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Abstract. This paper describes the methodology of providing multi-
probability predictions for proteomic mass spectrometry data. The method-
ology is based on a newly developed machine learning framework called
Venn machines. They allow us to output a valid probability interval. We
apply this methodology to mass spectrometry data sets in order to pre-
dict the diagnosis of heart disease and early diagnoses of ovarian cancer.
The experiments show that probability intervals are valid and narrow.
In addition, probability intervals were compared with the output of a
corresponding probability predictor.

1 Introduction

Prediction of heart disease (HD) and ovarian cancer (OC) is a critical task. For
some of these diseases (e.g., OC) it is especially crucial in their early stages,
when the disease has no clinical symptoms. Mass spectrometry techniques are
widely deployed in these problems.

When predicting diagnosis based on proteomics data, very often, the classical
machine learning approach is to predict the diagnosis without any measure of
how accurate this prediction is. In this work we describe the methodology of
proteomics mass spectrometry data analysis based on hedging predictions that
is how strongly we believe in this prediction [3].

The framework of Venn machines was introduced in [5] and represents a
new generation of prediction algorithms. These methods have a range of advan-
tages over the known techniques. Firstly, the prediction which is made is always
tailored to the object; as a result, we output a probability interval to each pa-
tient’s diagnosis. Secondly, the only statistical assumption which is used is the
exchangeability assumption which can be satisfied when the data sets are in
random order.

Strict definitions of Venn machines are given in Section 2. The main idea
is as follows. We first divide examples into categories, the category assigned to



an example may depend not only on the example itself, but also on its relation
to the rest of examples. For each hypothesis about the new label, we classify
the new object into one of the categories, and then use frequencies of labels in
the chosen category as predictable distribution of the new object’s label. Due
to different hypotheses, the machine outputs several (two in the binary case)
probability distributions (multiprobability distribution) for the new object rather
than the single one.

Practically any known machine learning algorithm can be used as an underly-
ing algorithm in this framework (such as Neural Network in [6] and SVM in [7]).
In this work we used logistic regression as an underlying algorithm. It is popular
as a method that initially outputs probabilities and provides information about
relative weight of features. We will compare Venn machines predictions with
probability predictions output by logistic regression.

The methodology is designed for the analysis of proteomic mass spectrometry
data collected in the UKCTOCS trial (for more information see www.ukctocs.org.uk).

2 Venn Machines

Consider a training set consisting of object, xi, label, yi, pairs: (x1, y1) , . . . , (xn, yn).
To predict a label yn+1 for a new object xn+1 = xnew, we check different hy-
potheses yn+1 = y each time including the pair (xn+1, yn+1) = (xnew, y) into
the set.

The idea of Venn machines is based on a taxonomy function An, n ∈ N, which
classifies the relation between an example and the set of the other examples:

τi = An+1((xi, yi), {(x1, y1), . . . ,

(xi−1, yi−1), (xi+1, yi+1), . . . , (xn+1, yn+1)}).

Values τi are called categories and are taken from a finite set T = {τ1, τ2, . . . , τk}.
Equivalently, a taxonomy function assigns to each example (xi, yi) its category
τi, or in other words grouping all examples to a finite set of categories. This
grouping should not depend on the order of examples within a sequence.

The conventional way of using Venn ideas was as follows. Categories are
formed using only the training set. For each non-empty category τ the following
values are calculated: Nτ - the total number of examples from the training set,
assigned to category τ , and Nτ (y′) - the number of examples within category τ
having label y′. Then empirical probabilities of an object within category τ to
have a label y are found as

Pτ (y′) = Nτ (y′)/Nτ . (1)

Now, given a new object xn+1 with unknown label yn+1, one should assign it
somehow to the most likely category of those already found using only the train-
ing set; let it be τ∗. Then the empirical probabilities Pτ∗(y′) are considered as
probabilities of the object xn+1 to have a label y′. The idea of conformal predic-
tors [5] allows us to construct several probability distributions (multi probability



distribution) of a label y′ for a new object. First we consider a hypothesis that
the label yn+1 of a new object xn+1 is equal to y, (yn+1 = y). Then we add the
pair (xn+1, y) to the training set and apply to this extended sequence the taxon-
omy function A. This groups all the elements of the sequence to categories. Let
τ∗(xn+1, y) be the category containing the pair (xn+1, y). Now for this category
we calculate, as previously, the values Nτ∗ , Nτ∗(y′) and empirical probability
distribution

