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Abstract. We study the cutting problems of meanders using 2-Motzkin
words. These words uniquely define elevated peakless Motzkin paths,
which under specific conditions correspond to meanders. A procedure
for the determination of the set of meanders with a given sequence of
cutting degrees, or with a given cutting degree, is presented by using
proper conditions.
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1 Introduction

The cutting problem of meanders has been introduced by the authors in [9].
Using meandric polygons, we have also enumerated the set of meanders with
given numbers of cuttings, i.e., the numbers of arcs of the meandric curve lying
above and below the horizontal line at a given point.

In the present paper, we complete the cutting problem of meanders. At first,
we represent a meander or meandric system using Motzkin words, and we spec-
ify the subset of meandric Motzkin words, through a necessary and sufficient
condition. Additionally, we determine the matching nested sets of a meandric
Motzkin word. Afterwards, we establish a bijection between meandric Motzkin
words and elevated peakless Motzkin paths. We calculate the cardinality of this
class, as well as the number of these paths, passing through a given point. Fi-
nally, we confront the two main cutting problems of meanders, as we determine
the set of meanders with a given sequence of cutting degrees, or with a given
cutting degree.

The two cutting problems can be considered as data-mining problems, since
we extract the subset of Motzkin words which are meandric, or the subset of
Motzkin paths which are peakless and elevated. Specifically in the field of Bioin-
formatics, the already mentioned problems have many facets in relation with the
M-folding problem and RNA prediction problem, based on the fact that closed
RNA structures can be viewed as mathematical objects obtained by abstracting
topologically non-relevant properties of planar folding of single-stranded nucleic
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acids. In the literature, many approximation data-mining algorithms had been
constructed, concerning the enumeration of sequential terms of RNA secondary
structures, through the bijection with alternative representations such as energy
models, plane trees and Motzkin numbers [11], k-noncrossing set of partitions
[3], set of nested arcs [3], Motzkin paths and Dyck paths [5].

The following definitions and notation refer to notions that are necessary
for the development of the paper. A set S of disjoint pairs of [2n] such that
⋃

{a,b}∈S{a, b} = [2n] and for any {a, b}, {c, d} we never have a < c < b < d, is

called nested set of pairs on [2n]. We denote the set of all nested sets of pairs on
[2n] by N2n. Two nested sets S1, S2 ∈ N2n define a permutation σ on [2n], such
that σ(2i− 1) = j iff {2i− 1, j} ∈ S1 and σ(2i) = j iff {2i, j} ∈ S2, for every
i ∈ [n]. The sets S1, S2 are k-matching if and only if σ has k cycles. In the case
where k = 1, S1, S2 are simply called matching.

A word v ∈ {a, ā}∗ is called Dyck word if |v|a = |v|ā and for every factor-
ization v = pq we have |p|a ≥ |p|ā where |v|a, |p|a (resp. |v|ā, |p|ā) denote the
number of occurrences of a (resp. ā) in the words v and p. A word v ∈ {a, ā}∗,
such that |v|a = |v|ā is called Grand Dyck word. We denote by D2n the set of
all Dyck words of length 2n and it is well known that the cardinality of D2n is
equal to the n-th Catalan number Cn = 1

n+1

(
2n
n

)
.

2 Meanders

A (closed) meander of order n is a closed self avoiding curve, crossing a horizontal
line 2n times [4]. We denote by M2n the set of meanders of order n [7].

We can extend the definition of meanders to meandric systems with k com-
ponents, by allowing configurations with k disconnected meanders [4].

In this paper, every meander ofM2n is represented by a word w ∈ {a, ā, b, b̄}∗,
which is called meandric Motzkin word [8]. For example, the meander of Fig. 1
corresponds to the word w = a a b̄ b a b ā ā b̄ ā.

1 2 3 4 5 6 7 8 9 10

Fig. 1. A meander with w = a a b̄ b a b ā ā b̄ ā.

