
HAL Id: hal-01523082
https://hal.science/hal-01523082

Submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Player Modeling Using HOSVD towards Dynamic
Difficulty Adjustment in Videogames

Kostas Anagnostou, Manolis Maragoudakis

To cite this version:
Kostas Anagnostou, Manolis Maragoudakis. Player Modeling Using HOSVD towards Dynamic Diffi-
culty Adjustment in Videogames. 8th International Conference on Artificial Intelligence Applications
and Innovations (AIAI), Sep 2012, Halkidiki, Greece. pp.125-134, �10.1007/978-3-642-33412-2_13�.
�hal-01523082�

https://hal.science/hal-01523082
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Player Modeling using HOSVD towards Dynamic

Difficulty Adjustment in Videogames

Kostas Anagnostou
*
 and ManolisMaragoudakis

+

*Blitz Game Studios, United Kingdom

IonianUniversity, Department of Informatics, Corfu, Greece, kostasan@ionio.gr
+University of the Aegean, Department of Information and Communication Systems Engineer-

ing, Samos, Greece

mmarag@aegean.gr

Abstract.In this work, we propose and evaluate a Higher Order Singular Value

Decomposition (HOSVD) of a tensor as a means to classify player behavior and

adjust game difficulty dynamically. Applying this method to player data col-

lected during a plethora of game sessions resulted in a reduction of the dimen-

sionality of the classification problem and a robust classification of player be-

havior. Simultaneously HOSVD was able to perform significant data compres-

sion without significant reduction as regards to the accuracy of the classification

outcome and furthermore, was able to alleviate the data sparseness problem

common within data collected from game sessions.

Keywords:Clustering algorithms, games, user modeling, Tensor Analysis

1 Introduction

Designing a successful videogame depends among others on achieving a delicate

balance between difficulty and user skill. Csikszentmihalyi’s influential work on Flow

[1] dictates that in order to accomplish the optimal user experience, any interactive

process (such as videogames) must tread constantly between two states, one of frus-

tration and the other of boredom, never reaching any of them. Frustration in games

can be the result of game challenges that are too hard for the user to achieve, while on

the other hand boredom can result from game tasks that are too easy. Both states will

undermine the player experience and are undesirable.

In order to avoid those two states, ideally, a videogame must constantly match the

difficulty of the game challenges to the player capabilities. This entails providing the

player with increasingly harder tasks, as her ability to solve those increases. Consider-

ing the huge player base, and the great variation in gameplaying experience, player

capability and free time to devote to games, designing a game to satisfy many is no

easy task.In an attempt to match game difficulty to player abilities, game designers

have traditionally provided a “difficulty” setting. The player has to choose a priori

between 3 or 4 difficulty levels (easy-medium-hard) before the game starts, with no

real feeling of how well the difficulty level suits her abilities. Based on the chosen

mailto:kostasan@ionio.gr
mailto:mmarag@aegean.gr

difficulty level, the game adjusts the number of enemies, enemy AI, player aim preci-

sion etc. A problem with this approach is that the user might misjudge the suitability

of the selected difficulty level and her game playing experience might be thwarted by

a too easy or too difficult game.Ideally, the game system should be able to monitor

user performance and based on such data to accommodate for her playing abilities by

adjusting the difficulty of the game to match those abilities, in order to maintain a

high level of player engagement throughout. Recently, an increasing number of

games, such as Microsoft’s Halo Wars and SiN Episodes, are opting for a Dynamic

Difficulty Adjustment (DDA) system, where the game changes the difficulty based on

the runtime player performance [2][3]. DDA during game-playing can be numerical

and/or structural. Numerical adjustment amounts to altering parameters such as the

number of enemies, enemies’ shield and weapon power and accuracy, using statistical

models of player performance, in order to make the game easier or harder according

to player skill [4][5]. According to Booth [6] Valve utilized such an approach be dy-

namically altering the location and frequency of spawn points for enemies and items

in Left for Dead based on player performance. Structural adjustment on the other

hand amounts to changing the structure of a game level dynamically according to

player performance, using procedural level generation. Procedural level generation

can be offline, i.e. before the game starts, such as in the case of Pedersen et al [7] who

derive a statistical model of player challenge and frustration and by using evolution-

ary algorithms generate levels that match a particular level of player challenge. There

applications on the other hand, such as Polymorph, which adjust the structure of the

level during gameplay by generating sections of a level ahead of the player's move-

ment, allowing a level to change in difficulty from start to finish in response to

changes in the player's performance [8]. Yet, the basis of any approach for dynamic

difficult adjustment, be it numerical or structural, offline or in the runtime, is the suc-

cessful specification of the model of player behavior and performance from data gath-

ered during gameplay. Any dynamic adjustment will made be according to this mod-

el.

