
HAL Id: hal-01527394
https://inria.hal.science/hal-01527394

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Construction of Messaging-Based Enterprise Integration
Solutions Using AI Planning

Pavol Mederly, Marián Lekavý, Marek Závodský, Pavol Navrat

To cite this version:
Pavol Mederly, Marián Lekavý, Marek Závodský, Pavol Navrat. Construction of Messaging-Based
Enterprise Integration Solutions Using AI Planning. 4th Central and East European Conference on
Software Engineering Techniques (CEESET), Oct 2009, Krakow, Poland. pp.16-29, �10.1007/978-3-
642-28038-2_2�. �hal-01527394�

https://inria.hal.science/hal-01527394
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Construction of Messaging-Based Enterprise
Integration Solutions Using AI Planning

Pavol Mederly, Marián Lekavý, Marek Závodský, and Pavol Návrat

Faculty of Informatics and Information Technologies,
Slovak University of Technology,

Ilkovic̆ova 3, 842 16 Bratislava 4, Slovak Republic
{mederly, lekavy, zavodsky, navrat}@fiit.stuba.sk

Abstract. This paper presents a novel method of using action-based planning for
construction of enterprise integration solutions that utilize messaging technolo-
gies. More specifically, the presented method is able to generate a sequence of
processing steps needed to transform input message flow(s) to specified output
message flow(s), taking into account requirements in areas of throughput, avail-
ability, service monitoring, message ordering, and message content and format
conversions. The method has been implemented as a research prototype. It has
been evaluated using scenarios taken from the literature as well as from real-
world experience of the authors.
Keywords: Enterprise Application Integration, Enterprise Integration Patterns,
Messaging, Action-Based Planning, STRIPS-like Planning

1 Introduction

Enterprise application integration deals with making independently developed and
sometimes also independently operated applications in an enterprise to work together to
produce a unified set of functionality [5]. It is a significant concern for many enterprises
and a lot of resources are being spent in order to achieve its aims [2].

When creating an integration solution many issues have to be addressed. Some of
them are related to correctly designing the business logic of the solution, i.e. algorithms
such as “when a purchase order arrives, the system has to call ’check customer credit’
and ’check inventory’ services1, and then, depending on the results, it should continue
with order processing or return an error message to the client”. Currently this business
logic is, and very probably will continue to be, designed by human users, preferably by
business analysts in cooperation with business owners.

Other issues to be addressed when designing an integration solution can be char-
acterized as technical ones: these are concerned with differences in message transport

1 Slightly simplifying, in this paper we use the term “service” to denote any software com-
ponent providing business functionality that needs to be integrated and also to denote any
component providing integration facilities like message routing, message format conversion,
etc. The former are sometimes called business services, while the latter are called mediation
(or integration) services.

17

protocols, application programming interfaces (APIs), message format and syntax, se-
curity requirements, availability and performance properties, logging and auditing re-
quirements, etc. Resolution of these issues is driven by requirements and capabilities
of participating services, by technical infrastructure available, and by business require-
ments. Although powerful tools in this area have appeared recently, e.g. those grouped
under umbrella term “Enterprise Service Bus” [2], technical aspects are still being dealt
with by people, mostly IT specialists.

In the long term, our research is directed towards automatic or semiautomatic re-
solution of these technical issues.2 One of the first results achieved is a method of
generating parts of messaging-based integration solutions using action-based planning
approach. From many potential design aspects present in creating such solutions we
have concentrated on the following ones: throughput, availability, service monitoring,
message ordering, and message content and format conversions.

We have chosen the planning approach because there is a strong similarity between
searching for an integration solution and planning in general: when constructing an in-
tegration solution we are looking for a sequence of services transforming input message
flow to an output one, while when planning we are looking for a sequence of actions
transforming the world from the initial state to a goal state. From the practical point
of view it is reasonable to use existing planners capable of efficiently finding such se-
quences of actions (i.e. plans).

