selecting the right concrete services for
the composition is known as the service selection problem and is known to be
NP-hard [9]. We give a short insight of how we handled this problem in section
3.1 and further details can be found in [4]. In Figure 1 we consider a simple
BPEL tree for illustration purposes. We have four abstract services: Sa, Sp,
Sc, and Sp. We denote with S.V the service variants being the set of concrete
services that can realize the service S. The QoS requirements for the service
selection are specified using our BPRules language.

4 Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs

BPEL tree Sequence QoS Requirements:
E fopy= max(a/r)
a>05
k= ~ r<75
) Selection algorithms’ results:
~
Sp.V={S6,S7 } 1) Optimal search (Global) Brute Force

Se:a5=0.93,1g=9 | V=(515:8550) Foy= 001979
o _ 2) Heuristic search OPTIM_PRO
S7:a7=0.94,17=14 | \Z(s,5,5,S;) Foy=0.01979
<
(\ - OPTIM_PRO lteration Example
),) r00t.V= {[V1246 =(S1,52,54,6)]}
— if true if false rootcopy.V= {[Vizss =(S1,52,5s5,S6)]}
Sav={s;} P1=02

p2=0.8
a;= 0.98
n=4

root.VQ={ [V1246 (2=0.7041,r=36)]}
rootcopy.VQ = {[(v12s6(2=0.76,r=38.4)]}

N 100t.VFon= {[V1245(Fob= 0.01956)]}
(\ @\ FOOICOPY Vo Vis (Fas=0.01979))
- / 7 / Cheg ifsrootczzpy,\(q)f\u(lfill the
0S constraints? Yes
Sg.V={S;,S3 } Sc.V={S4,Ss } Check if rootcopy.VFop > root.VFgp,
S,:@=097,1,=17 Sa:@=0.92,1,=2 | Yes => root € rootcopy

Sy @;=091,15=15 Ss: @5= 095, 15= 3 | 100LV = {[Vizs =(S1,52.85.Sol}

Legend

Sa.Ss.Sc.Sp Abstract services; S; Concrete service for realizing the abstract service

a; availability for service S; ; r response time; p; probability to execute branch i; k — iterations
for the while; X.V variants of the activity X; X.VQ QoS values for the variants in V of activity X

Fig. 1. BPEL Tree example

3 The BPRules Language

Guaranteeing the fulfillment of the QoS requirements needs runtime monitoring
and management if there is a risk of QoS violations. BPRules is a rule-based
language that offers management capabilities with regard to the QoS behavior
of single Web services and Web service compositions. The business analyst may
specify rules for the service process by stating what corrective actions should
be undertaken if specific QoS requirements are not met. Appropriately chosen
rules enable a proper execution of the business process even when unpredictable
problems occur (e.g. a service is not accessible). The rules are specified in BPR-
documents in the BPRules language and are processed by the BPR-framework.
Corrective actions might rank from just notifying the interested parties about
certain events, over starting or stopping the process to actions like selecting
and replacing some services with others that provide better QoS. The rules
are specified in XML and the syntax is validated against the BPRules XSD
schema. We developed BPRules with the following design rationales in mind:
simplicity, expressivity, reusability and separation of concerns. BPRules is simple
to use because rules are specified in XML. The business analyst who specifies
the rules is not required to have any programming skills. BPRules is expressive
because it provides various features for QoS management, as will be shown in
the next section. Reusability is supported by the possibility of reusing elements
specified inside the BPR-document. Elements are identified by ids and can be
reused throughout the BPR-document by simply referencing the id. Also other
BPR-documents can be included or external BPR-documents can be referred to

© 00U WN -

BPRules and the BPR-Framework 5

by their URI. We achieve separation of concerns by specifying rules in BPR-
documents which are stored separately from the business logic.

A regular BPR rule consists of a QoS condition which is monitored and the
corresponding action which is triggered when undesired QoS values are mea-
sured. The action part in turn might enclose several BPR corrective actions
available in the actions set of BPRules. A BPR-document contains several ele-
ments like sections for the specification of sub-orchestrations and rule sets for
grouping rules together. We designed BPRules with several features that we en-
vision as mandatory for the QoS monitoring and management. In the following
we give an overview of these features.