Pτ∗(xn+1,y)(y′) = Nτ∗(y′)/Nτ∗ . (2)

This distribution depends implicitly on the object xn+1 and its hypothetical
label y. Trying all possible hypothesises of the label yn+1 being equal to y,
we obtain a set of distributions Py(y′) = Pτ∗(xn+1,y)(y′) for all possible labels
y. These distributions in general will be different, as when changing the value
of y we change (in general) grouping into categories, the category τ∗(xn+1, y),
containing the pair (xn+1, y), the numbers Nτ∗ and Nτ∗(y′). So we obtain, as
the output of Venn predictors, as many distributions as the number of possible
labels.

In the two-class problem (Y = {0, 1}), Venn predictors have two probabil-
ity distributions, defined by py(1) = P{yn+1 = 1}. Thus, the output can be
interpreted as the interval

[p−new, p+
new] = [min{p0(1), p1(1)},max{p0(1), p1(1)}] , (3)

which is an estimation of probability that yn+1 = 1. We will refer to p−new and
p+
new as lower Venn prediction and upper Venn prediction, respectively. They

can be interpreted as lower and upper bounds for the probability. Thus if one
sets a risk threshold θ and takes all the predictions with lower Venn prediction
not smaller than θ then the expected percentage of cases between these examples
should be between θ and 1 as well.

A Venn predictor is entirely defined by its taxonomy. In the next section we
describe a taxonomy based on the logistic regression.

3 Logistic Regression

Logistic regression outputs the probability distribution of a new label. It pro-
duces these distribution as follows.

Suppose each object out of the training set x1, . . . , xn is an m-dimensional
vector, each with corresponding labels y1, . . . , yn,∈ Y = {0, 1}.

The statistical model of logistic regression is based on the assumption that
P{yi = 1} = 1/

(
1 + e−<xi,b>

)
. The optimization goal for logistic regression is:

n∑
i=1

log
(
1 + e(−1)yi 〈xi,b〉

)
+ a 〈b, b〉 → min

b
. (4)

This formula is based on the maximum likelihood estimation for Logistic regres-
sion, with an added regularisation term a 〈b, b〉 to ensure that a minimum always



exists and avoid overfitting. In this work we always set a = 0.1. The above min-
imisation problem can be solved by a gradient descent method. Denote by b̂ the
solution of the optimisation problem above.

For a new object xnew, the probabilistic prediction based on logistic regres-
sion will be:

pnew =
1

1 + e−〈xnew,b̂〉 , (5)

which estimates the maximum likelihood probability that ynew = 1 if the data
are generated by a distribution from a logistic model. We will call pnew a direct
prediction to distinguish it from multi-probabilistic predictions produced by a
Venn machine.

3.1 Logistic Regression as an Underlying Algorithm

Now we can describe how logistic regression can be plugged in Venn machine as
an underlying algorithm. As earlier the aim is to predict labels yi which are equal
to 0 for the controls and 1 for the cases, by objects xi — vectors of features,
which are intensities of the most frequent peaks in the logarithm scale.

The probabilistic method of logistic regression allows us to create a new
type of taxonomy. The logistic taxonomy τi, i = 1, . . . , n + 1 is defined as fol-
lows. The solution of the optimisation problem b̂ is calculated for the whole
set (x1, y1), . . . , (xn, yn), (xn+1, y) as a training set and is used to make direct
predictions p1, . . . , pn+1 on the same (training) examples. These predictions are
not fair leave-one-out predictions, but it is correct to use them for taxonomy
construction.