The remainder of this paper is organized as follows: Section 2 briefly characterizes
messaging-based integration solutions, exemplifying some aspects of their design using
a case study. In Section 3 the novel method of using an action-based planner to generate
integration solutions is presented. Section 4 is devoted to the prototype implementation
and the evaluation of the method. Section 5 describes related work. Section 6 closes this
paper, giving some ideas on future work.

2 Messaging-Based Integration Solutions

The hypothetical online retailer company “Widgets and Gadgets ’R Us” buys widgets
and gadgets from manufacturers and resells them to customers.3 The company wants to
automate purchase orders processing. Since parts of the whole process are implemented
in disparate (and incompatible) systems, in order to achieve seamless operation, the
company has to integrate systems involved in the process.

Handling of purchase orders looks like this: Orders are being placed by customers
through three systems, namely through web interface, call center and fax gateway. Each
order is stored in a separate message. A message containing an order is then translated
from source system-specific data model to a common data model. After that, the cus-
tomer’s credit standing as well as inventory is checked. If both checks are successful,
goods are shipped to the customer and an invoice is generated. Otherwise, the order is
rejected.

Due to historical reasons, information about stock levels is kept in two separate sys-
tems: Widgets Inventory and Gadgets Inventory. So each purchase order is inspected to

2 As also described in “Business-driven automated compositions Grand Challenge” [10].
3 This case study is taken from [5].

18

see if the items ordered are widgets, gadgets, or something else. Based on this informa-
tion the request for checking inventory is sent to one of these systems or to a special
message channel reserved for invalid orders.

The situation is shown in Fig. 1. We have chosen to use the Business Process Model-
ing Notation (BPMN) here as it is a technology-independent way of process modeling.

Fig. 1. A sample integration scenario.

This kind of abstract description has to be implemented using concrete software
entities. There are many technology approaches to do that. As stated above, in this
paper we concentrate on messaging-based integration solutions, i.e. those that use an
asynchronous messaging middleware (for example, a Java Message Service implemen-
tation) as a primary means for their components’ communication.

This integration style is frequently used in practice. Below we shortly describe
some of the design considerations that usually arise when creating solutions using this
paradigm. These and other issues and their solutions are discussed in depth in the in-
fluential Hohpe and Woolf’s Enterprise Integration Patterns book [5] in the form of
patterns. We extensively use these patterns to describe integration solutions generated
by our method.

Messaging-based integration solutions generally follow the Pipes and Filters pat-
tern:4 they receive messages at their input side (in one or more message flows), process
them by a sequence of services connected by various channels, and put them on the
output side (again, in the form of one or more message flows).

4 Hohpe and Woolf’s patterns are referenced by using names with capitalized words.

19

Fig. 2. A messaging-based implementation of the sample integration scenario.

One of fundamental design choices is how individual services should be connected.
A standard way of communication is through messaging middleware, using either
Point-to-Point Channels (often called “queues”) or Publish-Subscribe Channels (often
called “topics” or “subjects”). The basic difference between these types of channels is
that a message arriving at a Point-to-Point Channel is consumed by exactly one of re-
ceivers listening on this channel, while message arriving at a Publish-Subscribe Channel
is consumed by all receivers listening on that channel. If services reside in the same ad-
dress space, they can communicate via in-memory channels as well, eliminating the
overhead of going through messaging middleware.

20

It is often the case that the throughput and/or availability of a service running in
single thread of execution is not adequate. A typical solution is to deploy such a service
in multiple threads, in multiple processes, or even on multiple hosts, using the Message
Dispatcher and/or the Competing Consumers pattern. This limits the choices of an input
channel for that service, e.g. not allowing topics to be used in some cases.

Another issue is that we might need to monitor some services – for example their
quality-of-service attributes like throughput, response time, or availability. In most
cases this means that we have to be able to “see” messages entering selected services
and messages leaving them – typically using topics or a special Wire Tap service.

Yet another issue is that of message ordering. There are situations when it is impor-
tant that the order of messages in the flow is kept unchanged. Unfortunately, in some
cases, typically when processing messages in multiple threads, their order is not pre-
served. The solution is often based on a Content Enricher generating message sequence
numbers paired with a Resequencer restoring original order of messages.