3.1 BPRules features

Flexible QoS data retrieval: Interpreting and processing the QoS data may
be dependent on the period of time when the execution of the process took place.
For example, past QoS behavior may be retrieved for a report or analysis while
current QoS behavior malfunction may be remediated by updating the process at
runtime. With BPRules we can specify rule sets that consider process instances
from a specific period of time. For instance, the period may be a time interval
in the past or might range from a moment in the past till the actual moment. It
can be specified as a concrete time interval (with a start and end date/time) or
as a relative period in the form: last = time-unit (e.g.: last 10 hours).

Section Control: For a better control and detection of QoS deviations we
can divide the process into several parts, which we call sections. We may define a
section by referring to a structured activity with its nested sub-activities (e.g. all
activities inside a flow). Another way for specifying a section is to consider all
activities between a start and an end activity inside a sequence. As an example,
in our bookshop process we define a section which consists of several activities,
involving the invocation of the distributor service for checking if the book is
available, then choosing the book with the minimal price and buying it.

<ruleset id="distributor”>
<period> <!—— time interval —> </period>
<rule>
<condition> <constraints>
<!—— min 10 % of the instances —>
<expression applysection="distributorsection”>
<or> <!—— responsetime > 3 or cost > 0.25 —>

</or> </expression> </constraints>
</condition>
<action> <!——from the BPR—corrective actions set—>
<replace —ws> <service name="bookshop/DistributorService”>
<wsdl—url> <!——url to the WSDL of the new service —>

</wsdl—url> </service>
</replace —ws>
</action>
</rule>

</ruleset >

Listing 1.1. A BPR-rule example for a section

The Listing 1.1 contains a rule example defined for the distributor section,
where a low response time and cost is required. The example also shows the

6 Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs

general structure of a rule set and a BPR-rule. Please note here that at some
places in the example listings, commentaries are used instead of the lengthy
XML syntax for brevity reasons. When the QoS of the section reaches some
risky values (response time > 3 s or cost > 0.25) then the distributor service
will be replaced with another one that provides better QoS and whose WSDL
description is available at the specified URL. The expression element contains the
QoS constraints which can be linked by the logical operators AND, OR and NOT
to form more complex conditions. We can specify different QoS requirements in
different sections. With BPRules it is also possible to establish relations between
the QoS of different sections and the entire process. For example a query like
this is possible: the response time from the distributor section is less than 1/2
of the response time of the bookshop process. Thus, the business analyst may
be informed if the distributor section consumes too much time in comparison
to the response time of the entire process, which can be a good indication for a
malfunction in the distributor section. Furthermore, this kind of QoS conditions
may ensure keeping an appropriate proportion between the QoS parameters
between process sections and the process.

Instance-set handling: With BPRules, we can specify a certain set of
instances to which the QoS constraints apply. This is an important task since, for
example, situations when 2% of the instances failed or over 20% of the instances
failed need to be treated differently. While the first case could be tolerable, the
second case needs to be addressed adequately. In Listing 1.2 it is stated that
if minimum 20% of the instances failed then a select services action should be
undertaken to replace the services with others that provide better QoS.

1 |<rule id="selectAll”>

2 <condition>

3 <constraints>

4 <instances —subset function="MIN">20%</instances —subset>
5 <expression>

6 <property —check select="state” >FAULTED</property —check>
7 </expression>

8 </constraints>

9 </condition>

10 <action>

11 <select —services methodClass="ALG.OptimPRO” >

12 <service—registries > <ws—url><!—— url to registry ——></ws—url>
13 </service—registries >

14 <qos—requirements>

15 <!—— resp < 3; avail > 0.95 ; cost < 0.3 —>

16 <!—— obj f = max (5 * avail) / (resp + cost) —>

17 </qos—requirements>

18 </select —services >

19 </action>
20 | </rule>

Listing 1.2. A service selection example

As described in Listing 1.2, the state of the instances can be queried with the
property-check element (line 6). We distinguish between states like FAULTED for
instances with activities that have thrown an exception, RUNNING for instances
with activities that are still executed, and COMPLETED for instances where
all of their activities are completed. For querying the size of the instances set
that fulfill or violate the QoS constraints, BPRules offers a set of functions:

BPRules and the BPR-Framework 7

FORALL targeting all the instances in the set, EXISTS for at least one instance,
MIN nr(%), MAX nr(%), EQUALS nr(%) to refer to a percentage of the total
number of instances. With these functions, BPRules makes it possible to trigger
appropriate actions according to the runtime behavior of the instances.

