
HAL Id: hal-01521415
https://inria.hal.science/hal-01521415

Submitted on 11 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rule-Based Behavior Prediction of Opponent Agents
Using Robocup 3D Soccer Simulation League Logfiles

Asma Sanam Larik, Sajjad Haider

To cite this version:
Asma Sanam Larik, Sajjad Haider. Rule-Based Behavior Prediction of Opponent Agents Using
Robocup 3D Soccer Simulation League Logfiles. 8th International Conference on Artificial Intelligence
Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. pp.285-295, �10.1007/978-3-642-
33409-2_30�. �hal-01521415�

https://inria.hal.science/hal-01521415
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Rule-Based Behavior Prediction of Opponent Agents

using Robocup 3D Soccer Simulation League Logfiles

Asma S.Larik and Sajjad Haider,

Artificial Intelligence Lab, Faculty of Computer Science,

 Institute of Business Administration, Garden Road, Karachi-74400, Pakistan

{asma.sanam@khi.iba.edu.pk, sahaider @iba.edu.pk}

Abstract. Opponent modeling in games deals with analyzing opponents’ behavior and

devising a winning strategy. In this paper we present an approach to model low level behavior

of individual agents using Robocup Soccer Simulation 3D environment. In 2D League, the

primitive actions of agents such as Kick, Turn and Dash are known and high level behaviors are

derived using these low level behaviors. In 3D League, however, the problem is complex as

actions are to be inferred by observing the game. Our approach, thus, serves as a middle tier in

which we learn agent behavior by means of manual data tagging by an expert and then use the

rules generated by the PART algorithm to predict opponent behavior. A parser has been written

for extracting data from 3D logfiles, thus making our approach generalized. Experimental

results on around 6000 records of 3D league matches show very promising results.

Keywords: Robocup Soccer, PART algorithm, opponent modeling, machine learning

1 Introduction

Behavior mining[1] of agents can lead us to some insight into how agents interact

in a dynamic environment. RoboCup Soccer [2] is a research initiative that uses the

game of soccer to advance research within artificial intelligence, cognitive robotics,

multi-agent systems and other related fields. The RoboCup Soccer competition

comprises of several robot leagues namely humanoid league, standard platform

league, small-size league, middle-size league and simulation league. The simulation

league consists of both 2D and 3D agents and it aims to simulate a robot soccer

match. Matches are played in a client/ server environment. The platform provides a

test bed to analyze behavior of agents and teams.

During a soccer game, we want to predict our opponent’s strategy and then adjust

our own accordingly. If we are able to analyze the logs of past games played by teams

and distinguish their game play based on their behaviors then it can aid us in devising

our own team strategy. Much work has been done within the Simulation 2D league

due to the simplicity of available actions such as Kick, Turn and Dash. In Simulation

3D league, however, such primitive actions are not available, thus it becomes difficult

to perceive high level behavior. This paper presents a novel approach that aims to

predict the behavior of agents in Simulation 3D league. Our approach is the first

attempt to connect low level primitive actions to high level behaviors; thus enabling

us to discover strategic activity from raw data. Our goal is to develop a mechanism

that discovers key behavior of an agent and translates multi-agent action sequences

and observations into a rule based representation. The proposed approach is divided

into three phases: data preparation, rule generation and prediction. The first phase

comprises of extracting raw data from 3D simulation league log files. We have

created a tool that performs post-hoc offline analysis of the past matches and extracts

agent and ball locations. We also derive distances of the ball/agent and their velocity.

The extracted data is manually tagged for behavior identification by an expert by

pressing appropriate key as he/she observers the game. In this paper we have

restricted our focus to learning the skills of an attacker. The skill set includes two

actions: Approach Ball and Dribble. The extracted and (manually) tagged data is then

utilized in the second phase for learning rules. The rules learn particular behaviors

depending upon the features used in the training dataset. Once rules have been learnt,

these rules are applied to predict the behavior of opponent player in the third phase.

 The rest of the paper is organized as follows. Section 2 provides a brief overview

of RoboCup Soccer Simulation League. Section 3 provides a literature survey of the

past efforts in opponent modeling. The proposed approach is explained in detail in

Section 4 while Section 5 outlines the design of experiment and results. Finally,

Section 6 concludes the paper and provides future research directions.