In order to formally introduce the meandric Motzkin words, following [8], we
recall that for every pair v = v1v2 · · · vℓ and v′ = v′1v

′
2 · · · v

′
ℓ of words in {a, ā}∗

of length ℓ, we define v ◦ v′ to be the word w = w1w2 · · ·wℓ ∈ {a, ā, b, b̄}∗, with

wi = vi ◦ v
′
i, i ∈ [ℓ], where a ◦ a = a, ā ◦ ā = ā, a ◦ ā = b, ā ◦ a = b̄.
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Note that the words v and v′ can be uniquely recovered from w using the fol-
lowing relations

vi =

{

a, if wi = a or b,

ā, if wi = ā or b̄,
and v′i =

{

a, if wi = a or b̄,

ā, if wi = ā or b,

for i ∈ [ℓ], and we call v, v′ associates of w.
We define the set of the meandric Motzkin words of length 2n as the set

Ŵ2n = {w : w = v ◦ v′, v, v′ ∈ D2n}.

Notice that from the word v ◦ v′ we immediately obtain the word v′ ◦ v, by
interchanging the letters b and b̄. So, in order to generate the set Ŵ2n it is
actually enough to construct half of its elements.

The set Ŵ2n can be partitioned into the classes W k
2n, k ∈ [n], where W2n =

W 1
2n. Each class W k

2n contains the meandric Motzkin words with v, v′ ∈ D2n,
such that their corresponding nested sets are k-matching.

It has been proved in [8] that there exists a bijection between the sets M2n

and W2n. According to this bijection, every meander µ can be considered as an
ordered pair (U,L) of nested sets of pairs, where U (resp. L) is defined by the
arcs of the meandric curve above (resp. below) the horizontal line. Since U,L

are encoded by two Dyck words, say v and v′, then the meandric Motzkin word
w = v ◦ v′ encodes the meander µ.

In [8], it was also proved (see Proposition 2.1) that every word w of Ŵ2n is a
2-Motzkin word of {a, ā, b, b̄}∗, with |w|b = |w|b̄. More specifically, if w ∈ Ŵ2n,
then by deleting the letters b, b̄ (resp. a, ā) in w, a Dyck word (resp. Grand
Dyck word) is obtained, or equivalently, we have that |w|a = |w|ā, |w|b =
|w|b̄ and |p|a ≥ |p|ā, for every factorization w = pq. Consequently, every word
w ∈ Ŵ2n can be considered as the shuffle of a Dyck word in {a, ā}∗ and a Grand
Dyck word in {b, b̄}∗, where the first and last letter of w are a and ā respectively.
Obviously, not every word w satisfying the above conditions encodes a meander,
or a meandric system. As an example, consider the word a b̄ b̄ b b ā. The next
result states the necessary and sufficient condition for a word to be a meandric
Motzkin word.

Proposition 1 For a word w ∈ {a, ā, b, b̄}∗ of length 2n, we have that w ∈ Ŵ2n

if and only if |w|a − |w|ā = |w|b − |w|b̄ = 0 and |p|a − |p|ā ≥
∣
∣|p|b − |p|b̄

∣
∣, for

every factorization w = pq.

Proof. Let w ∈ {a, ā, b, b̄}∗ and let w = pq be a factorization of w. Then, the
associates v, v′ of w, such that w = v ◦v′, are uniquely defined and, furthermore,
the factorization of w uniquely defines the factorizations v = rs and v′ = r′s′,
such that p = r ◦ r′ and q = s ◦ s′. By definition, we have the following relations

|r|a = |p|a + |p|b, |r|ā = |p|ā + |p|b̄, |r′|a = |p|a + |p|b̄, |r′|ā = |p|ā + |p|b,

which lead to

|r|a−|r|ā = |p|a−|p|ā+|p|b−|p|b̄ and |r′|a−|r′|ā = |p|a−|p|ā−(|p|b−|p|b̄). (1)
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Note that the above relations also hold, when we set p = w, and in this case we
have r = v and r′ = v′.