Flexible Service selection: BPRules provides extra flexibility for the se-
lection of services. The select-services action from BPRules may be employed
for the entire process, for an abstract service or only for some of its sections. It
triggers a selection algorithm to search for services in specified service registries
and to replace the old services in the process with new ones that provide bet-
ter QoS. The selection algorithms receive as input the QoS requirements of the
process, which consists of the QoS constraints and an objective function to be
optimized. In contrast to other works [2], our selection strategies are also able to
deal with non-linear objective functions, aggregation functions and constraints.

Our selection action is customizable with regard to the selection method (al-
gorithm). For example, when searching a few services, like within a section, a
trivial brute-force search is sufficient, while in a search that involves many ser-
vices (e.g. for the entire process) during runtime, a more advanced and rapid
search is needed. For this purpose, the BPR-framework provides three algo-
rithms, OPTIM_S, OPTIM_PRO and OPTIM_HW eight, that can be em-
ployed for the selection of services. For brevity reasons we only present a rough
sketch of OPTIM _PRO in this paper. Further details about the selection algo-
rithms can be found in [4]. OPTIM _PRO is an iterative algorithm and improves
the variant found on the root node (the objective value of the variant) with each
iteration step. Figure 1 represents a simple iteration example. The QoS of the
root node variant is computed by performing a QoS aggregation from the bot-
tom of the tree to the top. The objective value of the root node is computed by
applying the objective function to the found variant on the root node. All nodes
of the tree are assigned with a priority factor, which means that nodes that are
executed more often receive a higher priority. In the following steps, new ser-
vices are selected for the nodes in the order of their priorities. For each service
candidate we make a copy of the root node, where the currently selected service
candidate replaces the old service candidate, aggregate the QoS of the root copy
variant, check it against the QoS constraints and compute the objective value.
If this objective value represents an improvement in comparison to the old root
variant, then the root is going to receive the value and the services of its root
copy variant, otherwise the root variant remains the same. The variants that
no longer can be improved are saved into the list vlist. The same process starts
again with a randomly selected service variant. Finally the variants from the
vlist are sorted by the objective function and the best found variant is returned.

Listing 1.2 (lines 11-18) represents an example of a select-services action
defined with BPRules. New services are searched in the service registries. We
assume that a service registry is exposed as a web service and accessible via a
URL. The methodClass attribute (line 11) is used to specify which of the selection
algorithms is employed. In the listing example, the OPTIM_PRO algorithm is
called. There may be situations when certain services are preferred and it is not

8 Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs

desired to replace them during service selection. In this case, we may declare
these services in BPRules as fixz, which means that they will not be replaced
during the selection procedure.

The BPR corrective actions set: BPRules offers several corrective actions
which we divided into 4 categories: (1) actions for controlling the BPEL process,
(2) actions that are meant to improve the QoS behavior of the process, (3) actions
which offer information about the QoS behavior and (4) actions for controlling
the rule sets. Table 1 gives an overview of the actions offered by BPRules. The
actions from the first category offer support for controlling the process and its
instances, like deploying and undeploying the process, or stopping a set of process
instances. The actions from the categories (1) and (2) trigger changes in the state
of the process and the process goes into the managed state. In the managed state,
the actions from the categories (1) or (2) may be triggered only sequentially in
order to avoid process inconsistencies. The actions from the category (2) are
meant to improve the QoS behavior of the process, by replacing one or more
services with other services that provide better QoS. If errors were detected
inside the process, these usually have to be repaired by updating the BPEL
file. This kind of correction is supported by our update action, which overwrites
the process description file with another file from a given path or registry. The
third category is meant to inform the interested parties about the behavior of
the process. BPRules can provide information during process execution (e.g.:
throw-event, notify-client) but also reports for longer periods of time. For the
business analyst BPRules offers different kinds of reports: a regular report, a
rules-report, and an error-report. All these reports deliver a good picture of
the process behavior to the business analyst. In the rules report the business
analyst can see how the rules were executed, which helps him with future rules
specifications. The actions described in Table 1 are atomic actions. Usually, for
managing the process properly, several actions need to be triggered. For this
purpose, the atomic actions can be composed into so called complex actions.
BPRules has some predefined complex actions. Also, the business analyst is able
to specify its own complex actions which he may reuse. The different kinds of
reports and the possibilities of composing actions, defining custom actions or
applying manual actions (see the < replace — ws >, < fix > declarations)
deliver an advanced control and decision support for the business analyst. This
feature was included as not always a fully automatic management is desired.

