N

N

Parallel Implementation of the Wu-Manber Algorithm
Using the OpenCL Framework
Themistoklis K. Pyrgiotis, Charalampos S. Kouzinopoulos, Konstantinos G.

Margaritis

» To cite this version:

Themistoklis K. Pyrgiotis, Charalampos S. Kouzinopoulos, Konstantinos G. Margaritis. Parallel Im-
plementation of the Wu-Manber Algorithm Using the OpenCL Framework. 8th International Con-
ference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece.
pp.576-583, 10.1007/978-3-642-33412-2_ 59 . hal-01523087

HAL Id: hal-01523087
https://hal.science/hal-01523087
Submitted on 16 May 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01523087
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Parallel Implementation of the Wu-Manber
Algorithm Using the OpenCL Framework

Themistoklis K. Pyrgiotis, Charalampos S. Kouzinopoulos, and Konstantinos
G. Margaritis

Parallel and Distributed Processing Laboratory
Department of Applied Informatics, University of Macedonia
156 Egnatia str., P.O. Box 1591, 54006 Thessaloniki, Greece

t.pirgiot@gmail.com
{ckouz, kmarg}@uom.gr

Abstract. One of the most significant issues of the computational biol-
ogy is the multiple pattern matching for locating nucleotides and amino
acid sequence patterns into biological databases. Sequential implemen-
tations for these processes have become inadequate, due to an increasing
demand for more computational power. Graphic cards offer a high paral-
lelism computational power improving the performance of applications.
This paper evaluates the performance of the Wu-Manber algorithm im-
plemented with the OpenCL framework, by presenting the running time
of the experiments compared with the corresponding sequential time.

Keywords: Multiple pattern matching, OpenCL, Wu-Manber algorithm,
Biological sequence databases.

1 Introduction

During the last few years manufacturers of Central Processing Units (CPUs)
have turned into new architectures by embracing the parallelism. This trend
also affected the Graphics Processing Units (GPUs), that they have been altered
from fixed function rendering devices into programmable parallel processors.
Nowadays, GPUs are used instead of CPUs, for general purpose computations
(GPGPU) with lots of APIs being introduced, like CUDA [3] and OpenCL [9].

The multiple pattern matching is a basic issue in computer science and es-
pecially to the area of computational biology, where the objective is to locate
any nucleotides and amino acid sequence patterns into biological databases. Ac-
cording to [2], the multiple pattern matching problem can be defined as follows.
”Given a sequence database or input string 7' = t1ts...t,, of length n and a finite
set of r patterns P = p',p?,...,p" , where each p’ is a string pi = pipb...p¢ of
length m over a finite character set X' and the total size of all patterns is de-
noted as | P"|, the task is to find all occurrences of the patterns in the sequence
database”.

In this paper, the Wu-Manber (WM) [11] algorithm for multiple pattern
matching problems has been implemented using the OpenCL framework, in or-
der to succeed better performance than the corresponding sequential version of

2 GPU Programming Using OpenCL Framework

the algorithm. The data set on which the algorithm was executed consists of
biological sequence databases.

The paper is organized as follows. Section 2 presents related GPU-based for
multiple pattern matching algorithms. Section 3 provides the background by pre-
senting the functionality of the WM algorithm. Our parallel GPU-based version
of the WM algorithm is introduced in Section 4. Experimental methodology and
results are given in Sections 5 and 6 respectively. Finally, the conclusion of the
paper is in Section 7.

2 Related Work

Multiple pattern matching algorithms executed on GPUs have been the object of
study of many researchers, mostly as far as bioinformatics and intrusion detection
systems are concerned.

In [7] a group of researchers suggests the creation of a WM-like multiple pat-
tern matching algorithm for the network intrusion detected systems. The pro-
posed algorithm is executed on a commodity graphic card, the NVIDIA GeForce
7600 GT, by using the highly parallelism computation power to inspect the
packet content in parallel. OpenGL was the graphics API that has been used to
execute the algorithm on the card. There have been realized experiments with
random and real traffic data and has been concluded that the proposed WM
algorithm is up to two times faster than the already existing modified WM used
in Snort [12].