If w ∈ Ŵ2n, then v, v′ ∈ D2n, so that |r|a − |r|ā ≥ 0, |r′|a − |r′|ā ≥ 0 and
|v|a− |v|ā = |v′|a− |v′|ā = 0. In this case, from relations (1), we have that |p|a−
|p|ā ≥ |p|b̄−|p|b and |p|a−|p|ā ≥ |p|b−|p|b̄, or equivalently |p|a−|p|ā ≥

∣
∣|p|b−|p|b̄

∣
∣,

while applying relations (1), for p = w, we obtain that |w|a − |w|ā = |w|b̄ − |w|b
and |w|a − |w|ā = |w|b − |w|b̄, or equivalently |w|a − |w|ā = |w|b − |w|b̄ = 0.

Conversely, if |w|a − |w|ā = |w|b − |w|b̄ = 0 and |p|a − |p|ā ≥
∣
∣|p|b − |p|b̄

∣
∣,

then relations (1) imply that |r|a − |r|ā ≥ 0 and |r′|a − |r′|ā ≥ 0, while applying
relations (1) for p = w, we obtain that |v|a − |v|ā = |v′|a − |v′|ā = 0. From the
above, we deduce that v, v′ ∈ D2n, so that w ∈ Ŵ2n. �

The process of determining the matching nested sets U,L that correspond to
a meander w ∈ W2n can be simplified by the following easily verified proposition:

Proposition 2 Let U,L be the matching nested sets that correspond to a me-
ander w ∈ W2n. Then, every pair of U (resp. L) corresponds to a subsequence
of w having one of the following forms: aā, ab̄, bā, bb̄ (resp. aā, ab, b̄ā, b̄b).

According to Proposition 2, the short pairs of U (i.e., pairs of the form {i, i+
1}) are immediately determined by identifying the positions of the occurrences
of the digrams aā, ab̄, bā, bb̄ in w. Then, by deleting these digrams from w, we
obtain a new word w′ ∈ {a, ā, b, b̄}∗. We repeat the same procedure for w′, until
all pairs are determined. The pairs of L are obtained analogously.

For example, for the meander w = aab̄babāāb̄ā of Fig. 1, the nested set U is
obtained as follows:

a
1

︷︸︸︷

a
2
b̄
3
b
4
a
5

︷︸︸︷

b
6
ā
7
ā
8
b̄
9
ā
10

−→ a
1
b
4

︷︸︸︷

a
5
ā
8
b̄
9
ā
10

−→ a
1

︷︸︸︷

b
4
b̄
9

ā
10

−→
︷︸︸︷

a
1
ā
10

Thus, U = {{1, 10}, {2, 3}, {4, 9}, {5, 8}, {6, 7}}. Analogously, we obtain that
L = {{1, 8}, {2, 7}, {3, 4}, {5, 6}, {9, 10}}.

Examples

1. The meandric Motzkin word w = a b b b b̄ a b̄ ā b̄ ā, does not belong to the
set Ŵ10. This is verified by the following table:

a b b b b̄ a b̄ ā b̄ ā

|p|a − |p|ā 1 1 1
∣
∣|p|b − |p|b̄

∣
∣ 0 1 2

2. The meandric Motzkin word w = a b b̄ a b ā b̄ b b̄ ā, belongs to the set
w ∈ W10. This is verified by the following table

a b b̄ a b ā b̄ b b̄ ā

|p|a − |p|ā 1 1 1 2 2 1 1 1 1 0
∣
∣|p|b − |p|b̄

∣
∣ 0 1 0 0 1 1 0 1 0 0
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and by the fact that its corresponding nested sets

U = {{1, 10}, {2, 3}, {4, 7}, {5, 6}, {8, 9}}, L = {{1, 2}, {3, 6}, {4, 5}, {7, 8}, {9, 10}},

which are obtained using Proposition 2, are matching.
3. The meandric Motzkin word w = a a b b b̄ b̄ ā b b̄ ā, belongs to the set

w ∈ W 2
10. This is verified by the following table

a a b b b̄ b̄ ā b b̄ ā

|p|a − |p|ā 1 2 2 2 2 2 1 1 1 0
∣
∣|p|b − |p|b̄

∣
∣ 0 0 1 2 1 0 0 1 0 0

and by the fact that its corresponding nested sets

U = {{1, 10}, {2, 7}, {3, 6}, {4, 5}, {8, 9}}, L = {{1, 4}, {2, 3}, {5, 8}, {6, 7}, {9, 10}},

which are obtained using Proposition 2, are 2-matching.