Towards the extraction of the player model, in this paper we extend the work in [9]

by proposing the use of higher order singular value decomposition (HOSVD) of a

tensor [10] for classification of a player, in order to maintain a high level of engage-

ment. The suggested algorithm uses HOSVD to compute a small set of basis matrices

that span the dominant subspace for each class of players. The basis matrices are then

used to describe unknown players/games. Furthermore, the proposed methodology is

able to exploit sparse data, such as the task at hand, where numerous games are diffi-

cult to be collected. This algorithm is closely related to SIMCA [11] and PCA. Exper-

imental results show interesting outcomes that deal with both increased classification

accuracy and data compression.

Throughout recent years, tensor methods have been successfully applied to prob-

lems in pattern recognition and other areas. Tensors are known to be multidimension-

al or multimode matrices. In a plethora of real world pattern recognition applications,

the data have a multidimensional structure and it is then somewhat unnatural to organ-

ize them as matrices or vectors. As an example, consider a video segment. Each im-

age is a two-dimensional matrix of integers and together with images from different

time frames the data constitute a third order tensor (three-dimensional data matrix).

While most Machine Learning algorithms require data to be reformed as vectors, in

many circumstances, it is beneficial to exploit the collected data without destroying its

inherent multidimensional structure.

2 Methodology

The video game used for data collection was based on the Space Debris prototype

developed at Ionian University. It is a top-down scrolling space action game in which

the player has to defend Earth against waves of incoming alien invaders. The user can

utilize a variety of weapons as well as the environment to eliminate the advancing

menace.In this prototype, the action takes place within the confines of a single screen

in which alien ships scroll downwards. There are two kinds of enemy spaceships, the

cargo which is slow and has a stronger shield that can withstand more laser blasts and

the fighter which is fast and easier to destroy. The cargo ship will maintain its course

and will not attack the player except when she is directly in front of it. On the other

hand the fighter ship has a more aggressive behavior and will alter its course in order

to hunt and attack the player. At the end of each level, the user has to confront a large

boss space ship which is equipped with strong shields and has more lethal weapons.

The player’s ship has a shield that can absorb enemy blasts. When this reaches ze-

ro, the player loses a life. When all three available lives have been lost, the game

ends. The player wins only if she destroys the boss ship at the end of the level.

The game environment is littered with floating asteroids which can be used as a

weapon against enemy ships. In their default state the asteroids do no interact (i.e.

collide) with any of the game spaceships. In order to do so, an asteroid has to be “ac-

tivated”, i.e. hit by a player weapon. The asteroids never destroy the player’s ship on

collision. Also floating are shield and life power-ups which the user can use to replen-

ish her ship’s shield and increase lives.

The following list enumerates the types of weapons available to the player

 A laser cannon which can used to shoot alien ships. The laser canon is weak and

about 2-3 successful shots are required to destroy an enemy ship (except for the

boss ship which requires many more). The laser can also be used to “activate” an

asteroid and deflect it towards an enemy ship.

 An asteroid-grab ray, which can capture any asteroid in the player’s ship area,

activate and hurl it, slingshot-like, towards an enemy ship.

 A blast wave which centers on the player’s ship position and expands outwards in a

circular fashion, activating all asteroids in the expanding area. The activated aster-

oids will destroy any enemy ship they collide with.

 A freeze wave, which centers on the player’s ship position and expands outwards

in a circular fashion, immobilizing all asteroids in the expanding area. An immobi-

lized asteroid can act as a shield to enemy fire and can be activated and set in mo-

tion at any time, and guided towards enemy ships

The game design specifies the use of two main weapon mechanics: direct enemy ship

destruction using the laser and indirect destruction through an activated asteroid. Ta-

ble 1 summarizes the balance of the two mechanics (laser vs activated asteroid) in

terms of enemy destruction effectiveness.