Reference [6] also refers to network intrusion detected systems, with the sug-
gestion of a novel parallel algorithm to speedup the execution on GPUs. The
new algorithm called Parallel Failureless-AC Algorithm (PFAC) is a variation
of the well known Aho-Corasick (AC) [1] for multiple pattern matching. CUDA
was used for the parallel implementation on GPUs. For the evaluation of the
new algorithm the three implementations have created, and observed that the
AC algorithm on GPU was 6.4 times faster than the sequential AC algorithm on
CPU, while the corresponding proposed algorithm PFAC was 4000 times faster.

Using the CUDA API on a GeForce GTX285, in [4] researchers have de-
veloped an implementation of agrep algorithm [10], for approximate nucleotide
sequent matching. For the evaluation, an OpenMP implementation of the al-
gorithm has been developed. The experiments were executed on subsequences
from 17 large genomes, and achieved 70-fold and 36-fold speedups over the multi
threaded CPU version of the algorithm, for length of patterns 30 and 60 respec-
tively.

Finally, an extension of the bit-parallel WM algorithm is presented in [13],
for approximate searching. Comparing with the original, the presented algo-
rithm has less operations. A GPU-based implementation with the OpenCL on
a NVIDIA GeForce 480 has been developed and achieved a speedup of 62 over
the corresponding sequential implementation.

GPU Programming Using OpenCL Framework 3

3 Background

WM algorithm is a simple variant of the Boyer-Moore algorithm that uses the
bad-character shift, for multiple pattern matching. To improve the performance,
the algorithm considers the characters of both pattern and text as blocks of size
B instead of single characters. As recommended in [11], the suggested value for
B is log| ;) 2P, although in practice values 2 and 3 are being used.

The operational process of the WM algorithm includes two phases. The first
one is the preprocessing, where three tables are constructed by the patterns, the
SHIFT, the PREFIX and the HASH tables. The SHIFT table stores the shift
values of the block characters, that determine the safe shifting of characters
during the searching phase. If a block of B characters does not occur in any
pattern, then the shift value for that block assigns to the maximum value, which
is m — B+ 1. The HASH table stores hashed values (h) of B characters suffix of
each pattern while the PREFIX stores hashed values (h’) of B’ characters prefix
of a list of patterns that they have the same suffix.

The second part of the algorithm is the searching phase. During this phase,
the algorithm is searching for the occurrences of all patterns in the input text
with the assistant of the three tables that have been created by the previous
state. Firstly, a hash value (h) for the block of B characters is calculated into
the current search window and the shift value for that is checked (SHIFT[h]) . If
the shift value is greater than zero, then the current search window is shifted by
SHIFT[h] positions, or else there is a potential matching and the tables HASH
and PREFIX should be considered in order to validate the matching. Further
details about the WM algorithm are presented in the technical report [11].

4 OpenCL Implementation of the WM Algorithm

OpenCL is an open royalty-free standard for developing general purpose parallel
programs that are executed across heterogeneous platforms consisting of CPUs,
GPUs, and other parallel computing devices. It is composed of a programming
language, the OpenCL C for writing the kernels, and an API for defining and
controlling the platforms. The parallel execution of the OpenCL applications is
taking place in the OpenCL devices during the kernel execution. Each instance of
a kernel execution is called work-item (thread) and is identified uniquely into the
index space also known as NDRange. Additionally, work-items can be organized
into work-groups providing a coarse-grained decomposition of the index space.
As fas as the OpenCL memory model is concerned, it is composed by four distinct
regions, the global, the constant, the local and the private. Global and constant
regions allow access to all work-items of the index space in contrast with local
and private regions that allow access per work-group and per individual work-
item respectively. At last, it could be said that OpenCL supports both data and
task parallel programming models, with the data parallel to be the primary one
[5].

For the parallel implementation of the WM algorithm the OpenCL framework
was used. The basic idea to parallelize the algorithm is to cut into chunks the

4 GPU Programming Using OpenCL Framework

input text, in our case the biological sequence, and assign each one to a work-
item. Considering that the input text is of one dimension, the index space that
will be used for addressing the work-items and the work-groups should be of one
dimension too.

