
HAL Id: hal-01523079
https://hal.science/hal-01523079

Submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Querying Highly Similar Structured Sequences via
Binary Encoding and Word Level Operations

Ali Alatabbi, Carl Barton, Costas S. Iliopoulos, Laurent Mouchard

To cite this version:
Ali Alatabbi, Carl Barton, Costas S. Iliopoulos, Laurent Mouchard. Querying Highly Similar Struc-
tured Sequences via Binary Encoding and Word Level Operations. 8th International Conference on
Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. pp.584-592,
�10.1007/978-3-642-33412-2_60�. �hal-01523079�

https://hal.science/hal-01523079
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Querying Highly Similar Structured Sequences
via Binary Encoding and Word Level Operations

Ali Alatabbi1, Carl Barton1, Costas S. Iliopoulos1,2,4, Laurent Mouchard1,3

1 King’s College London, Dept. of Informatics, London WC2R 2LS, UK
{ali.alatabbi,carl.barton,c.iliopoulos,laurent.mouchard}@kcl.ac.uk

2 Curtin University, GPO Box U1987 Perth WA 6845, Australia
3 University of Rouen, LITIS - EA4108, France

4 University of Western Australia, Perth, Australia

Abstract. In the post-genomic era there has been an explosion in the
amount of genomic data available and the primary research problems
have moved from being able to produce interesting biological data to
being able to efficiently process and store this information. In this pa-
per we present efficient data structures and algorithms for the High
Similarity Sequencing Problem. In the High Similarity Sequenc-
ing Problem we are given the sequences S0, S1, . . . , Sk where Sj =
ej1Iσ1ej2Iσ2ej3Iσ3 , . . . , ej`Iσ` and must perform pattern matching on the
set of sequences. In this paper we present time and memory efficient
datastructures by exploiting their extensive similarity, our solution leads
to a query time of O(m + vk log ` + moccvv

w
+ PSC(p)m

w
) with a memory

usage of O(N logN + vk log vk).

1 Introduction

The sequencing of the whole Human Genome was a celebrated breakthrough.
The goal was to obtain a consensus sequence accounting for the common parts
of the genomes of all humans. Storing genetic sequences of many individuals of
the same species promises new discoveries for the whole field of biology, and the
low cost of acquiring an individual human genome gives way to “personalized
medicine”, making use of one’s individual genetic profile to tailor treatment to
an individual. The human genome has about 3 billion DNA base pairs (bps),
consisting of 23 chromosomes with lengths ranging from about 33 to 247 million
bps. If a researcher or physician is dealing with many human genomes, then
there is a challenge to store, communicate, and manipulate those genomes. Data
structures, such as the one introduced in this paper, can address the storage and
communication challenges. DNA sequences within the same species are highly
repetitive and often will only have a few differences. Human genomes are identi-
cal to each other for example, only about 1%. of the 3GB human genome differs;
the rest is common to all humans. This poses interesting challenges to efficiently
store and access the data. Therefore, a delta (difference) representation that en-
codes the differences between two human genomes can be quite small. Although
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a reference sequence is required to retrieve the information from delta represen-
tations. Most classic data compression techniques are not well prepared to deal
with this tremendous redundancy. Flexible and efficient data analysis on such
a typically huge collection is plausible using suffix trees. However, suffix trees
occupies O(N logN) bits, which very soon inhibits in-memory analysis. Recent
advances in full-text self-indexing reduce the space of suffix tree to O(N log σ)
bits, where σ is the alphabet size. In practice, the space reduction on a Human
Genome is more than 10-fold. However, this reduction factor remains constant
when more sequences are added to the collection [5]. In this work, we propose
a practical compressed index for the repetitive collection indexing problem. In
particular, the proposed algorithm makes provision to accommodate variations
that may occur in the target sequence with respect to the reference sequence.
With the increasing knowledge of variants, one could simply align against all
known genomes for similar species .

2 Related Work

Compression of biological sequences and querying compressed structures has
been an active research area in recent times, much of this work focuses on de-
veloping indexing schemes to allow for the compression of the sequence whilst
indexing them. Basic indexing techniques often construct one long string by con-
catenating all the sequences together and use auxiliary data structures such as
suffix trees and BWT [1], to build an index of the entire set of sequences; however,
when there are many sequences these are not appropriate due to the memory
usage of a suffix tree O(n log n) bits. Using classical indexes in this way does not
efficiently exploit the large similarities between the DNA sequences, meaning
they often end up storing extra, unnecessary, information. More advanced data
structures such as CSA [11] and FM-index [7] present an improvement over clas-
sical data structures and take into account the entropy of a sequence to produce
a compressed index of the sequence using techniques such as block addressing.