Let p′i, i = 1, . . . , n+1 be direct predictions pi sorted in the ascending order.
Set a number of taxonomy categories K. Each of them will contain approximately
equal number of examples. We use K = 5 in this research (the dependence on
the parameter K is discussed in Appendix). Let L0 = 0 and L1, L2, . . . , LK

be the integers closest to (n + 1)/K, 2(n + 1)/K, 3(n + 1)/K, . . . , n + 1. The
category τi is then defined accordingly to the intervals formed by division points
p′L0

, p′L1
, . . . , p′LK

where value pi falls: τi is the number j ∈ {1, . . . ,K} such that
p′Lj−1

< pi ≤ p′Lj
.

4 Mass Spectrometry Data

We would like to develop a methodology of providing multiprobability predic-
tions for proteomic mass spectrometry data. Hence, we have to take into account
the format of the data and peculiarities of the problem.

Mass spectra plots can be noisy because of physical, electrical or chemical
sources. Pre-processing is applied to mass spectra to get rid of these system-
atic artefacts. Auxiliary goals of pre-processing are to normalize the spectra
from different samples and reduce the dimensionality of the data. Pre-processing
can include the following steps: smoothing by averaging the intensities within a
moving window; baseline subtraction; normalization to make sure that the total



amounts of ions across different samples are the same. After the true signal is
extracted from mass spectra, peaks are identified in each spectrum and then
aligned, that is, peaks from different spectra get related to each other and are
considered as one peak. Finally, the intensities of identified peaks are calculated.
Detailed description of the preprocessing of mass spectrometry samples can be
found in [2].

Thus, the data we apply in our methodology is represented as intensities of
identified peaks. The peaks are usually sorted by their frequency: the more ex-
amples a peak is presented, the higher the rank of the peak. We usually consider
a certain number of the most frequent peaks only. Thus, every object xi is a
vector of features, which are intensities of the most frequent peaks. Each sample
of the OC data set is also assigned a level of OC biomarker CA125 that helps
discriminate OC samples from healthy samples. For this reason, for OC we will
make our diagnosis based not only on MALDI-TOF data, but also on CA125
levels.

The total number of samples is: 561 in HD data set (187 cases and 374
controls); 312 in OC data set (104 cases and 208 controls). Originally, each case
was accompanied by two controls matched on patient age, sample collection
location and sample collection date/time, among other factors. For this reason,
in each data set the number of controls is twice as greater than the number of
cases.

Each object, xi, only comprises intensities of the most common peaks. It was
shown in statistical analysis [8] that the information useful for discrimination
between healthy and diseased samples is concentrated in peaks 2 and 3 in OC
data. For this reason, each OC object comprises the five most common peaks.
As for the HD data, we consider the peaks represented in at least 1/3 of samples
(41 peaks) in this data set.

Each case is assigned a non-negative value T (τ) — time to diagnosis con-
firmed by histology/cytology for OC data and time to death for HD data. We
will refer to this value as ’time to diagnosis/death’. Each sample in OC data
set is also assigned a level C of the biomarker CA125. We will not be trying
to predict this time, but we need it to form cross-validation sets for the early
diagnostics.

5 Results and Discussion

To demonstrate how the proposed methodology works in practice, we applied
the designed algorithms to HD and OC proteomic data sets.

In all experiments, we use leave-one-out mode: each example (xi, yi) is con-
sidered as if it were a new test example and all the remaining examples in the
data are treated as the training set.

We are applying Venn machines with the taxonomy based on logistic re-
gression to MALDI-TOF datasets. Each object xi is a vector comprising the
following features: of the most frequent peaks, CA125 value (for OC dataset),
additional dimension constantly equal to 1.



Since logistic regression also produces probability distributions, we can com-
pare the results of the application of the Venn machine based on logistic regres-
sion and the probabilistic predictor of logistic regression itself. The experiments
were applied to the same type of objects xi in the leave-one-out mode.