During the kernel execution, the input text and the patterns are loaded
from the main memory to the global memory of the device. Each thread has
two indices that indicate the working area into the input text and each one
is responsible for finding all occurrences of the patterns in it. For the total
occurrences of all threads, an auxiliary table is used. The size of the table is
equal to the sum of all threads, where each one returns the matches for its
chunk to the corresponding cell. As soon as the kernel returns, the host program
is responsible for collecting and present the results of the algorithm.

The local memory of the device is much faster than the global memory, but it
has a size restriction. The overall performance of the algorithm could be improved
when it is possible to use the local memory instead of global. In addition, tables
SHIFT, HASH and PREFIX are the most used during the searching phase.
According to the two previous facts, there has been an effort of loading the
three tables from the preprocessing phase to the local memory in order to achieve
better performance. Initially, none of these table was able to fit into the local
memory, which was in our case 16KB. Because of the limitted alphabet of the
data set, 4 and 20, there has been a switching of the ASCII characters values
to new ones, in order to compress the tables. Eventually, due to that procedure
only the SHIFT table was able to fit into the local memory.

5 Experimental Methodology

In order to evaluate the performance of the parallel WM algorithm, the practi-
cal running time has been compared with the corresponding running time of the
sequential implementation. Practical running time is the total time in seconds
an algorithm needs to find all occurrences of all patterns in a text. Since the pre-
processing phase has been implemented in both cases sequentially, the practical
running time does not involve the first phase of the preprocessing, but only the
second phase of searching.

The computer system in which the experiments were executed is composed by
an Intel Core2 Duo (E8400) CPU with a 3.00 GHz clock speed, 64 KB L1 cache
and 6 MB L2 cache and 3 GB of main memory. For the parallel implementation, a
commodity GPU card with 1.3 compute capability was used, the NVIDIA GTX
280 with 1GB of global memory, 30 computes units and 240 scalar processors
[8]. The Ubuntu Linux 10.04 was the operating system that was used and the
implementations of the algorithm were developed using ANSI C programming
language and version 1.0 of the OpenCL platform. Finally, for time measuring a
CPU timer was used, more specifically the MPI_Wtime function of the Message
Passing Interface, since it has better resolution than the standard clock function.
The data set was similar to the ones used in [2]. It is consisted of:

GPU Programming Using OpenCL Framework 5

— The genome of Escherichia coli from the Large Canterbury Corpus with size
of n = 4.638.690 characters and the FASTA Nucleic Acid (FNA) of the A-
thaliana genome with size of n = 116.237.486 characters. In both cases, the
alphabet X' = {a, c, g, t} is consisted of four nucleotides.

— The SWISS-PROT Amino Acid sequence database with a size of n = 182.083.
608 and the FASTA Amino Acid (FAA) of the A-thaliana genome with a
size of n = 11.102.141 characters respectively. The alphabet X' = { a, ¢, d, e,
f,g h i,k 1,mn, p,q,r,s,t v, w, y} used by the databases is consisted
of 20 different characters.

The pattern set for each execution is consisted of 100, 1.000 and 10.000
patterns respectively. All patterns have been generated randomly and each one
can have a size of m = 8 and m = 32 characters. The number of work-items that
were used in each execution is the maximum possible, depending on the size of
the input text and the length of the patterns. Finally, for the execution of the
experiments work-groups of size 512 were used.

6 Experimental Results

This section evaluates the performance of the parallel WM algorithm according
to the execution time for the different biological databases. There have been
carried out four experimental executions. As can generally be observed from the
figures below, by varying parameters such as the size of the text, the size of the
alphabet, the length of the patterns and the number of them, the performance
of the algorithm can be affected.

Figures 1 and 2 present the running time of the sequential (CPU) as well
as the parallel implementation (GPU) for the different executions for a pattern
length of m = 8 and m = 32, and for 100, 1.000 and 10.000 patterns respectively.
It should be noted that the presentation of the running time on y-axis is on
logarithmic scale in contrast with the x-axis which is on linear scale. In addition,
Table 1 indicates the speedups of the different executions. Speedup represents
how much the parallel implementation is faster than the corresponding sequential
one.