3 Motzkin paths

We recall that a Motzkin path (resp. 2-Motzkin path) is a lattice path in the first
quadrant beginning at the origin, ending at the x-axis and consisting of the steps
a = (1, 1) as the up-step, ā = (1,−1) as the down-step and b = (1, 0) as the
horizontal step (resp. a, ā and two kinds of horizontal steps denoted by b and b̄).
Every Motzkin path (resp. 2-Motzkin path) is encoded by its sequence of steps,
i.e., a word y ∈ {a, ā, b}∗ (resp. y ∈ {a, ā, b, b̄}∗). The set of all Motzkin paths
(resp. 2-Motzkin paths) of length n is enumerated by the n-th Motzkin number
Mn =

∑

k≥0

(
n
2k

)
Ck [2], (resp. the number Cn+1 [1]).

An elevated peakless Motzkin path, is a Motzkin path that never touches the
x-axis except at its first and last points and it has no peaks (i.e., no occurrences
aā). For example, the path of Fig. 2 is an elevated peakless Motzkin path of
length 10 with y = a a b b a b ā ā b ā. We denote by P2n the set of all elevated

0 1 2 3 4 5 109876

1

2

3

η

i

(i)

Fig. 2. The elevated peakless Motzkin path with y = a a b b a b ā ā b ā.

peakless Motzkin paths of length 2n.
Given that (see [10], A004148) the number of peakless Motzkin paths of

length n is equal to a(n) =
∑

k≥⌈n+1

2
⌉

1
k

(
k

n−k

)(
k

n−k+1

)
, we easily deduce that the

number of paths of P2n is equal to a(2n− 2). Thus, we have the following result.
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Proposition 3 The cardinality of P2n is given by

∑

k≥⌈ 2n−1

2
⌉

1

k

(
k

2n− k − 2

)(
k

2n− k − 1

)

.

A list of terms of the above sequence are presented in [10], A203019.
The set P2n can also be encoded in {0, 1, 2, . . . , n} by the heights η(i) of the

vertices (i, η(i)), i = 0, 1, . . . , 2n of the path. For the heights η(i) we have the
following properties:

(i) η(0) = η(2n) = 0, η(1) = η(2n− 1) = 1.
(ii) 1 ≤ η(i) ≤ min{i, 2n− i}, i ∈ [2n− 1].
(iii) |η(i)− η(i − 1)| = 0 or 1, i ∈ [2n].
(iv) There exists no i ∈ [2n− 2], such that η(i) = η(i + 2) = η(i + 1)− 1.

Indeed, the first property holds since each path of P2n begins at (0, 0), ends
at (2n, 0) and it is elevated. The second property is deduced by the fact that the
difference of the number of occurrences of a’s and ā’s at the i-step is at most
i, if i ≤ n or 2n − i, if i ≥ n. The third property is obvious since at each step
we add +1, −1 or 0 to the height of the previous point. The last property is an
immediate consequence of the fact that the path is peakless.

By omitting the initial and final terms η(0) = η(2n) = 0, we introduce the
finite sequences η = (η(i))i∈[2n−1], and their set will be denoted by H2n−1.

For example, for the path of Fig. 2, we obtain the sequence

η = 1 2 2 2 3 3 2 1 1.

In general, to every path y ∈ P2n corresponds a sequence η ∈ H2n−1 with

η(1) = η(2n− 1) = 1 and η(i) =







η(i − 1) + 1, if yi = a,

η(i − 1), if yi = b,

η(i − 1)− 1, if yi = ā,

2 ≤ i ≤ 2n− 2.

The converse also holds, since to every sequence η ∈ H2n−1 corresponds a
path y ∈ P2n with

y1 = a, y2n = ā and yi =







a, if η(i) > η(i − 1),

b, if η(i) = η(i − 1),

ā, if η(i) < η(i − 1),

2 ≤ i ≤ 2n− 1.