Dynamic rule set change: We may activate or deactivate rule sets at
runtime. Active rule sets are those rule sets which are executed, while inactive
rule sets are temporarily ignored. We may use the various rule sets for different
alarm states analogously to a traffic light system. For example, if the process
behaves well, then the active rules could only inform the interested parties about
the behavior. In contrast, if the QoS of the process gets worse another rule set
could be activated with rules that have more impact on the process, e.g: replacing
one or several services. In this way we may adapt the rule sets dynamically
at runtime, according to the behavior of the process. This mechanism reduces
complexity by removing the rules that are no longer needed from the memory.

BPRules and the BPR-Framework

1. Control the process

Deploy/Undeploy

Deploys/ Undeploys the process from the specified path or registry
identified by a URI.

Stop

Stops the process identified by the processID. All the process in-
stances of this process are stopped. All the requests that are re-
ceived while the process is stopped, are stored into a request-queue.

Start

Starts the process identified by the processID so that the process is
able to receive requests. New process instances are started for the
requests from the request-queue if the waiting time in the queue
didn’t exceed the given threshold (timeout).

Stop-instances

Stops a set of process instances. (E.g.: instances that started within
a given time interval)

Resume-inst.

Resumes a set of process instances, that were previously stopped.

Cancel -instances

Cancels a set of process instances.

2. Improve the

QoS process behavior

Update

Updates the BPEL process description (or section) from the spec-
ified path or registry identified by a URI.

Replace-ws

Replaces the Web service that realizes a given abstract service with
a new concrete service (or replaces an entire list of services). The
URL of the WSDL of the new concrete service has to be specified.

Select-services

Selects services with better QoS from the repository and replaces
the Web services in the specified section/process/abstract service.

3. Information about the process behavior

Report

Makes a report about all the monitored artifacts: the measured
QoS values, including exceptions and events of a process during a
given time period.

Report-rules

Makes a report with the rules that were triggered for a process
during a given time period. The report can be created for all rule
sets or only for the specified rules.

Report-error

Makes a report with the errors that were encountered during pro-
cess execution during a given time period.

Notify-client

Sends a message to the client announcing him about e.g. QoS
constraints fulfillments/violations or details about the execution.

Throw-event

Generates an event and informs the subscribers.

Custom action

An interested party may implement a customized action for its own
specific needs. Therefore the path to the class file that implements
the action interface from the BPR-framework has to be provided.

4. Control the rule sets

SetActive-ruleset

Activates or deactivates the rule set identified by an ID.

Reload-ruleset

Reloads a new rule set at runtime.

Table 1. Corrective Actions Set from BPRules

BPRules provides also a reload-ruleset action for updating the rules at runtime.
This is necessary in a dynamic SOA where partners or contracts may change.
The reload-ruleset action permits overwriting, adding new rules into the rule set
or removing rules. We even may retrieve rules from a URI.