Table 1. Speedup of the WM algorithm for all the executions.

text| o colif FNA| FAA| SWISS-PROT
patterns
100 16.01] 3127 7.02 9.57
m=8 1.000 10.37| 15.80| 10.29 13.54
10.000 858 13.26| 17.40 21.85
100 14.56] 21.41] 247 135
m=32 1.000 9.97| 13.96| 7.21 13.29
10.000 7.90| 10.71] 10.30 18.37

6 GPU Programming Using OpenCL Framework

In any case, it can be observed that the performance of the parallel im-
plementation is much better than the sequential one. It can be remarked that
in the case of E. Coli and FNA biological databases, where the alphabet is of
size 4, the speedup accomplished is higher than the speedup of the FAA and
SWISS-PROT databases, where the alphabet is of size 20. In particular, the
best values of speedup achieved are 31.27 and 21.85, for size of alphabet 4 and
20 respectively.

As far as the size of the text is concerned, it can be noticed that the larger
the text, the better the performance reached. For instance, in the case of E. Coli
text, where the number of the patterns is 1.000 and their length is m = 8, the
speedup is 10.37. Whereas, in the case of FNA, which is 25 times larger than the
E. Coli, the speedup is 15.89, while keeping all the previous parameters steady.

What can be ascertained in all experimental executions, is that assuming the
number of patterns increases, the running time of both sequential and parallel
executions increases too. This can be explained, as in a potential match during
the searching phase, the algorithm will have to examine more patterns, as a result
more computation power will be needed. The performance of the algorithm in
the parallel executions has two different behaviors depending on the size of the
alphabet in use, as shown in the table 1. In the case of the alphabet of size
4, as the number of the patterns increase the speedup decreases, in contrast in
the case of the alphabet of size 20, as the number of the patterns increase the
speedup increases too.

T T T 1000
CPU (m=8) X301 CPU (m=8)
CPU (m=3: = CPU (m=32)

OpenCL (m=i
OpenCL (m=32)

N
XRRARRRRX

ool

o

X

3
35
20508

o

XXX

%

058
bo%s

Running time (sec)
%

Running time (sec)
5

%

0t
23
0000,

%

058
%

%

5

0%
0958
0202

2

XXX
28

be%s
o20%0;

S

IS
SRR
o208eS

o208

30
R
0.0.9

B IS

e

000 10000
Number of patterns. Number of patterns.

Fig. 1. Running time of the WM algoritm for the E. Coli (left) and FASTA Nucleic
Acid (right) databases.

From the experiments that have been executed it is found that shift values
tend to zero as long as the size of the alphabet remains small. This happens
because it is possible that fragments of the same text of size B will be repeated
in the patterns. As for an alphabet of larger size the shift values are greater than
zero in most cases as long as the number of patterns remains small. Finally,
the parameter of the size of patterns does not have a significant impact on
the performance of the algorithm when the shift value is zero. The previous

GPU Programming Using OpenCL Framework 7

observation results from the figures except for the cases where the number of
patterns is 100 and 1.000 and the size of the alphabet is 20 (Fig. 2).

CPU (m=8) ExXxx]
=

CPU (m= m=:
OpenCL (m OpenCL (m=8)
OpenCL (m=: OpenCL (m=32)

-
5

Running time (sec)
Running time (sec)

&
&

&
&
o2
&
&
K
&
&
&
&
B
ks

K

o0

o

%
°
2

1000 10000
Number of patterns Number of patterms

Fig. 2. Running time of the WM algoritm for the FASTA Amino Acid (left) and
SWISS-PROT Amino Acid (right) databases.

7 Conclusions

In this paper the parallel implementation of the WM algorithm with OpenCL for
multiple pattern matching has been presented. For the performance evaluation
the practical running time of the searching phase has been compared with the
corresponding sequential time. The experimental results show that the parallel
implementation achieved a significant speedup of 31.27 for the best case.