Table 1.Weaponbalance

Weapon CargoShip FighterShip

Laser 3 successful shots per ship 2 successful shots per ship

Activated Asteroid Instant death, many ships Instant death, many ships

This dichotomy between ease of use (laser) and effectiveness (activated asteroids)

creates a choice for players to either use the fast but ineffective laser to kill enemies

or to be more tactical and efficient by directing asteroids towards them. The first

weapon mechanic is easier to use but not as efficient because each enemy ship’s

shield can withstand many laser hits. The second weapon mechanic is slightly harder

to use, but highly efficient since the asteroid will destroy any enemy ship on its trajec-

tory that happens to collide with.Based on the choice of game tactic, we initially as-

sume two player types: The action-player which favors weapon simplicity over effi-

ciency, and the tactical-player which favors weapon efficiency over ease of use.For

those reasons we chose to use, as an input device, a videogame controller, and more

specifically the standard Xbox360 controller which can be connected to a PC via a

USB port, instead of a keyboard. The Xbox controller, as well as other videogame

controllers, features 4 symmetrical buttons (labeled A, B, X and Y) which we use to

map each of the 4 weapons, reducing the effect of weapon choice bias.

The video game was developed using XNA Game Studio 3.1, on the Windows XP

platform. During gameplay, we recorded automatically, with a new code module de-

veloped especially for the game, a large set of parameters that describe the way each

player approaches the game, be it in an action or more tactical style.

Data collection consisted of a single session in which 210 students from the Ionian

University and the University of the Aegean played the game 4 times each (840 rec-

ords in total). In addition to the player behavior data collected for each player we

recorded the player gender, and whether or not he/she is an experienced game player.

The sample population consisted of 150 males and 60 females. 66,67% of the male

users were regular videogame players, and 26,6% of males had some game playing

experience while only 0,66% had no experience at all. 50% of the female users had

some game playing experience and 40% in the sample set of females had no experi-

ence at all 10% of female users declared themselves as experienced players.

For each game we collected a record of data illustrated in Table 2.

Table 2. Data Collectedforeach Game

Parameter Description

Time Time required to finish the current game

Accuracy Percentage of player laser blasts that found a tar-

get

LasersAvoided Number of enemy lasers the user avoided

Lasers Number of laser blasts fired by the user

BlastWaves Number of blast waves used

Freezers Number of asteroid freezers used

Grabbers Number of asteroid grabbers used

KeysPerSecond User key press rate

Carriers Number of enemy carriers destroyed

Fighters Number of enemy fighters destroyed

KilledByLaser Number of enemies killed by laser

KilledByAsteroid Number of enemies killed by asteroid

LasersHitAsteroid

LasersHitEnemy

Number of user laser blasts that hit an asteroid

Number of user laser blasts that hit an enemy

LasersMissed Number of user laser blasts that missed

ShieldsUsed

LivesUsed

Number of shield upgrades used

Number of life upgrades used

BossTime Time required to destroy the Boss ship

Result Whether the player won the game or not

3 User Modeling with HOSVD

3.1 Introduction to Tensors

Informally speaking, an N
th

 order tensor is an object with N indices. The “dimen-

sions” of a tensor will be also referred to as modes. Vectors and matrices can be con-

sidered as first and second order tensors, respectively. Within the framework of this

article, the order is defined as N = 3. Therefore, for reasons of simplicity, most of the

theoretical issues concerning tensors shall be stated for third order tensors noted as:
KJI  , where I,J,K are integers greater than zero. The dimensionality of the

vector space
KJI  is I*J*K. The aforementioned notation can be straightforwardly

generalized to include further dimensions. It is clear that a tensor of order 0 is a sca-

lar, while a tensor of order 1 is a vector and a tensor of order 2 is a matrix. Most of the

notation used is borrowed from data mining and especially from data warehousing

literature, therefore, readers familiar to such concepts could comprehend more effort-

lessly since the definitions used follow many of the data cubes notions. Treating ten-

sors as multidimensional arrays is a convenient way of processing high-dimensional

data, since we are also interested in extracting arrays of lower dimensionality. A vec-

tor can be extracted along any mode, forming a fiber. Furthermore, when a single

plane from an order-𝑟 tensor on any mode is extracted, a matrix known as a slice is

produced. Slices and fibers of a third order tensor are illustrated in Fig. 1 and Fig. 2,

respectively.

Fig.1.Slices of the (a) first (horizontal), (b) second (latteral) and (c) third (frontal) modes.

Fig.2.Fibers of the (a) first (column fibers), (b) second (row fibers) and (c) third (tube fibers)

modes.