10 Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs
4 The BPR-Framework

4.1 Architecture and implementation

We have designed and implemented the BPR-framework for evaluating how our
BPR-rules impact the QoS behavior of BPEL processes. The processes are exe-
cuted on the Oracle BPEL Process Manager engine [8] and the Web services on
the Apache Axis2 engine. We have implemented a service registry using a MySQL
database where services can be searched or published. Besides the WSDL files
of the services, we also store the QoS values promised by the service providers
in the registry. The BPR-framework (see Fig. 2) is implemented in Java and
it contains several modules: the BPRules Manager (shortly Manager), which is
the core module, the QoS Monitor & Aggregator module for QoS monitoring,
and the Process Management module for performing the corrective actions. The
BPR-documents are stored into the BPR-repository. We distinguish between
two execution phases: the initial phase, when all the necessary monitoring arti-
facts are deployed, and the monitoring phase, when the actual QoS monitoring
and management takes place. In the initial phase the Manager loads the BPR-
documents (see Fig. 2, step Ini 1) from the BPR-repository. The Manager reads
from the BPR-documents which BPEL processes, sections and QoS Parameters
are going to be monitored. The service selection algorithm is triggered by the
Manager to select appropriate concrete services. The Manager creates a proxy
for each of the abstract services, which contains a reference to the URL of the
currently selected concrete service. It intercepts all the messages that are trans-
mitted to the concrete service. The Manager may update the endpoint references
from the BPEL file with the URL of the proxy. When a service replacement is
triggered, the proxy is updated, referencing to another concrete service URL.
Currently, the BPR-framework supports synchronous, stateless web services.
For the monitoring we use a feature of the Oracle BPEL engine which offers
the possibility to attach sensors to the BPEL activities. Such a sensor may inform
when a BPEL activity is started/ended or when a failure occurred. The Manager
dynamically attaches sensors to all the activities of the BPEL process. By this,
all the monitoring artifacts were created and the BPEL process can be deployed
(step Ini 2). In the next step (Ini &) the BPR-rules need to be deployed on the
rules engine. We employed the Drools rules engine from JBoss for executing the
rules. Before deployment, the rules from the BPR-documents are dynamically
transformed into Drools files (having the Drools syntax), which can be processed
by the Drools engine. Since the BPRules and the Drools rules contain common
rules constructions (e.g. condition/action, logic operators) the transformations
between the two syntaxes can be done dynamically. We also used the possibility
offered by Drools to implement customized functions for percentage, MIN, MAX
that are applied to the QoS objects. Finally, the Drools files are deployed to the
Drools engine and the initial phase is terminated. During process execution,
the sensor messages (from each activity) are delivered to the Manager (step 1).
The sensor message contains the instance ID of the process, the sensor ID, the
timestamp, the evaluation time (activation or completion of the activity) and

BPRules and the BPR-Framework 11

BPR
Repository

(2.2) Aggregated QoS

QoS Monitor &
Aggregator

‘A
Ao

] Rules OOOO
3.1) Update QoS e o
(3.1) Update Q .@“v:

BPRules
Manager

(2.1) Req. QoS for
Section/ Process

(3.2) Trigger

J Rules Engine
action

Drools

Sensor AP o X (3.3) action

Eusiness 0000 Service
rocsses Registry

PAPAPLY

S \4

2 I Y 14 A

‘.‘v@.f - Process Service Service Services
BPEL Engine (5) action Management | Selection selection 0000

Oracle PM

Fig. 2. The BPR Framework

whether an error occurred. If the sensor represents the end of a section or of the
process, the Manager calls the QoS Monitor and Aggregator to perform the QoS
computation of the section or the process instance (steps 2.1, 2.2). The QoS of
the section or process are computed out of the QoS of the atomic services within
the section or process. Further details about our aggregation algorithm can be
found in [3]. With these new QoS values, the Manager updates the QoS objects
from the Drools memory (step 3.1). The Drools engine permanently evaluates the
QoS conditions and in case they are met it delegates the corrective actions to the
Process Management (PM) module. Finally, the PM module is able to execute
the actions on the process. The Oracle BPEL engine offers a Client API for
querying and controlling the BPEL instances (e.g. stopping instances, deploying
the process). Our PM module makes use of this Oracle API and additionally
adds other necessary actions (e.g. select-services, replace-ws, etc.).

4.2 Evaluation

For evaluation purposes we used a Lenovo R60 notebook with Intel Core 2 Duo
processor T5600 (2x1,83GHz) with 2 GB memory and Windows XP SP3. As
example we used the bookshop process and several other processes and tested
the BPRules features. We defined several rules and simulated QoS constraints
violations, like services being not available, not responding in the desired time
frame or services causing errors and being not reliable. Our experiments revealed
that the conditions of several rules might be met simultaneously, which results in
the situation that a number of management actions on the process are performed
at the same time. To overcome this undesired situation we enhanced the BPR-