2. Robocup Soccer Simulation Leagues

RoboCup Soccer Simulation League provides a multi-agent system in which teams

of autonomous agents play soccer in a simulated environment. All agents can move

and act independently as long as they comply with the soccer rules. Agents can also

have limited communication among each other. The league is further classified into

2D and 3D leagues. In Simulation 2D league, shown in Figure 1a, two teams of

eleven autonomous wheeled robots play soccer in a two-dimensional virtual soccer

stadium. The agents can perform low level actions such as turn, kick or dash to

influence the environment. Simulation 3D league, on the other hand, adds the

complexity of locomotion and localization and hence a lot of research has been

focused on handling these issues. In Simulation 3D, shown in Figure 1b, two teams of

9 humanoid robots play soccer in a simulated environment. Unlike 2D, here a robot

can only perceive objects that are in their own field of vision.

Figure 1a) Robocup Soccer Simulation Field 3D

Figure 1b) Robocup Soccer Simulation Field 2D

3. Related Work

For our work we have studied papers contributed in three domains namely data

extraction from log files, opponent modeling and papers on Robocup simulated

coaching competitions. Although the area of data extraction in 2D RoboCup

simulations has been extensively investigated, there is no work reported for 3D

simulation environments. Within the 2D data extraction domain, T. Nakashima and

H.Ishibuchi[3] have tried to mimic dribble trajectory of a player by taking snap shot

of log files in which the player is actually performing the dribble action. The dribble

intervals extracted create a set of training patterns for the neural network.

T.Nakashima et al [4], have used offline learning for pass prediction behavior and

predicted the new position of opponent player by training a neural network. Both the

approaches are related to ours however we are using rule based learning for behavior

prediction while they create neural network for this task. Within the opponent

modeling domain, Ball and Wyeth[6] used Robocup small sized league to predict

opponent behavior. Agapito et al.[7] presented OMBO, an opponent modeling

approach based on observations. They first build a classifier to label opponent actions.

In the next phase, they placed a dummy player in the field for the purpose of

recording opponent actions and finally they predicted actions of opponent based on

the training dataset. For the coaching competition, many simulated coaches have been

presented; Fathzadeh et al.[8], Agapito et al.[9], Peter Stone at al[10][11] being some

of them. The focus of these coaches is to learn normal base patterns of team plays and

then predict the strategy with which the team is playing. The coach that recognizes

more patterns wins. For this purpose they are using different data structures and

pattern identification mechanisms. The coach advice is given in a particular language

namely Clang[12].

4. Proposed Approach

This section presents our approach to discover and model low level behavior of

opponent soccer agents. The approach is divided into the following three distinct

phases namely:

 Extraction of information from 3D log files

 Rules learning

 Agent behavior prediction

In the first phase a parser is written that maintains a queue data structure that serves as

a repository for storing noiseless contextual information. A log file is passed through

the parser that extracts player’s position and ball’s position and populates it in

separate lists. In the next step of this phase, behavior features, missing from the

logfile, are incorporated by an expert. A simple application is written that helps an

expert, visually watching the game, pressing some dedicated set of keys for recording

the agent’s behavior. This is essential for rules learning since the low level behavior

(such as kicking, dribbling, etc.) is not recorded in the log files and is evident only to

the individual watching the game. In the second phase we use the extracted (and

tagged) data for learning a set of rules. Finally, in the third phase we parse an

arbitrary log file (not in the training data set) and start predicting the agent behavior

and verify visually whether the rules learnt are correct or not. For rule learning we

have used the PART[13] algorithm. All phases are described in detail in the

subsections below.

4.1. Extraction of data from logfiles

In Simulation 3D league, the server continuously records game state in a logfile

during a match. The data from these logfiles can be extracted and analyzed to

construct a model of opponent. The first phase focuses on data extraction from

logfiles.

4.1.1. Data format in logfiles:

Messages from server to agent and vice versa use S-Expression. The basic idea of

S-Expression is that they are simple and are best known for their use in the Lisp

family of programming languages. An advantage of using S-exp over other data

formats is that it provides an easy to parse and compact syntax that to some extent is

also readable by human for debugging purpose. Figure 2 shows an excerpt from a 3D

logfile.

 Figure 2: Sample Logfile Header

The messages recorded in the log are environment information messages, game state

messages, Ruby scene graph header and scene graph contents. The scene graph is a

structure that arranges logical and spatial representation of a graphical scene. In

Simspark [14], the scene graph is a tree with a root node defined to be at the origin.