Almost all services require the messages to be in a specified format, e.g. comma-
separated values, fixed-length records, XML, JSON (JavaScript Object Notation), or
other. The integration architect has to employ specific converters appropriately.

Even though the basic process structure is designed by a business analyst, it is some-
times possible to choose from alternative implementations of business services avail-
able, depending e.g. on quality-of-service attributes, ease of access, and/or cost.

In order to see a concrete integration solution let us consider the following require-
ments: (1) while all services in our scenario work with messages in XML format, in-
ventory checking ones use JSON format instead, (2) due to performance reasons the
“Check gadgets inventory” service has to be deployed on multiple hosts, (3) we need to
monitor correct functioning of credit checking service and both inventory checking ser-
vices, and (4) the order of messages arriving at “Order feasibility check” service should
be the same as original order of messages at the input side.

One of possible solutions implementing these requirements is shown in Fig. 2. It
should be noted that this integration solution has been generated by the prototype im-
plementation of our method. It is correct and optimal with respect to number of com-
ponents. Placing Resequencer in one of the branches might look a bit strange, yet it is
adequate – as the ordering of messages in the left branch is unchanged, the “Aggregate
results” service produces a message flow with the original ordering of messages.

3 Description of the Method

Given a specification of an integration scenario (consisting of description of input and
output message flows, services available and other requirements and constraints), the
method uses a planner to generate an integration solution, i.e. a structure of services that
will transform input message flow(s) to output one(s) while complying with specified
requirements and constraints.

The message flow is a fundamental concept of the method. We do not keep track of
individual messages processed by the integration solution – we observe message flows
instead. A flow is characterized e.g. by content and format of messages it contains, their
ordering, and so on (see below). A message flow is being transformed by services, can

21

be split into alternative or parallel flows, and these flows can be eventually joined back
into one flow later.

3.1 Input and Output of the Method

The input of the method consists of the following:

1. A specification of input message flow(s). Each flow is described in terms of the
content and format of messages in it and the type of channel it is present in. As an
example, a flow can be specified as “a sequence of messages representing purchase
orders entered via web interface, XML-formatted, available in a message queue”.
Note that the scenario described in our case study has three input message flows.

2. A specification of required output message flow(s). This type of flow is specified in
the same way as an input flow, with the possibility to add a requirement that mes-
sages should be in the same order as they were at the input. The scenario described
in the case study has four output message flows.

3. A set of services that are available for processing the messages. These can be busi-
ness and mediation services. Each service is described by a set of parameters, namely
(1) input/output message content and/or format, (2) throughput and availability char-
acteristics per deployment mode, (3) parameters related to monitoring and message
ordering, (4) a cost of using the service.

4. A set of other conditions that have to be met, e.g. (1) the integration solution has to
provide a sustained throughput of at least 100 messages per minute, (2) the availabil-
ity of solution has to be “normal”5, (3) each call to “Check customer credit”, “Check
widgets inventory” and “Check gadgets inventory” service has to be monitored.

5. A set of general configuration options, like whether to use action costs (or use a de-
fault cost of 1 for each action instead) or whether to take formatting, monitoring
and message ordering aspects into account. This last option is very important for
optimizing time taken to generate plans, as will be shown.

The output of the method is the plan that encodes a structure of services sought.
Concrete examples of the method’s input and output as implemented in the prototype
can be found in [7].

3.2 Action-Based Planners

Due to similarities between searching for an integration solution and planning we con-
duct a search of the services to be used by employing a symbolical action-based planner.

Action-based (or STRIPS-like) planners, as descendants of the automated planner
STRIPS [3], are based on the situation calculus. States of the world (situations) are
described as conjunctions of grounded first-order predicate formulas; these formulas
are literals. A state of the world can be modified by applying operators.