No. True label Venn prediction Direct prediction

1 0 0.313–0.321 0.508
2 1 0.616–0.616 0.689
3 0 0.321–0.330 0.510
4 0 0.143–0.259 0.371
5 0 0.616–0.634 0.622

Table 1. Leave-one-out Venn predictions for HD data

Results of experiments for several controls and cases of HD data are shown
in Table 1 for illustrative purposes. For each example, the table contains the
true label ynew, and the probability interval [p−new, p+

new]. For example, Venn
machines output prediction intervals [0.313, 0.321] and [0.616, 0.616] for proba-
bilities that examples 1 and 2 are cases (y = 1). As prediction interval indicate,
the correct labels for example 1 and 2 are 0 and 1, respectively. The table also
includes predictions pnew output by logistic regression for each example. Recall
that we call these predictions direct predictions as opposed to Venn predictions
output by Venn machines. The table demonstrates that both direct and Venn
predictions can be correct or erroneous.

First, we would like to demonstrate validity of Venn predictions: true proba-
bilities of label distribution are covered or almost covered by the interval between
lower and upper Venn prediction. Since we do not know true probabilities of la-
bel distribution, we compare empirical probabilities, that is, mean true labels
with the mean direct and Venn predictions.

Figure 1 is a graphical representation of corresponding cumulative results.
The horizontal axis shows the number of observed examples. The vertical axis
shows the cumulative values of: (1) true labels ynew (a solid line); (2) lower and
upper Venn predictions p−new, p+

new (two dot-dashed lines) and (3) cumulative
direct predictions pnew (a dashed line). The examples are sorted according to
direct predictions.

Firstly, the plot demonstrates validity of Venn machine outputs. Secondly, we
can see that probability intervals output by Venn machines are narrow (0.025 on
average for HD data); hence, they are almost as precise as single probabilities.
Finally, Figure 1 demonstrates that probability intervals can be more accurate
than single probabilities produced by logistic regression. It can be seen from
the Figure that the true labels are very different from the direct predictions
but are only slightly above the upper Venn prediction up to approximately 210
examples and within the upper and lower Venn predictions for the remaining
examples after this point. Thus, direct predictions can be misleading (the cancer



Fig. 1. Cumulative Venn and direct predictions for the HD data

probability is oversetimated, while Venn predictions cover true labels: an average
true label lies between average low and upper bounds given by the Venn Machine.

It can be said that both algorithms relied on the assumption of the mechanism
generating the data — the logistic regression statistical model. However, proba-
bility predictions used this mechanism directly, and Venn machines deployed the
mechanism when defining the taxonomy. As a result, since the statistical model
does not hold true (the opposite can be guaranteed only for artificially gener-
ated data), probabilities output by logistic regression are different from empirical
probabilities. In contrast, Venn machine’s validity was not affected by the fact
that the model is not correct. Hence, Venn machine predictions appeared to be
more accurate than singleton probability predictions.

Even though the Venn machines and logistic regression produce multiproba-
bility and probability predictions, respectively, their outputs can be interpreted
as usual bare predictions (forced predictions). However, we should bare in mind
that when we force Venn machines to output a single prediction, they lose their
theoretically proven property of validity. In this section we examine the accuracy
of forced predictions when we are not able to use advantages of multiprobability
predictions.

We can extract forced predictions out of Venn machines and logistic regres-
sion the most intuitive way: we classify a new sample as 1 (case) if and only
if pnew > 0.5 for direct prediction or p+

new + p−new > 1 for Venn prediction.
This will also allow us to compare accuracy of Venn predictions with the direct
predictions.

Given that the aim is to predict the disease as early as possible. For this
reason we consider the dynamics of predictive ability of mass spectrometry peaks
across the timeline: the accuracy of the proposed methodology on samples in
different time slots of the fixed interval (6 months).