Each node has one or more children. The nodes are further classified as base node,

transformation nodes, geometry nodes, static mesh nodes, light nodes, etc. A header

expression is sent initially that contains information regarding environment, game

state and scene graph contents. These variables are stored in the form of nodes with

opening and closing brackets distinguishing among them. The initial header contains

information messages including field length, field width, field height, goal width, goal

depth, goal height, border size, free kick distance, wait before kickoff time, radium of

the agent, ball radius, ball mass, , play mode (such as goal kick, play on, side kick,

etc.), time, score, , SLT (single linear transform), light nodes, TRF (transformation

matrices), etc. A new header is sent whenever the scene changes. For instance,

loading of a player, removal of a player from field, etc., result in the transmission of a

new header. However, if only the player or ball changes its position (and orientation)

then no header is resent. Instead, only minor modifications in the nodes are

represented by another s-expression that contains the time stamp and the change

information that has been modified as evident in Figure 2. RDS attribute indicates that

the scene has changed partially and only few nodes have changed. As a result, we

traverse the entire S-Expression to find the node that has changed and update our

values accordingly.

4.1.2 Parser for Data Extraction:

In order to analyze the log data we first need a parser that can traverse each and every

S-Expression and identify nodes for ball and players. The main challenges in writing

a parser are: Extraction of node information from the header, Computing position of

players and ball from transformation nodes, Extraction of updated nodes from the

timestamp information

4.1.2.1Extraction of node information from header:

To extract required information, we traverse the entire S-Expression, break the header

information into tokens information and store tokens in a list Ʈ. During this

tokenization process, if we encounter any node “nd” we store its index in the list I.

After the completion of tokenization process we populate the list of nodes N and

players P respectively using the indexes stored in the list I.

4.1.2.2 Computing positions of players and ball:

The major challenge in extracting position information lies in the fact that in 3D this

data is stored in the form of transformation matrix specified by token “TRF”. A

transformation matrix T is a 4*4 matrix defined as:

 T=

 Where: , and vectors represent orientation information,

 represents the position information in x, y and z space.

In a Scene Graph there are a number of frames so a particular node can have many

transformation matrices. To obtain correct position information we need to multiply

all the specified 4*4 transformation matrices as demonstrated using the following

example. Let “nd” be a ball node containing the image information “soccerball.obj”

and let “TRF” be its transformations and SLT be the single linear transformation. We

get the the following information from the logfile:
(nd TRF (SLT 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1))(nd TRF (SLT 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0.0402764 1)(nd StaticMesh (setVisible 1) (load models/soccerball.obj)

In the above expression, we have two matrices T1 and T2:

 T1=

 T2=

When we multiply the two matrices we get the desired matrix and from that we can

extract the position vector with (px, py, pz)= (0, 0, 0.0402764).

4.1.2.3Extraction of updated nodes from the timestamp information sent

When we receive a timestamp and RDS node, this means that there has been a partial

change in the scene and position/orientation of one or more nodes. In the S-

Expression, the node structure is preserved and only the changed nodes contain the

new transformation matrix. Thus, during the update process all node indexes remain

the same and the node which contains some new “SLT” information is updated. A

formal extraction process of the current and the previous subsection is described in

detail in Table1.

Table 1: Algorithm

Data Extraction Algorithm

 Read a new line from .logfile

 While (not end of file)

 Begin

 Parser algorithm

 Read Another line

 End

 Write to csv file

Parser Algortihm:
 Let Ʈ={t1,t2,…..,tn} be a list of tokens

 Let Ƥ ={p1, p2,…… pn} be a list of players in the game

 Let I ={i1,i2,….in} be a list of node indexes

 Let N= { n1,n2,….nn } be list of nodes

 where each node ni contains the following attributes:

 ni={ pos = node position, // 3*1 vector denoting (x,y,z) coordinates

 name = node name,

 id = node id,

 mat= denoting 4*4 transformation matrix,

 type= type of node e.g SLT, SMN, StaticMesh, Light etc

 child= list of child nodes

 }

 Begin

 1. Initialization Process: Set Ʈ= Ƥ = Ɲ = Null denoting Empty Lists

 2. Tokenization of file

 Foreach (element e in file separated by space)

 Begin

 Ʈ. Add(e) // Add to tokens list

 If (e is a node) then

 I. Add(e) // Add to node indexes list

 End

 3. If (RSG= true) // The scene has changed totally

 Begin

 Foreach (element e in Ʈ)

 Begin

 If (e is a node) then

 Create ni with attributes initialized

 If (e is a SLT node) then

 Compute transformation matrix of node

 N.Add(ni)

 If (e is BallNode ball node) then

 Preserve its index in I

 If (e is a PlayerNode) then

 Preserve its index in I

 End

 Add these nodes in I into player list P

 Parse first player to identify team and player Id

 Foreach (player pi in P)

 Compute their positions in the field

 Compute the position of ball in the field

 End

 4. if (RDS= true) // the scene has partially changed

 Begin

 Foreach (node ni in N)

 Update postion of ni

 Foreach (index i in I)

 Recompute node indexes

 Foreach (player pi in P)

 Recompute player positions in the field

 Recompute the position of ball in the field

 End

4.1.3. Preprocessing of Extracted Data and Derivation of Attributes

Given a logfile, our parser is able to extract positions of all the eighteen players of

both the teams and the ball position. This extracted data is in the form of a csv file.