An operator is a triple Op = (pre, del, add) where pre is a set of predicate formulas
that must be satisfied in order for the operator to be invoked (a precondition), del is a set
of predicate formulas that are deleted and add are predicate formulas that are added to

5 We are considering 3 levels of availability: “low”, “normal”, and “high”.

22

the description of the state of the world. Together, del and add represent the effect of the
operator. The operators can be parameterized, i.e. predicate formulas in pre, del, add
are allowed to contain free variables.

The planning problem consists of the planning domain (a set of operators) and the
definition of the initial state and the goal state (states). The planner then tries to find
a plan, consisting of operators that incrementally transform the world from the initial
state to a goal state. Operators used in a plan are called actions and are usually required
to have all their variables bounded. Although the plan is usually a sequence of actions,
it is also possible to create plans with concurrent actions.

A frequently used algorithm of action-based planning is based on sequential adding
of operators to the plan. Plan construction is guided by operators’ preconditions and
effects, usually employing some kind of heuristics. In our method, we only use the
planner as a black box. The exact plan search algorithm is not important, as long as it
provides correct results in acceptable time. More information on action-based planning
can be found e.g. in [12].

3.3 Detailed Method Description

The principle of the method is the following: the integration problem to be solved is
transformed into an input data for an action-based planner, written using the standard
Planning Domain Description Language (PDDL). The planner is then executed and its
output (i.e. the plan) is interpreted as a structure of services forming the integration
solution. The situation is depicted in Fig. 3.

Fig. 3. Basic principle of our method

Integration problem encoding works as follows: Message flows that are present in
the integration solution correspond to the planner’s states of the world. The state of the
world changes as individual services (or other elements) of the solution process their
incoming flow(s) and generate their outgoing one(s): an operator corresponding to such
an element replaces predicate formula(s) corresponding to its input flow(s) in the state
of the world by formula(s) corresponding to its output flow(s). The initial state of the
world therefore corresponds to the input flow(s) entering the solution, and the goal state
corresponds to the expected output flow(s).

The plan (a sequence of actions, i.e. operators applied) represents the integration so-
lution we are looking for. Actions in the plan correspond to the technology elements of

23

the solution and action dependencies (in the form of predicate formulas) correspond to
connections (carrying message flows) between the elements. The transformation from
the plan to integration solution description is straightforward.

In the following paragraphs we explore the problem encoding in more details.

State Description. Each message flow is described by the following predicate formula:

message (?Content ?Format ?Ordered ?OrderMarked
?Monitoring ?Channel ?FlowID)

message is a 7-ary predicate symbol. This predicate formula describes a message flow
that fulfills the following conditions: (1) messages in the flow have content prescribed
by the variable ?Content6, (2) messages in the flow are well formed according to
a format specified by the variable ?Format, (3) order of messages in the flow is (or
is not, as indicated by the variable ?Ordered) guaranteed to be identical to the order
to messages in the input flow, (4) the original message ordering is (or is not, as indi-
cated by the variable ?OrderMarked) recorded somewhere, typically in a dedicated
message property, (5) the messages are in a monitoring-related state prescribed by the
variable ?Monitoring, and (6) the messages are (or are not) currently available in
the messaging middleware as prescribed by the variable ?Channel. The last variable
is used to distinguish among multiple identical flows coming out e.g. from a topic or
from a Recipient List service.

If there is only one flow active, the state of the world contains only one message
predicate formula. If there are multiple flows, like in our case study, there is one messa-
ge predicate formula for each flow.

Operators. The most important operators we use are those directly derived from ser-
vices available. Each service is transformed to up to four operators, one for each of
the following modes of deployment (parallelism levels): (1) single thread, (2) single
process, multiple threads, (3) single host, multiple processes, and (4) multiple hosts.
Each mode of deployment provides specific levels of performance and availability, e.g.
CreditCheck service in parallelism level 1 could achieve a throughput of 100 messages
per minute and availability at the level of “normal”.

What operators is the service transformed into is controlled by: (a) the list of allowed
parallelism levels given in the service description, (b) comparing solution throughput
and availability requirements (goals) to throughput and availability characteristics of
this service deployed at a particular level of parallelism.7

As an example, the CreditCheck service that expects a message with content “Or-
der” (c_ord) and transforms it into a “Order with Credit Information” (c_ord_cr-

6 Actually in some cases we use this variable to encode part of contextual information as well
(an example of such information is “the flow contains orders that have been rejected”).