So, we have arrived at the following proposition.

Proposition 4 There exists a bijection between the sets P2n and H2n−1.

From the above bijection between the sets P2n and H2n−1, we deduce that
the cardinality of the set H2n−1 is given by the formula of Proposition 3.

The paths of P2n can be obtained by their corresponding sequences of H2n−1

following the above properties of the heights η(i).
This is done with the aid of a suitable tree of height 2n − 1, in which each

vertex is labeled by an integer of [n], so that:
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(i) if a vertex labeled by ξ belongs to the eth level, then ξ ≤ min{e, 2n−e},
(ii) to every vertex with label ξ correspond at most three children, with labels

ξ − 1, ξ, ξ + 1, on [n].
(iii) at every path of the tree, we can not find three consecutive vertices with

labels ξ, ξ + 1, ξ on [n].

Our next effort concerns the number ai,k of paths of P2n passing through the
point (i, k). We already know (see [10], A097724) that the number of left factors
of peakless Motzkin paths, having length n and endpoint height k is equal to
T (n, k) = (k + 1)

∑

j≥⌈n−k+1

2
⌉

1
j

(
j

n−k−j

)(
j+k

n+1−j

)
.

The number of left factors for the paths of P2n starting from (0, 0) and ending
at (i, k) is given by T (i− 1, k − 1) = k

∑

j≥⌈ i−k+1

2
⌉
1
j

(
j

i−k−j

)(
j+k−1
i−j

)
.

Furthermore, the number of right factors for the paths of P2n starting from
(i, k) and ending at (2n, 0) is equal to the number of left factors for the paths
of P2n starting from (0, 0) and ending at (2n− i, k), i.e., T (2n− i − 1, k − 1) =
k
∑

j≥⌈ 2n−i−k+1

2
⌉

1
j

(
j

2n−i−k−j

)(
j+k−1
2n−i−j

)
. Thus, we have the following result.

Proposition 5 The number of paths of P2n passing through the point (i, k) is

given by the product k2
∑

j≥⌈ i−k+1

2
⌉

1
j

(
j

i−k−j

)(
j+k−1
i−j

) ∑

j≥⌈ 2n−i−k+1

2
⌉

1

j

(
j

2n−i−k−j

)(
j+k−1
2n−i−j

)
.

The paths of P2n passing through the point (i, k) are obtained by the subtree
of the tree of H2n−1 with η(i) = k.

We denote by P
(2)
2n the set of elevated peakless 2-Motzkin paths y of length

2n, with |y|b = |y|b̄. Since the length of every path w ∈ P2n and the number
|w|a + |w|ā are even, we conclude that |w|b is also even. Therefore, every path

y ∈ P
(2)
2n , with |y|b = |y|b̄ = ν, is uniquely obtained from a path w ∈ P2n, with

|w|b = 2ν, by converting half of the b steps of w into b̄ steps. Conversely, w ∈ P2n

generates
(
2ν
ν

)
paths of P

(2)
2n , which cannot be generated by any other path of

P2n.
Furthermore, the number of peakless Motzkin paths of length 2n with k a

steps and 2ν horizontal steps is given by the formula (sequence A089732 in [10])
T (2n, n− ν) =

(
2n−k

k

)(
2n−k

k+1

)
1

2n−k
=

(
n+ν

2ν

)(
n+ν

2ν−1

)
1

n+ν
, where T (2n, n− ν) is also

the number of paths in P2n with 2ν horizontal steps, for n, ν > 0.
Finally, since P2n is partitioned with respect to the number 2ν of b steps,

where 1 ≤ ν ≤ n, using the previous formula, we have the following result.

Proposition 6 The cardinality of P
(2)
2n is given by

∑n

ν=1

(
2ν
ν

)(
n+ν
2ν

)(
n+ν
2ν−1

)
1

n+ν
.

4 Cutting problem

For every meander of M2n and for any i ∈ [2n− 1] we consider the vertical line
passing through the middle point of the segment (i, i+ 1), which we call as the
i-line [9]. The number of arcs of the meandric curve, which are intersected by
the i-line is called cutting degree ǫ(i) of the meander at i.
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1 2 3 4 5 6 7 8 9 10

2 4 4 4 6 6 4 2 2

Fig. 3. A meander with ǫ = 2 4 4 4 6 6 4 2 2.