12 Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs

framework to block a process in the managed state until the actions that are
impacting the process are finished. We also added an adjustable mandatory time
interval between triggering two consecutive actions that impact the process. We
observed that grouping rules into rule sets and activating or deactivating them,
makes it much easier for the developers to trace rules. In this respect, the dy-
namic rule set change offered by BPRules provides an important mechanism to
relax the problem of dealing with simultaneously applicable and potentially con-
tradictory rules. So far there are no mechanisms for avoiding contradictory rules.
This issue is still left to the business analyst to be solved. In our future work,
however, we aim to provide more development support to the business analyst.
Another possibility to deal with contradictory rules is to automatically resolve
the conflicts. The authors of [11] propose in their architecture a Policy Conflict
Resolution module based on business metrics. We plan to analyze if this ap-
proach can be adopted for our BPR-Framework. For our bookshop process that
has 40 activities we measured the average QoS aggregation time for a process
instance as being 0.48 ms. We observed that the aggregation time grows linearly
with the number of instances. The time value represents the pure computation
time for the QoS aggregation and does not include the time for the database ac-
cess of QoS data retrieval. For the evaluation of the service selection algorithms
we generated multiple BPEL trees with different structures and we varied the
number of abstract and concrete services. We performed several experiments for
comparing our OPTIM _P RO with the genetic algorithm from [1] with regard to
computation time and optimality of the solution. Our experiments have shown
that OPTIM _PRO was faster than the genetic algorithm, in average it needed
about 22% of the time of the genetic algorithm. Concerning optimality our algo-
rithm achieved up to 7% better values for the objective function in comparison
to the genetic algorithm.

5 Related Work

By addressing QoS requirements for services, our BPRules language has simi-
lar goals as the two languages Quality of Service Language for Business Pro-
cesses (QoSL4BP) [9,10] and the Web Service Requirements and Reactions Pol-
icy (WS-Re2Policy) [5] language. All three languages have a similar structure
by means of specifying actions to be undertaken upon QoS violations. Even
though, BPRules, QoSL4BP and WS-Re2Policy differ in the provided features
and syntax. BPRules offers various additional features like: instance-set handling
with the possibility to query the state of the instances and the instances’ set,
dynamic rule set change and the specification of rule sets applied on instances
from different time periods, which are not supported by the other languages. Also
BPRules provides increased flexibility for the QoS data retrieval for past and/or
running process executions, and an advanced control and decision support for
the business analyst. Similar to the section control feature from BPRules, the
authors from [9] are able to query structured activities for QoS. However, they
cannot relate QoS parameters from different sections like in BPRules (e.g: the

BPRules and the BPR-Framework 13

response time from the distributor section is less than 1/2 of the response time
of the bookshop process). A crucial action for managing QoS is the service se-
lection action. The service selection is supported by all of the three languages
but the used selection algorithms are different. In [10] it is mentioned that a
constraint programming and a backtracking algorithm are used. BPRules may
employ our OPTIM_S, OPTIM _PRO or OPTIM _HW eight algorithms which
can be triggered depending on the number of the service candidates.

Canfora et. al [1] describe a genetic approach for the service selection. We
implemented their algorithm because it can be applied also to non-linear objec-
tive and aggregation functions. We used the same aggregation functions as [1]
and compared our OPTIM _PRO algorithm to the genetic algorithm of Can-
fora. Our evaluations revealed that our algorithm needs less computation time
and provide results which are at least as good as the genetic algorithm.

Baresi et. al describe in [12] an approach for service monitoring. The authors
define monitoring rules in their Web Service Constraint Language (WS-Col) for
WS-BPEL processes. In comparison to our language, WS-Col is limited to mon-
itoring and doesn’t allow to specify any corrective actions. In their work [6], the
authors describe an approach for preventing SLA violations by a dynamic sub-
stitution of fragments (equivalent to our sections) at runtime. We may perform
a similar kind of substitution with our update action, but in our approach the
business analyst has to specify in the rules the exact replacement (e.g. the path)
for the section or process. Thus, the work presented in [6] can be considered
as an improvement for our update action for a more dynamic substitution of a
section, which we plan to adopt in our future work. However, our focus was not
on the dynamic substitution of sections. The authors have addressed only this
particular substitution aspect in [6]. With our framework we aim to provide a
comprehensive support for managing QoS of service compositions, that includes
monitoring but also a rich set of corrective actions as well as efficient service se-
lection strategies. The authors of [11] also propose a language and a framework
for adaptation of Web-Service compositions, which is able to select the appropri-
ate adaptation strategies for different classes of instances. The strategy selection
is not only considering QoS dimensions but also business metrics. With BPRules
and the BPR-framework we intend to improve the long-term QoS behavior by
selecting and replacing services. Thus, in comparison to [11] our focus is much
more on service selection algorithms and on specifying rules that define when
and how to replace services.