7 With a slight simplification we assume that the necessary and sufficient condition for the so-
lution meeting its throughput and availability goals is that each of services involved meets
these throughput and availability goals individually. We also assume that the performance and
availability of underlying messaging middleware is not a limiting factor. Providing more so-
phisticated treatment of these aspects is one of the topics of future work.

24

info), deployed on multiple hosts, with monitoring required, is represented by the
following operator (symbols starting with ? depict operator parameters):

operator: CreditCheck_PL4_M // parallelism level 4
// (multiple hosts)

pre: message (c_ord xml ?Ordered ?OrderMarked
monitored ?Channel ?FlowID)

acceptable_input_channel_for_PL4 (?Channel)
del: message (c_ord xml ?Ordered ?OrderMarked

monitored ?Channel ?FlowID)
add: message (c_ord_crinfo xml unordered ?OrderMarked

monitoring_requested channel_memory_PL4 ?FlowID)

Correct use of channels is controlled by acceptable_input_channel_for-
_PLx predicates that allow e.g. for PL1 the use of a topic, a queue or a single-process
in-memory channel. For PL4 it is allowed to use only a queue or an in-memory chan-
nel going out from a previous PL4-deployed service.8 Transport of messages through
messaging middleware is modeled by two special operators, Queue and Topic. If one
of them is added after a service, it means that the service sends its output through this
kind of channel. This allows modeling the fact that sending messages via these chan-
nels is more costly than using direct in-memory connections (when using a planner that
supports action costs this can be expressed quantitatively).

Message ordering is accounted for by a set of two services: an OrderMarker service
(implementing a Content Enricher pattern) that puts sequence numbers of messages into
a dedicated message property, and a Resequencer service that reestablishes the order
of messages using this property. When using multiple (alternative or parallel) message
flows special care is taken with respect to message ordering and message order marking,
but we have no space to cover the details here.

Monitoring is dealt with in the following way: services that have to be monitored
require the value of monitored in the ?Monitored parameter of message pre-
dicate formula in the precondition and set the value of monitoring_requested
in the ?Monitored parameters in its effects. This ensures that the input and output
messages go either through a topic or through a WireTap service, because only operators
corresponding to a topic and the WireTap are able to set the monitored value and
“clear” the monitoring_requested one. Services that do not have to be monitored
expect the value of not_monitored or monitored at the input and set the value
of not_monitored at the output. As in message ordering aspect, the monitoring flag
is also treated specially when using multiple flows.

For joining alternative or parallel message flows, a special “declarative” kind of
operator is used. This operator does not correspond to any real service, it only serves as
a declaration that message flows containing e.g. results from check of widgets inventory
and results from check of gadgets inventory are merging in one queue into a message
flow containing results from (an unspecified) inventory check. When using action costs
these declarative operators are assigned the lowest possible cost. (When merging paral-
lel flows, such declarative operator should be followed by a “real” Aggregate service,
like the “Aggregate results” service in Fig. 2.)

8 Assuming that this service runs in the same set of processes as its predecessor.

25

In order to shorten the time needed to find a plan it is possible to choose whether
the solution should take aspects of monitoring, message formats, and message ordering
into account. Parameters (of predicate formulas and operators) for disabled aspects are
not created, so for example the message predicate can have an arity from 3 to 7, de-
pending on the settings. As shown in the following section, this has strong performance
implications.

4 Implementation and Evaluation

The method described above has been implemented in the form of a research prototype.
We have tried several planners. For practical reasons we have limited our search to

those accepting PDDL as an input language. The selection of planners was guided by
the results at the International Planning Competitions9 and our previous experience.