It was concluded that the parallel implementation had better speedup when
the alphabet of the biological data set remained small. Moreover, the algorithm
had a better performance with bigger input texts than smaller ones. As far as the
number of patterns is concerned, the performance of the algorithm was affected in
two different ways. The speedup had a rising tendency as the patterns increased
for FAA and SWISS-PROT databases where the alphabet is 20, in contrast with
the Escherichia coli and FNA databases of alphabet 4, where the speedup had a
decreasing tendency. Finally, regarding the length of patterns, it was shown that
it did not have a significant impact on the performance when the shift values of
the algorithm were close to zero.

As it was mentioned in Section 2, in [7] a parallel version of the WM algo-
rithm has been implemented with the OpenGL and was achieved twice the per-
formance of the corresponding WM algorithm used in Snort. Further, in [6] the
AC multiple pattern matching algorithm has been implemented using CUDA,
and a speedup of 6.4 has been achieved. The experimental results presented
herein achieve a speedup of 31.27 in the best case, which compares favorably
with the results presented in the previously mentioned references. On the other
hand, two approximate string matching implementations, based on a modified

8 GPU Programming Using OpenCL Framework

WM algorithm, [4], and the bit-parallel BPR algorithm, [13], achieve better re-
sults than those presented herein. The speedups reported are 76 and 30, in the
former reference, and 62, in the latter. However, in all cases, direct comparison
is not possible, since the experimental setup is not identical.

Further research efforts include the parallelization of the preprocessing phase
of the WM algorithm, as well as the modification of the data structures used in
the algorithm so that the GPU memory hierarchy is fully utilized, as proposed
in [13].

References

1. A.V. Aho and M.J. Corasick: Efficient String Matching: An Aid to Bibliographic
Search. Communications of the ACM, vol. 18, No. 6, pp. 333 —340, (1975).

2. C. S. Kouzinopoulos, P. D. Michailidis and K. G. Margaritis: Performance Study
of Parallel Hybrid Multiple Pattern Matching Algorithms for Biological Sequences.
In: International Conference on Bioinformatics - Models, Methods and Algorithms,
pp.182-187. BIOINFORMATICS (2012)

. CUDA Zone, http://www.nvidia.com/object/cuda_home_new.html

4. H. Li, B. Ni, M. Wong, and K. Leung: A fast CUDA implementation of agrep algo-
rithm for approximate nucleotide sequence matching. In: 2011 IEEE 9th Symposium
on Application Specific Processors, pp 74 — 77, (2011)

5. Khronos OpenCL Working Group: The OpenCL Specification, version 1.1 (2011),
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

6. Lin, Cheng-hung and Tsai, Sheng-yu and Liu, Chen-hsiung and Chang, Shih-chieh
and Shyu, Jyuo-min: Accelerating String Matching Using Multi-threaded Algorithm
on GPU. pp. 1 — 5. Communications Society (2010)

7. N. F. Huang, H. W. Hung, S. H. Lai, Y. M. Chu, and W.Y. Tsai: A gpu-based
multiple-pattern matching algorithm for network intrusion detection systems. In:
22nd International Conference on Advanced Information Networking and Applica-
tions (AINA). pp. 62-67, (2008)

8. Nvidia: OpenCL Programming Guide for the CUDA Architecture, version 4.0,
(2011)

9. OpenCL - The Open Standard for Parallel Programming of Heterogeneous Systems,
http://www.khronos.org/opencl

10. S. Wu and U. Manber: Agrep - A Fast Approximate Pattern-Matching Tool. In:
Proceedings of USENIX Technical Conference, pp 153 — 162, (1992)

11. S. Wu and U. Manber: A fast algorithm for multi-pattern searching. Technical
report TR-94-17, University of Arizona (1994)

12. Snort, http://www.snort.org

13. T. T. Tran, M. Giraud, and J. Varre: Bit-parallel multiple pattern matching. In:
Parallel Processing and Applied Mathematics / Parallel Biocomputing Conference
(PPAM / PBC 11), Torun (2011)

w