Table 2 allows us to compare accuracy of the forced predictions by Venn
machine and logistic regression for the OC data. The table demonstrates that
Venn machines are comparable with logistic regression in terms of forced pre-
diction accuracy: in time slots close to the moment of diagnosis Venn machine
is slightly outperformed by logistic regression, then in months 5–7 they have
equal accuracy, and in months 8–11 (time slots we are mostly interested in)



Time Venn machine Logistic regression
slot Accuracy Sensiti Specifi Accuracy Sensiti Specifi

vity city vity city
0–6 90.2% 95.6% 87.5% 93.6% 85.3% 97.8%
1–7 88.1% 91.1% 86.6% 92.9% 83.9% 97.3%
2–8 76.6% 59.6% 85.1% 87.9% 78.7% 92.6%
3–9 83.3% 58.3% 95.8% 83.3% 69.4% 90.3%
4–10 75.3% 59.3% 83.3% 82.7% 66.7% 90.7%
5–11 79.7% 52.2% 93.5% 79.7% 56.5% 91.3%
6–12 81.7% 55.0% 95.0% 81.7% 55.0% 95.0%
7–13 70.6% 35.3% 88.2% 70.6% 35.3% 88.2%
8–14 82.4% 52.9% 97.1% 78.4% 47.1% 94.1%
9–15 75.0% 45.0% 90.0% 71.7% 35.0% 90.0%
10–16 73.8% 67.9% 76.8% 67.9% 25.0% 89.3%
11–17 66.7% 50.0% 75.0% 64.3% 17.9% 87.5%
12–18 59.5% 32.1% 73.2% 61.9% 7.1% 89.3%
13–19 66.7% 33.3% 83.3% 65.6% 13.3% 91.7%
14–20 64.0% 24.0% 84.0% 65.3% 12.0% 92.0%
15–21 65.0% 40.0% 77.5% 71.7% 20.0% 97.5%
16–22 33.3% 0.0% 50.0% 63.3% 10.0% 90.0%

Table 2. Dynamics of Venn machine and logistic regression performance on the OC
dataset

Venn machine overperforms logistic regression. Venn machines produce predic-
tions with accuracy higher than 73% up to 10 months in advance of the moment
of diagnosis.

For HD we consider the whole dataset rather than dynamics across the time-
line, since it is sufficient to predict this disease at any moment to prevent the
consequences. The accuracy of the application of Venn machines to the HD data
is 69.9%. The accuracy is again comparable with the accuracy of underlying
algorithms: 67.9%.

Personal ID Months in advance Prediction interval

29 13 0.22–0.39
10 0.59–0.71
4 0.88–0.94

39 10 0.53–0.71
4 0.44–0.94
2 0.96–1.00
1 0.97–1.00

Table 3. Dynamics of prediction intervals output by Venn machines for measurements
taken from the same OC case

Table 3 shows the dynamics of prediction intervals output by Venn machines
for samples 29 and 39. Each row corresponds to a single measurement. Column 2
demonstrates how early in advance this measurement was taken. These samples
with multiple measurements illustrate two trends in probability interval change.
First, the interval is getting narrower when the moment of diagnosis is approach-
ing, which means that two probability distributions produced by Venn machines
are getting closer to each other, and as a result, the overall prediction is get-
ting more precise. This also means that the logistic regression as the underlying
model becomes more adequate when the time to diagnostics is closer. Second,



the interval is moving towards 1. This implies that we have more trust in our
prediction and the prediction is indeed correct.

6 Conclusion

This paper introduced the methodology of hedging predictions for proteomic
mass spectrometry data. We applied the described methodology to the MALDI-
TOF data sets and demonstrated how it works. We empirically confirmed the
validity of Venn machines and demonstrated that Venn machines can provide
narrow probability intervals that are more accurate than the probabilities pro-
vided by its underlying algorithm.

Even though Venn machines produce multiprobabilistic predictions, their
output can be interpreted as predictions without hedging, similarly to the output
of conventional machine learning methods. It was demonstrated that when forced
to make single predictions, our methodology provides accuracy similar to the
accuracy of the underlying algorithms. As a result, this methodology can provide
high accuracy well in advance of the moment of the disease diagnosis.
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Appendix. Dependence on the taxonomy parameter

In this work we used K = 5. On Figure 2 we show what happens if this parameter
is changed. It can be seen that with the accuracy becomes satisfactory with at
least 4-5 taxa. On the other hand when the number K of taxa increases the
interval width becomes wider (less informative) without essential improvement
of the accuracy. So the choice of K = 5 was reasonable enough.

Fig. 2. Prediction accuracy and interval width for HD data for different K.