We have selected four problems to demonstrate the evaluation results here: Prob-
lems 1 and 2 correspond to a part of Widgets and Gadgets order processing scenario
described in Section 2. The part covered begins when orders from three sources are
merged in a queue and ends as orders enter feasibility check. Problem 1 takes into
account monitoring and throughput aspects. Problem 2 takes into account aspects of
monitoring, message format, and throughput. Problems 3 and 4 capture the whole or-
der processing scenario as described in the case study; Problem 3 does not take aspects
of monitoring, message format, message ordering, and throughput into account, while
Problem 4 does. These settings are summarized in Table 1.

Table 1. Description of problems selected for method evaluation.

Scope Aspects Message
predicate
arity

Parameters/
operator

of
operators

Domain
objects

Optimal
plan length

1 reduced M, T 4 3.67 21 21 15
2 reduced M, T, F 5 4.12 25 23 19
3 full – 3 2.50 22 28 26
4 full M, F, O, T 7 6.81 36 39 36

Acronyms for aspects are: monitoring (M), message formats (F), message ordering
(O), and throughput (T). “Message predicate arity” refers to the arity of the message
predicate, “Parameters/operator” means average number of parameters of individual
operators. These measures, along with number of operators and number of objects in
the domain, very roughly indicate the size of state-space and plan-space that have to be
searched – a major factor of complexity of the planning process.

The results (quality of solution found and CPU time needed to find it) for some of
the planners are summarized in Table 2.10

9 http://ipc.icaps-conference.org/
10 These results are only informative: some planners provided settings affecting performance,

e.g. possibility to choose heuristics, weighting factors, etc. We tried to find optimal settings,
but in some cases it might be possible to find better settings.

26

Table 2. Characteristics and results of selected planners.

Planner Domains
solved

Plan search
algorithm

Problem 1 Problem 2 Problem 3 Problem 4

Gamer non-det,
cost, seq

state, opt,
conformant

O: 89.2s O: 742.97s O: 363.56s Error

MIPS-XXL cost, seq state, opt O: 1.74s O: 6.00s O: 177.4s Error
HSP 2.0 seq state, subopt O: 0.15s O: 0.43s SO: 0.09s O: 15.47s
FF 2.3 seq state, subopt O: 0.48s O: 0.89s SO: 0.07s Error
SatPlan2006 par SAT, opt O: 7.35s O: 12.57s O: 2.67s Error
MaxPlan par SAT, opt O: 0.02s O: 0.01s O: 0.02s Error

Acronyms for domains and search algorithms are: sequential plans (seq), parallel
plans (par), action costs (cost), non-deterministic actions (non-det), state-space search
(state), transformation to satisfiability problem (SAT), generating optimal plan (opt),
not guaranteed to generate optimal plans (subopt). Acronyms for results are: optimal
plan found (O), suboptimal plan found (SO), computation failed (Error).

These results show that our method is able to find solutions for practical integration
problems using currently available planners. The majority of the planners had diffi-
culties solving the most complex Problem 4. We suspect that some of them were not
designed to work with such a large state-space as it was present in this problem. In our
opinion, however, this is not a result of planning methods used, but more a result of
implementation decisions made by the planners’ designers.

When considering experiences from solving these and other integration problems,
as the most suitable come HSP 2.0 planner (it is fast, although it produces suboptimal
plans in some cases) and MIPS-XXL and Gamer (they are slower, but generate optimal
sequential plans).

The planners are of different types, for example some generate sequential plans
while other parallel ones. What type of planner do we actually need? Generally, it de-
pends on what we want to optimize. Basically there are four (interrelated) possibilities:

1) integration solution complexity (number of components used in the solution),
2) latency (time needed for an integration solution to process a message),
3) throughput (number of messages processed by the solution per time unit),
4) resource consumption (e.g. network bandwidth, CPU time of message broker and/or

application servers and so on).

At this moment, we use the criterion 1, corresponding to the shortest sequential
plan. We can incorporate the criterion 4 by assigning costs to individual actions based
on resource consumption. If we would like to optimize latency (criterion 2) we could use
a parallel planner with durative actions (i.e. actions that have been assigned an execution
time). For now we stay with the goal of finding the solution with the smallest complexity
and leave the issue of exact optimality definition to be a subject of a future research.
Therefore, for now optimal sequential planners with no other extensions are sufficient.
The use of parallel planners in this context has a drawback in that they generally produce
plans with the optimal makespan (number of steps of plan execution), not optimizing

27

the number of involved actions. This way the solution usually contains more software
components than necessary.