These indexing algorithms are often called ‘opportunistic datastructures’,
this is because they attempt to compress the text as the index is being built. This
is done by considering fixed length segments of the text and detecting repetitions
within them. These algorithms achieve good compression rates in terms of the
entropy of the text; they have a space complexity in the order of O(nHk). Where
Hk is the k−th order entropy of the sequence. Entropy has been shown to be a
good measure of compression when you have a single repetitive text, but when
you have a large number of sequences which are all highly similar the entropy
of the set changes only very slightly as more sequences are added. This means
that a space complexity of O(nHk) becomes unwieldy as the factor of n comes
from the length of all the sequences. So unless Hk decreases proportionally to n,
the memory usage will still inhibit in memory analysis. Ideally we would like to
remove the dependency on n so that the space complexity is terms of the length
of a single sequence and the number of differences.
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Recent research has focused on exploiting the inherent similarity present in
multiple DNA sequences to allow for in memory analysis of a large number of
number of DNA sequences. For example, in [9], as well as the current article, a
number of common segments are assumed with differences between them. This
allows them to exploit the common segments for fast string searching and low
memory usage. Other techniques sacrifice guaranteeing a match to improve the
time complexity, these tend to use filtering techniques which reduce the number
of potential matches (similar to BLAST [3] or FASTA [12], such as searching
using q-grams[14] .

3 Preliminaries

An alphabet Σ is a finite non-empty set whose elements are called symbols. In
this work, we consider the finite alphabet Σ for DNA sequences, where Σ =
{A,C,G, T}. A string is a sequence of zero or more symbols from an alphabet
Σ. The zero-symbol sequence is called the empty string, and is denoted by ε.
The set of all the strings on the alphabet Σ is denoted by Σ∗. The set of all
non-empty strings on the alphabet Σ is denoted by Σ+. The length of a string
x is denoted by |x|.

We denote by x[i], for all 0 ≤ i < |x|, the symbol at index i of x. Each index
i, for all 0 ≤ i < |x|, is a position in x when x 6= ε. It follows that the ith symbol
of x is the symbol at position i− 1 in x, and that

x = x[0 . . |x| − 1]

A string x is a factor of a string y if there exist two strings u and v, such
that y = uxv.

Let x be a non-empty string and y be a string. We say that there exists an
occurrence of x in y, or, more simply, that x occurs in y, when x is a factor of y.

Every occurrence of x can be characterised by a position in y. Thus we say
that x occurs at the starting position i in y when y[i . . i + |x| − 1] = x. It is
sometimes more suitable to consider the ending position i+ |x| − 1.

Compression methods are undergoing rapid development making it more
practical to store sequencing data for longer periods so that the data can be
analysed with the latest techniques as they become available. This creates chal-
lenging research problems, the huge influx of data and rapidly improving analysis
techniques have created the need to store and transfer very large volumes of data.
More work is needed to select the perfect reference for huge data to improve dif-
ference compression generation, and to further investigate the use of the new
method in practical genomic applications.

With the continuous increasing knowledge of variants between individuals,
compression methods are undergoing rapid development making it tempting to
store sequencing data for long periods of time so that the data can be analysed
with the latest techniques. There exist many different programmes for this task.
However, this procedure will come with the overhead of redundant alignments
in conserved regions.
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In this paper, we propose new difference compression algorithms that are suit-
able for storing highly repetitive collections of genomic sequences for the same
species. We analysed the space-time complexity of query the proposed structure
and show its improvement over existing solutions for this specific problem.

4 Problem Definition

High Similarity Sequencing: Intuitively the problem consists of performing
pattern matching on a large set of sequences where each sequence in the set has
a large degree of similarity and adheres to some type of structure. More formally
the problem is as follows. We are given the sequences S0, S1, . . . , Sk where Sj
= ej1Iσ1

ej2Iσ2
ej3Iσ3

, . . . , ej`Iσ`
. In other words, each sequence is formed from a

permutation of the identical blocks I1, I2, . . . , I` with differences between them
e1, e2, . . . , e`. We consider a model of the problem were the errors between iden-
tical segments have a size bounded by a constant factor and for all i, j|Si| = |Sj |.
We wish to find all occurrences of a pattern p in Si where 0 ≤ i ≤ k.

5 Preprocessing

We need to perform some preprocessing in order to reduce the memory usage of
our algorithm. We use a combination of techniques used in [4] and [8] by some of
the authors. The general scheme is to store the equivalent of a single sequence,
named Sr, along with the differences between Sr and each Si. Along with this we
also need to store the permutations of the identical sequences in each sequence.
We then use a binary encoding of the sequences in a 2 bits per base encoding
(2bpb) allowing us to exploit word level operations on binary vectors to speed
up pattern matching. Due to the structure of each sequence we need to store all
the identical sequences and all the differentiating segments.