For example, for the meander of Fig. 1, we have ǫ = 244466422 (see Fig. 3).
The cutting degrees for a meander w ∈ W2n are obviously deduced by

ǫ(1) = ǫ(2n− 1) = 2 and ǫ(i) =







ǫ(i− 1) + 2, if wi = a,

ǫ(i− 1), if wi = b or b̄,

ǫ(i− 1)− 2, , if wi = ā,

for i = 2, 3, . . . , 2n− 2.
We denote by E2n−1 the set of the sequences ǫ = (ǫ(i))i∈[2n−1] satisfying

ǫ(1) = ǫ(2n− 1) = 2 and |ǫ(i)− ǫ(i+ 1)| ∈ {0, 2,−2}, i ∈ [2n− 2].

From the previous, we have that

1. To every meander w ∈ W2n corresponds a unique finite sequence ǫ ∈ E2n−1

but obviously, the converse does not hold.
2. The sequences ǫ and η, corresponding to a meander of M2n, satisfy ǫ(i) =

2η(i), i ∈ [2n− 1].
3. For the cutting degree, the following properties hold

(i) 2 ≤ ǫ(i) ≤ 2min{i, 2n− i}, i ∈ [2n− 1].
(ii) |ǫ(i+ 1)− ǫ(i)| ∈ {0, 2}, i ∈ [2n− 1].
(iii) There exists no i ∈ [2n− 2], such that ǫ(i) = ǫ(i+ 2) = ǫ(i+ 1)− 2.

The main cutting problems of meanders are to determine:

a) The subset M2n(ǫ) of M2n with given sequence of cutting degrees ǫ.
b) The subset M2n(i, ǫ(i)) of M2n with given cutting degree ǫ(i) at i.

For the first problem, i.e. to determine the set W2n(ǫ) we have that if ǫ is
deduced by a given meander then W2n(ǫ) 6= ∅, while if ǫ is deduced by a given
η ∈ H2n−1 then W2n(ǫ) could be empty.

So we start by finding the Motzkin word y ∈ P2n which corresponds to the

sequence η ∈ H2n−1, where η(i) = ǫ(i)
2 , for i ∈ [2n− 1].

From y we determine all the 2-Motzkin words ω ∈ {a, ā, b, b̄}∗ with the fol-
lowing properties:

The letter h is replaced by the letters b, b̄ such that |ω|b = |ω|b̄.
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Obviously, if |y|b = 2ν there exist
(
2ν
ν

)
such words ω. Those words can be

obtained, if we properly place the b’s and b̄’s in the positions of the b’s, with the
help of a binary tree B2ν of height 2ν. In this tree, each left child is labeled by b

and each right child is labeled by b̄, given that the equal number of b’s and b̄’s is
ν. Thus, the number of possible meanders belongs to the set {0, 2, 4, . . . ,

(
2ν
ν

)
}.

We notice that the paths of the right subtree of B2ν can be produced by replacing
the b’s with b̄’s at the paths of the left subtree.

For example, for the Motzkin word y = a a b b a b ā ā b ā of Fig. 2, we have
ν = 2 and the following

(
4
2

)
= 6 words: a a b b a b̄ ā ā b̄ ā, a a b b̄ a b ā ā b̄ ā,

a a b b̄ a b̄ ā ā b ā, a a b̄ b̄ a b ā ā b ā, a a b̄ b a b̄ ā ā b ā, a a b̄ b a b ā ā b̄ ā,

which are obtained with the aid of the tree B4.
According to the above, the problem can be confronted by the following

procedure:

Step 1. Find the Motzkin word y which corresponds to a given sequence η ∈ H2n−1.
Step 2. Find the tree B2ν , where ν = 1

2 |y|b.
Step 3. Find, using y and B2ν , the 2-Motzkin words ω = ω1ω2 · · ·ω2n of {a, ā, b, b̄}∗

for which:

(i) ωi =







a, if yi = u,

b or b̄, if yi = h,

ā, if yi = d,

for i ∈ [2n]. (ii) |ω|b = |ω|b̄ = ν.