We have also created several additional scenarios stemming from real-life expe-
rience of the authors [6] and have verified that the solutions produced by the prototype
implementation are correct and optimal in the sense of number of components.

More detailed evaluation report that includes descriptions of integration problems,
PDDL files, output produced by individual planners as well as the discussion of results
achieved by particular types of planners can be found in [7].

As a final remark, we can say that this method solves a defined subset of tech-
nical problems present in the creation of messaging-based integration solutions. We
expect that the business-level decisions, e.g. the correct sequence of business services
that have to be integrated or the business rules governing the mapping between incom-
patible message schemas and/or semantics, have to be provided by business users and
are therefore out of scope of this method. Similarly, there are many technical aspects
presently not dealt with by the method – e.g. creation of mediation components sol-
ving message schema and business protocol incompatibilities between systems being
integrated, design issues related to security and reliability of the solution, issues of dif-
ferent communication protocols/mechanisms used, etc. Some of these are being worked
on by the research community (e.g. [8]), while others are the subject of our future work.
Finally, there are issues like dealing with unclear, changing and/or not correctly imple-
mented components’ interfaces that are possibly out of scope of any automated method
for integration solution creation.

5 Related Work

We know of no existing research dealing with the problem of automatic creation of
messaging-based integration solutions in a way similar to the one outlined above. More
generally, however, there are several attempts to reduce human effort needed to solve
technical issues present in construction of such solutions. Many of them are based on
the idea of developing an abstract, platform-independent model of the integration solu-
tion and then incrementally refining it into platform-specific model(s) and/or executable
code. For example, Scheibler and Leymann [14] based their platform-independent mod-
els on enterprise integration patterns [5] enriched by configurable parameters. These
models can then be automatically transformed into executable code, either written in
Business Process Execution Language or in a configuration language of a specific inte-
gration tool (Apache ServiceMix).

This and similar approaches require the developer to specify technology-related
model elements manually – albeit at a higher level of abstraction, compared to directly
writing platform-specific configuration or code. Our method, in contrast, generates such
elements automatically.

The work of Umapathy and Purao [16] is directed towards choosing solution ele-
ments (described in the form of integration patterns) automatically. The authors have
devised an inference engine based system that accepts an integration scenario described
as annotated model written in Business Process Modeling Notation and offers the de-
veloper a set of possible enterprise integration patterns to implement individual parts of

28

the scenario. The difference to our approach is that this system only provides an aid to
the developer, offering him or her a set of more or less relevant alternatives to choose
from. Our method, in contrast, automatically generates a directly executable solution.
The human interaction can be added in the future, but it is not necessary for the method
to work.

AI planners have been successfully used in various areas of software engineering.
Some examples are test cases generation [4,13] or assembly of algorithms having spec-
ified characteristics, using components from a properly annotated domain-specific li-
brary [15]. Another example is the method of creating a plan for dynamic reconfigu-
ration of distributed systems after failure [1], focusing mainly on a (re)distribution of
components and connectors to individual machines and finding a correct sequence of
starting machines, components and connectors. More related to the topic of this paper
is the use of AI planners for web service composition, as described e.g. in [9] and [11].
Works in this area deal primarily with creating compositions at the business level, not
paying attention to technical aspects, as we do.

6 Conclusion and Future Work

The research results presented here demonstrate that planning techniques are useful for
solving technical problems related to enterprise application integration. Our method
is able to create parts of integration solutions from the description of “what” has to
be achieved, not “how” it should be done. Evaluation using a case study and a set of
real-world integration scenarios has shown that the method presented is able to solve
practically-sized problems. In comparison, existing works in this area either require the
developer to specify technology-related elements manually or, if not, they are not able
to generate an executable solution (only provide hints for the developer).