More formally, we store for the entire sequence

I = I1I2 . . . I`

and for each sequence

Si = e
(i)
1 Iσ1e

(i)
2 Iσ2 . . . e

(i)
` Iσ`

We will store
τi = σi(1)σi(2) . . . σI(`)

and

εi = e
(i)
1 e

(i)
2 . . . e

(i)
`

For each e
(i)
j the size is bounded by a constant and will be < w

2 , where w is
the length of a computer word. We will use a 2bpb encoding scheme with the
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following mapping, as used in REAL [8] so that we can map each differentiating
sequence to a computer word.

– A = 00
– C = 01
– G = 10
– T = 11

In addition we store the identical sequences with the same binary encoding as
this will allow for quick verification of the prefix and suffix of candidate matches
later on in the algorithm.

6 Our Algorithm

The general approach we use is to exploit word level operations to perform effi-
cient string matching on the set of sequences. More specifically we make use the
following binary operation.

bitop(σ(x), σ(y)): a word level operation that given two strings x and y,
with |x| = |y| = γ and 2γ ≤ w, where w is the size of the computer word, it
returns δH(x, y), in constant time. [8]

We distinguish 4 cases in which an occurrence of the pattern could occur and
outline them below:

– Simple Matches: p occurs entirely within an identical block Ii or entirely
within a differentiating segment ei.

– Border Matches: p occurs as a suffix of an identical block and either ends
within an error segment or as the prefix of another identical block

– Complex Matches: p is of the form j1Ip1j2Ip2j3Ip3 , . . . , jnIpv .
– Complex Border Matches: p is of the form αj1Ip1j2Ip2j3Ip3 , . . . , jnIpvβ. Where
α is a prefix of the pattern which occurs as the suffix of an identical block
and β is a suffix of the pattern which occurs as a prefix of an identical block.

It is clear from the 4 cases defined above that the complex matches are going
to be the most computationally expensive and in the rest of the paper we focus
most of our attention on this case. We proceed as follows, we first cover how to
find the non-complex cases and cover, in more detail, how to find the complex
matches.

Non-Complex Matches The approach used to find the 2 non-complex cases
is outlined below.

Simple Matches can be solved simply by using a suffix array[10] of the iden-
tical sequences to find all occurrences of the pattern in O(m+occ). For a survey
on suffix arrays see [13]. In the case of short patterns where the pattern could
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occur entirely within a differentiating section we can check these in O(lk) using
the bitop operation on the binary encoded differentiating segments.

Border Matches can be solved by finding all prefixes of the pattern which
occur as a suffix of an identical block using the suffix array, we denoted this
in the same way as [9] by PSC(p). Once we have all of these we can then use
the binary encoding of the identical blocks and differentiating segment to verify

these in a total of O(PSC(p)m
w ) for all possible occurrences.

Complex Matches First we introduce the idea of a valid factorisation of the
pattern with respect to the identical sequences. For a pattern p we call a fac-
torisation of the pattern valid if takes the form p = µ1Ip1µ2Ip2µ3Ip3 , . . . , µvIpv
such that |µj | ≤ w

2 for 1 ≤ j ≤ v.
The efficient computation of all valid factorisations plays an important part

in our treatment of complex matches. The approach we use for more complicated
matches is as follows.

Step 1 The first step of the algorithm is to compute the valid factorisations of
the pattern, p. To efficiently compute the factorisations of the pattern into this
form we build an Aho-Corasick[2] automaton of all the identical blocks, I1 . . . I`.
We then feed the pattern into the automaton, this will give us all occurrences of
the identical blocks that occur in the pattern. Once we have all the occurrences
we can efficiently determine all the factorisations of the string as there are only
a constant number of possible start positions to check for any valid factorisation.
That is to say a valid factorisation can either start with an identical sequence or
a differentiating segment and if it starts with a differentiating sequence then this
differentiating sequence has a length bounded by a constant factor such that its
length is < w

2 .

Step 2 For each valid factorisation p = µ1Ip1µ2Ip2µ3Ip3 , . . . , µvIpv we have a
sequence τp = p1p2p3 . . . pv which is the order in which the identical sequences
occur in this factorisation. We must find all the sequences, Si, where this per-
mutation of identical sequences occur, so we must find where τp occurs in a taui.
To do this we can build another Aho-Corasick automaton of the set of valid
factorisations and then feed each τi into the automaton.

Step 3 For each occurrence of a τp we must verify the differences between each
Ipj . To do this we can use bit parallelism techniques. Due to the short length
of each of these differentiating sequences we can map them to a computer word
and verify a differentiating sequence in constant time using the bitop operation.

Step 4 It now remains for us to validate the leading and trailing part of the
sequence of each candidate. This is not the same as verifying the errors between
sequences as this part of the sequence could be the suffix or prefix respectively of
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another identical sequence. So in this instance we use the same technique used
to verify the border matches and use a binary vector to represent the pattern
and verify the pattern by using binary operations.