Step 4. Find the associate words r, r′ for each ω and check if there are Dyck words.
Step 5. Find from the remaining ω, the ones that satisfy the matching property for

the corresponding nested sets.

Examples. The following examples illustrate the above procedure.

1) For η = 1 1 1 1 1 2 2 1 1 we have y = a b b b b a b ā b ā and ν = 3. From
the left subtree of B6, we derive 1

2

(
6
3

)
= 10 words.

We can easily observe that none of these words satisfies the condition of the
fourth step. Hence, for ǫ = 2 2 2 2 2 4 4 2 2, we have that W10(ǫ) = ∅.

2) For η = 1 1 1 2 2 1 1 1 1 we have that y = a b b a b ā b b b ā and ν = 3, hence
from the left subtree of B6, we derive 10 words, only four of them satisfying
the conditions of the fourth and fifth step.
Hence, for ǫ = 2 2 2 4 4 2 2 2 2, we have that

W10(ǫ) = {a b b̄ a b ā b̄ b b̄ ā, a b b̄ a b ā b̄ b̄ b ā, a b b̄ a b̄ ā b b b̄ ā,

a b b̄ a b̄ ā b b̄ b ā, a b̄ b a b̄ ā b b̄ b ā, a b̄ b a b̄ ā b b b̄ ā,

a b̄ b a b ā b̄ b̄ b ā, a b̄ b a b ā b̄ b b̄ ā}.

3) For the meander of Fig. 1 we have η = 1 2 2 2 3 3 2 1 1, y = a a b b a b ā ā b ā,
and ν = 2, hence from the left subtree of B4, we derive 1

2

(
4
2

)
= 3 words. We

can easily observe that all these words satisfy the conditions of the fourth
and fifth steps. Hence, for ǫ = 2 4 4 4 6 6 4 2 2, we have that

W10(ǫ) = {a a b b a b̄ ā ā b̄ ā, a a b b̄ a b ā ā b̄ ā, a a b b̄ a b̄ ā ā b ā,

a a b̄ b̄ a b ā ā b ā, a a b̄ b a b̄ ā ā b ā, a a b̄ b a b ā ā b̄ ā}.
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We will now solve the second problem, i.e., we will determine the elements
of the set W2n(i, ǫ(i)).

For the existence of such meanders, the conditions that ǫ(i) is even and
2 ≤ ǫ(i) ≤ 2min{i, 2n− i}, for i = 2, 3, . . . , 2n− 2, must hold.

If the cutting degree at i for a meander is ǫ(i), then its corresponding path

of P2n passes through the point (i, η(i)) =
(

i,
ǫ(i)
2

)

.

It is natural to find the paths of P2n passing through the point (i, η(i)) and
to check which of them satisfy the matching property.

From Proposition 5 we know the number of paths of P2n passing through the

point (i, η(i)) =
(

i,
ǫ(i)
2

)

. These paths of P2n can be determined by the subtree

of the tree of H2n−1 presented in Section 2.
For example, for n = 3 and ǫ(4) = 2 the number of paths of P6 passing

through the point (4, 1) is equal to 2. Using the corresponding subtree, we obtain
the sequences 1 1 1 1 1 and 1 2 2 1 1 hence,

W6(4; 2) = W6(2 2 2 2 2) ∪W6(2 4 4 2 2) =

={a b̄ b b̄ b ā, a b̄ b b b̄ ā, a b b̄ b̄ b ā, a b b̄ b b̄ ā} ∪ {a a b̄ ā b ā, a a b ā b̄ ā}

={a b̄ b b̄ b ā, a b̄ b b b̄ ā, a b b̄ b̄ b ā, a b b̄ b b̄ ā, a a b̄ ā b ā, a a b ā b̄ ā}

Using the above algorithms, we have obtained the following enumeration
results: A192927, A207851, A203019, A208357, A208358 in [10].
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