3.2 Proposed algorithm

For reasons of computational complexity, we have emphasized throughout the whole

design and experimental phase to 3
rd

 order tensors, since considering a tensor that

contained at once all the 19 game input parameters described in Table 2 is unrealistic.

The choice of which three parameters to choose each time was based solely on the

criterion of the lowest error rate in terms of classification accuracy. Figure 3 depicts

tensor decomposition example for three of the most significant input features, as it

turned out from the experimental section, namely Lasers, BlastWaves and Ene-

miesKilledbyLasers. Features that contained numeric values were discretized into 20

bins, so that each game that was encoded as a point in a
202020  space. The choice

of the discretization intervals was done according to the unsupervised method of

Tree-based density estimation [12]. Furthermore, each game was manually annotated,

through external observation during game playing, as belonging to the tactical or the

action user attitude (the class), so it is straightforward to believe that games of the

training set constitute 2 well separated clusters, otherwise any other classification

algorithm would perform poorly. The most representative vectors of each cluster span

a subspace in
202020  . The idea behind the proposed algorithm is to construct a set

of orthogonal vectors that span the dominant elements of each cluster. An unlabeled,

unseen game can be classified by estimating the approximation error for each of the 2

clusters. Basis vectors are approximated using HOSVD.

Fig.3.Illustration of a third order HOSVD decomposition considering 3 of the 19 game fea-

tures. The core tensor contains concept strengths, while the projection matrices represent mode-

to-concept similarities.

Classification Algorithm

The following algorithm describes the training phase:

1 for each class

2 for d=1 to 3

2 Temp=A
n1xn2xn3

 (A
n1xn2xn3

)
T
 /*the covariance matrix of mode-d

matricization*/

3 Set U
 n1xn2xn3

 to be the r leading left eigenvectors of Temp

4 end for

5
TTT

UUUAC 332211  // calculate the core tensor

6 end for

Upon completion of the training phase, suppose a new game G is encountered. The

testing phase deals with identifying which set of orthogonal projections per class de-

scribes it best. This is actually a minimization problem:





l

i

c

i UUiAxG
1

2211):,(:,min , where:

 c denotes the class.

 l denotes the projected training examples per class and


c

ix are unknown scalars to be determined.

Due to the fact that matrices are all orthogonal, the solution is given by:





l

i

UUiAGcM
1

2

2211):,(:,,1)(. The game G is credited to the class

for which M(c) is the lowest.

Classification by compression using HOSVD

The methodology of HOSVD can be additionally applied to compress the training set

prior to the calculation of the basis matrices for the different classes. In this section,

some mathematical formulations are provided, which are in a close analogy with low

rank matrix approximations. The advantage is based on the fact that games from dif-

ferent users (action or tactical) are all projected onto one common subspace. Hence,

an unknown game is only projected once, which is a substantial decrease in term of

computational cost both in terms of computations and memory allocation. Further-

more, compression can also be applied to the class dimension, reducing noisy instanc-

es and creating a more compact database if one collects a plethora of gameplay da-

ta.In the training phase, a tensor D is built by using all games from the training set.

They are organized in such a way that every slice contains games from the same class.

The HOSVD approach decomposes D from
4000202020  

to
r , (r<<4000)

and the amount of game instances in each separate class c. Let D have the HOSVD

cr UUFD 21  where):1(:, rUUr ):1(:, cUUc  and

33:),:1,:1(UcrUF  . Under the assumption that both r and c are significantly

smaller than the original values, high compression rates could be achieved without

compromising the classification robustness. In the next section, we tabulate experi-

ments that point towards this belief.

4 Experimental Results

The evaluation approach dealt with identifying which triplet of all attributes described

in Table ΙΙΙ best describes user models according to their behavioral patterns. The test

set consisted of 840 games played by 210 different players, 150 male and 60 female.

Each game was manually annotated by the authors according to whether they be-

longed to the tactical or the action class. In this section, we present the classification

outcome for the four best attribute triplets in relation to classification error rate, as

well as results from the compression phase, concluding with some performance met-

rics in terms of computational cost. Up to 16 basis matrices for each class were used

in the classification and 10 least square problems were solved. In each experiment, the

same number of basis matrices was kept for all classes. Figures 4 to 5 depict the error

rate of the two best 3-mode tensors from the available set of game input features.As

can be observed the best result is provided by the tensor which models Lasers,

BlastWaves and EnemiesKilledbyAsteroid attributes. The error rate is approximately

4,5% which is reached at around 12 basis matrices. In Table 4, we provide classifica-

tion results from the complete dataset by using the K-Nearest-Neighbor and Support

Vector Machines algorithms, two well-known approaches that have been previously

used in many data mining tasks with successful outcomes.Furthemore, their error rate

is almost identical to that of 3-mode tensor modeling, a fact that supports our claim

that even low-mode tensors can reveal useful patterns from sparse data. Another tri-

plet of significant results is that of Lasers-Grabbers-EnemiesMissed. The error rate is

slightly higher than that of the previous case and again it is achieved when the number

of basis matrices increases from 11 to 13. The same principle applies to the other two

attribute triplets.