6.1 Analysis

Preprocessing For the preprocessing we need to build a Aho-Corasick automa-
ton of I along with a suffix array which will take O(|I|) for both. In addition
to this we must convert every ei into a binary word using the 2 bits per base
binary encoding scheme which will take time proportional to the number of dif-
ferentiating segments as the size of each differentiating segment is bounded by a
constant factor, this will be O(k`). Additionally we store each Ij in the binary
encoding to allow us to quickly verify complex matches.

Algorithm In the analysis of the algorithm we focus on the complexity of find-
ing and validating the complex and complex border matches, as the time taken
to find these matches is greater than for all other cases. We continue the analysis
by considering the cost of each step in the algorithm as defined above.

Step 1 This requires us to feed the pattern into the automaton and report all the
occurrences of the identical sequences that occur in the pattern so that we can
form all valid factorisations of the pattern. This will take a total of O(m+ occ),
this is O(m + occ) from feeding the pattern into the automaton. To form the
set of valid factorisations we can store one string for each factorisation, of which
there will be at most O(m) and an occurrence can be added directly as the
occurrence is reported. We need not worry about checking it is copied it into
the correct factorisation as each occurrence will be in at most two factorisations,
for an index i it may be in factorisation i and i − |I|. Although we may have
up to O(m), in practise this will only occur for extremely long patterns and the
number of valid combinations will generally be far smaller.

Step 2 To find all the sequences where the order of the identical blocks is
the same as that in the pattern we can build another Aho-Corasick of all the
valid factorisations. The time taken to search using this will take slightly longer
than linear time as we do not have a constant size alphabet. We make use of an
Aho-Corasick automaton for integer alphabets as mentioned in [6]. This will take
O(vk) time to build as there will be O(v) sequences each of length up to O(k). In
general the time taken to search in this type of automaton is O(m log |Σ|+occv).
In our case Σ is the number of identical segments, ` so the total query time be-
comes O(vk log `+ occv).

Step 3 In our preprocessing stage every ei was encoded as a unique binary
string allowing us to exploit the bit op operation to verify each possible segment
in O(1) time. It will take O(v) time for each valid factorisation as there are up to
O(v) differentiating segments per match, however it should be noted that v < m.
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In total this gives us a time of O(occvv) to verify all valid factorisations.

Step 4 Finally we need to check α and β for the complex matches. This is
more challenging as these sections may also be a prefix or suffix of an identical
segment. As we have verified all but α and β we essentially have a border match
and can use the same technique that we used previously for border matches.
We have the required part of each identical sequence in the 2 bits per base en-
coding we used previously due to the preprocessing step; we can simply match
the segments using the bitop operation used previously and verify each possible
segment in O(mw ).

All together this is O(m+ vk log `+ occvvm
w + PSC(p)m

w ). It should be noted
that both v, k and ` will be very small in practise.

Theorem 1 The algorithm correctly computes occurrences of p in the set of

sequences. With query time O(m+ vk log `k + v occvmw + PSC(p)m
w ).

6.2 Memory Usage

In terms of memory usage our algorithm requires O(N logN + `k) bits to store
the sequences and to query we will use O(N logN + `k+ vk log vk) bits. Where
v is the number of valid factorisations each of length k, N is the size of the
identical segments, ` the number of differentiating segments, and k the number
of sequences. It is clear that both N logN and vk log vk are due to the use of the
Aho-Corasick automaton. This offers an improvement over simply indexing the
entire set of sequences with a suffix tree as the factor of N logN will not grow
as the number of sequences in the set is increased. However, it should be noted
that depending on the type of sequences being considered N logN may be quite
large to begin with. All other additional memory requirements are for storing
the bit vectors we use in the preprocessing and for the suffix array, which all take
O(n) bits. We have provided a solution to a problem similar to that considered
in [9], however, we take into account permutations of the identical sequences.
Taking this into consideration we believe that the time-space trade-off of our
solution is reasonable. For future work we aim to further reduce the memory
requirements, specifically we would like to reduce the logN factor by removing
the Aho-Corasick automaton for a more memory efficient alternative.

Theorem 2 The algorithm uses O(N logN + `k) bits of space to store and
O(N logN + `+ vk log vk) bits of space while querying.

7 Conclusion and Future Work

In this paper we have presented a solution to the highly similar sequencing
problem based on the use of word level operations on bit vectors. We still wish
to improve the memory requirements of our approach as the use of Aho-Corasick
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automaton for parts of the algorithm requires O(n log n) bits. Although we are
not naively building an index of all the sequences such as a generalised suffix
tree. The memory requirement will still inhibit in memory analysis at a point.
Ideally we would like to reduce the memory requirements whilst maintaining the
querying speed, or with only a small slowdown. We have achieved similar query
times to [9] and would like to further extend out solution to take into account
k-mismatches and k-differences.
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