Our aims for the future include covering other aspects of messaging-based integra-
tion solutions, for example questions of assured message delivery (using Guaranteed
Delivery and/or Transactional Client patterns) or a support for diverse message trans-
port protocols. We also plan to provide a code-generation module that would read the
plan and provide a partially or fully executable integration solution for selected integra-
tion tool(s). As mentioned above, we want to further elaborate the notion of solution
optimality and aspects of throughput and availability.

We also plan to have a look at the possibility of using other techniques for auto-
matic generation of the solution, like logic inference engines, and integrate them in
a framework for automatic or semi-automatic resolution of technical issues present in
enterprise application integration solutions construction.

Acknowledgments

This work was partially supported by the Slovak Research and Development Agency
(contract No. APVV-0391-06) and by the Scientific Grant Agency of Republic of Slo-
vakia, grant No. VEGA 1/0508/09.

29

References

1. Arshad, N., Heimbigner, D., Wolf, A. L.: Deployment and Dynamic Reconfiguration Plan-
ning for Distributed Software Systems. In: Proceedings of 15th IEEE International Confer-
ence on Tools with Artificial Intelligence, pp. 39–46. IEEE Computer Society (2003)

2. Chappell, D.A.: Enterprise Service Bus. O’Reilly Media, Inc., Sebastopol, CA (2004)
3. Fikes, R. E., Nilsson, N. J.: STRIPS: A New Approach to the Application of Theorem Prov-

ing to Problem Solving. Artificial Intelligence 2, 189–208 (1971)
4. Fröhlich, P., Link, J.: Automated Test Case Generation from Dynamic Models. In: ECOOP

2000. LNCS, vol. 1850, pp. 472–491. Springer, Heidelberg (2000)
5. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Pearson Education, Inc., Boston, MA (2004)
6. Mederly, P., Pálos, G.: Enterprise Service Bus at Comenius University in Bratislava. In:

EUNIS 2008 VISION IT: Visions for IT in Higher Education, p. 129. University of Aarhus,
Aarhus, Denmark (2008) Full text available at: http://eunis.dk/papers/p98.pdf

7. Mederly, P., Lekavý, M..: Report on Evaluation of the Method for Construc-
tion of Messaging-Based Enterprise Integration Solutions Using AI Planning,
http://www.fiit.stuba.sk/⇠mederly/evaluation.html

8. Nezhad H. R. M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-Automated
Adaptation of Service Interactions, In: Proceedings of WWW 2007, pp. 993–1002, ACM
(2007)

9. Oh, S.-Ch., Lee, D., Kumara, S. R. T.: A Comparative Illustration of AI Planning-based Web
Services Composition, ACM SIGecom Exchanges 5(5), 1–10 (2005)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-Oriented
Computing Research Roadmap, In: Cubera, F., Krämer, B.J., Papazoglou, M.P. (eds.)
Dagstuhl Seminar Proceedings 05462. Internationales Begegnungs-und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

11. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods, In: SWSWPC
2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)

12. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall,
Upper Saddle River, NJ (2003)

13. Scheetz, M., von Mayrhauser, A., France, R., Dahlman, E., Howe, A. E.: Generating Test
Cases from an OO Model with an AI Planning System. In: Proceedings of 10th Interna-
tional Symposium on Software Reliability Engineering, pp. 250–259. IEEE Computer Soci-
ety (1999)

14. Scheibler, T., Leymann, F.: A Framework for Executable Enterprise Application Integration
Patterns. In: Mertins, K. et al. (eds.) Enterprise Interoperability III, pp. 485–497. Springer,
Heidelberg (2008)

15. Troy, A. J., Eigenmann, R.: Context-Sensitive Domain-Independent Algorithm Composition
and Selection. In: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pp. 181–192. ACM (2006)

16. Umapathy, K., Purao, S.: Representing and Accessing Design Knowledge for Service Inte-
gration. In: Proceedings of 2008 IEEE International Conference on Services Computing, pp.
67–74. IEEE Computer Society (2008)