6 Conclusion

Monitoring and managing QoS are crucial tasks that are decisive for the success
of the business process. Our BPR-framework addresses exactly these matters
and by means of the BPRules language, novel features are provided to overcome
possible QoS deviations. BPRules and the BPR-framework offer improved QoS
monitoring features, like monitoring QoS over sections, querying the QoS be-
havior of running instances (instance-set handling, states querying) but also of

14 Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs

instances which are already terminated. For managing the services, we provide
several corrective actions like starting and stopping instances, service replace-
ment, flexible service selection or dynamic rule set changes. The service selection
action from BPRules offers the possibility of choosing the right selection algo-
rithm depending on the number of abstract services and the number of available
service candidates. OPTIM _PRO, for example, is a very efficient heuristic algo-
rithm suitable for processes with many abstract services. By providing sophisti-
cated support for QoS monitoring, a rich set of management actions and efficient
service selection algorithms, BPRules and the BPR-~framework constitute a com-
prehensive solution for the QoS management of Web service compositions.

References

1. Canfora, G., Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware ser-
vice composition based on genetic algorithms. In: Proceedings of the 2005 conference
on Genetic and evolutionary computation. ACM, Washington DC (2005)

2. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. In: IEEE Transactions on Soft-
ware Engineering, pp. 311-327. IEEE Press (2004)

3. Comes, D., Bleul, S., Weise, T., Geihs, K.: A Flexible Approach for Business Pro-
cesses Monitoring. In: Proceedings Distributed Applications and Interoperable Sys-
tems, p.116-128. Springer, Lisbon (2009)

4. Comes, D., Baraki, H., Reichle, R., Zapf,M., Geihs, K.: Heuristic Approaches for
QoS-based Service Selection. In: 8th International Conference on Service Oriented
Computing (ICSOC) 2010. Springer, San Francisco (2010)

5. Repp, N., Eckert, J., Schulte, St., Niemann, M., Berbner, R., Steinmetz, R.: Towards
Automated Monitoring and Alignment of Service-based Workflows. In: IEEE Int.
Conference on Digital Ecosystems and Technologies. IEEE Xplore, Australia (2008)

6. Leitner, P., Wetzstein, B., Karastoyanova, D., Hummer, W., Dustdar, S., Leymann,
F.: Preventing SLA Violations in Service Compositions Using Aspect-Based Frag-
ment Substitution. In: 8th Int. Conf. ICSOC. Springer, San Francisco (2010)

7. Web Services Business Process Execution Language Version 2.0, OASIS standard,
http://docs.oasis-open.org/wsbpel /2.0/0S /wsbpel-v2.0-OS.html (2007)

8. Oracle BPEL Process Manager, Oracle,
http://www. oracle.com/technology/products/ias/bpel/index.html, [25.01.12]

9. Baligand, F., Rivierre, N., Ledoux, T.: A Declarative Approach for QoS-Aware
Web Service Compositions. In: Proceedings of the 5th international conference on
Service-Oriented Computing ICSOC. Springer, Vienna (2007)

10. Baligand, F., Rivierre, N., Ledoux, T.: QoS Policies for Business Processes in Ser-
vice Oriented Architectures.In: Proceedings of the 6th international conference on
Service-Oriented Computing ICSOC. Springer, Sydney (2008)

11. Lu, Q., Tosic, V.: Support for Concurrent Adaptation of Multiple Web Service
Compositions to Maximize Business Metrics. In: Proceedings of the 12th IFIP /IEEE
International Symposium Integrated Network Management (IM), Ireland (2011)

12. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes, In:
Proceedings of the Third International Conference of Service-Oriented Computing
ICSOC. Springer, Amsterdam (2005)