Fig.4.Classification outcome in terms of error rate for given 3-mode tensor.

Fig.5. Classification outcome in terms of error rate for given 3-mode tensor.

Table 2.Classificationoutcomesfromthe full feature set using KNN and SVM classifiers.

 K-Nearest Neighbor Support Vector Machines

Error

Rate
4,25% 3,97%

From the above figures, we can conclude that a plethora of attributes, initially con-

sidered as important, such as the time required to kill the Boss (BossTime), the num-

ber of cargo (Carriers) and fighter (Fighter) ships the player has destroyed etc., do not

seem to play an important role in deciding whether a player’s style is tactical or ac-

tion-oriented. Furthermore, the Laser attribute is very important since it is present in

the top-3 of the 3-mode tensors as regards to error rate.

5 Conclusions

Modeling player behavior can be a means to understand her game-playing skills and

preferences. This, in turn, can provide game developers with the tools to adjust the

game challenges in order to better match the player capabilities, potentially resulting

in higher engagement and user-satisfaction.In our experiments, using this robust 3-

mode tensor, game modeling experts could extract useful patterns and verify the actu-

al parameters that define the problem. Using this knowledge, one can straightforward-

ly classify (we remind readers that the classifier is very fast in the test phase) new

players according to the predefined behavior easily, based on a tutorial or introductory

playing session, considering only the reduced set of attributes, a considerably faster

process.

6 References

1. M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience. Harper & Row Pub-

lishers Inc., New York, NY, USA, 1990

2. Hunicke, R. 2005. The case for dynamic difficulty adjustment in games. In Proceedings of

the 2005 ACM SIGCHI international Conference on Advances in Computer Entertainment

Technology (Valencia, Spain, June 15 - 17, 2005). ACE '05, vol. 265. ACM, New York,

NY, 429-433.

3. Ernest Adams, The Designer's Notebook: Difficulty Modes and Dynamic Difficulty Ad-

justment, Gamasutra, May 14,2008,

http://www.gamasutra.com/view/feature/3660/the_designers_notebook.php?page=1

4. G.N. Yannakakis and M. Maragoudakis, “Player Modeling Impact on Player’s Entertain-

ment in Computer Games,” User Modeling 2005, 2005, pp. 74-78

5. Kazemi, D. 2008. Metrics and Dynamic Difficulty in Ritual's SiN Episodes. OrbusGame-

Works.com. http://orbusgameworks.com/blog/article/70/metricsanddynamic-difficulty-in-

rituals-sin-episodes-part-1

6. Booth, M. 2009. The AI Systems of Left 4 Dead. Keynote, Fifth Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE ’09). Stanford, CA. October 14 – 16,

2009.

7. Pedersen, C., Togelius, J., and Yannakakis, G. 2009. Modeling Payer Experience in Super

Mario Bros. Proceedings of the 2009 IEEE Symposium on Computational Intelligence and

Games (Politecnico di Milano, Milano, Italy, September 07-10, 2009).

8. M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: dynamic difficulty ad-

justment through level generation,” Proceedings of the 2010 Workshop on Procedural

Content Generation in Games, Monterey, California: ACM, 2010, pp. 1-4.

9. K. Anagnostou and M. Maragoudakis, “Data Mining for Player Modeling in Videogames,”

Informatics, Panhellenic Conference on, IEEE press, 2009.

10. L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value decomposition,

SIAM J. Matrix Anal. Appl. 21 (4) (2000), 1253–1278.

11. S. Wold, Pattern recognition by means of disjoint principal components models, Pattern

Recognition 8 (1975) 127–139.

12. Gabi Schmidberger and Eibe Frank, Unsupervised Discretization Using Tree-Based Densi-

ty Estimation ,Knowledge Discovery in Databases: PKDD 2005, Lecture Notes in Com-

puter Science, 2005, Volume 3721/2005, 240-251.