Although the parser extracts data for all the players but for the scope of this paper we

have limited our focus to the generation of data related to only one player, that is,

opponent’s attacker. We have used Roboviz [15] application for logfile generation

with a single player, that is, the attacker taking the ball towards the goal. The parser

extracts the following features:

 Timestamp

 Position of the opponent attacker

 Position of the ball
In addition to the extracted data, we derive the following attributes from the

raw data:
 Distance travelled by ball (DTB)

 Distance travelled by player (DTP)

 Distance between player and ball at time t (DBPBat t)

 Distance between player and ball at time t-1 (DBPBat t-1)

 4.1.4 Behavior Identification

As mentioned previously, logfiles do not provide us any details about the primitive

actions executed by a player. In 3D we only learn about specific motion of hinge

joints but the information is not enough to categorize this data into behaviors such as

kick, approach ball, dribble, clear ball, etc. This information needs to be inferred by

observing an agent’s behavior. The information is also needed to label each record

extracted in the previous step and to learn a classifier. To obtain this data we have

written a piece of code that helps an expert, observing a game, to tell the behavior that

he/she is observing. By manually pressing a key, an specific behavior performed by

the robot agent a particular timestamp can be recorded. For the scope of this work, we

have limited our attention to two behaviors: Dribble and Approach Ball.

₋ Dribble: is an event in which the ball and player both are moving and they

are at a considerably shorter distance from each other.

₋ Approach Ball: In this event, the ball is stationary and at a farther

distance, and the player is moving towards the ball.

Thus, we tag/label data with the help of expert. This behavior information is then

merged with the previous features. The combined data can then used to generate rules

in the next step.

4.2 Rule Generation

 The csv file generated at the end of previous phase would be utilized in creation of

rule base for agent behavior identification. The stronger the rule base, the greater

would be the accuracy with which we would be able to predict agent behavior.

Numerous algorithms that efficiently search large databases for rules have previously

been developed. We use standard software named WEKA[16] and utilize PART[13]

algorithm for rule generation. The reason for selection of this particular algorithm is

that it generates rules in the form of decision tree thus making them quite

understandable.

4.3 Agent Behavior Prediction

Once the rules have been learned, we can use them to predict the behavior of a player.

To test the accuracy of the proposed approach, we record the logfile of a new game

using RoboViz[15]. We use the parser to extract raw data. The behavior information

would be tagged manually by visual verification. This combined data would serve as

a test data.

5. Design of Experiment and Results

In our experiments, we placed a goalie of our team (Karachi Koalas) in the field

whose sole purpose is to help us in recording the data. We ran attacker from another

team whose job is to take the ball towards our goal. It must be mentioned that our

goalie does not interfere in this process as it is primarily standing there as an observer.

An expert watches the game and records key presses referring to events such as “D”

for Dribble and “A” for Approach Ball. If the expert feels that some erroneous

activity is being performed, for example, the agent has fallen, the agent is unable to

locate the ball, etc. then the expert presses “E” to eliminate these erroneous episodes

during data preprocessing phase. In a similar manner, we ran ten different games

with five teams and recorded the attacker behavior of each and every team. In the next

step, the logfiles were processed by the parser. The parser extracted the timestamp,

opponent attacker’s position and ball’s position. The behavior information is merged

with this data. The behavior became the class variable that we are going to predict. To

obtain better rules, a pre-processing of data was performed as follows:

 Erroneous episodes such as getting up from back, falling, back walk

recorded in the log and behavior files were removed

 All the pre-kickoff records were removed.

 To reduce the number of records, instances in which the play was at a stop or

a player was idle were also eliminated.

 It was also observed that an event takes multiple cycles to execute thus the

transactions were divided by 10. This made sure that very similar records do

not disturb the correct identification of event.

We used feature selection algorithms provided by Weka[16] and after several

experiments, the following attributes were retained: ballX, ballY, playerX, playerY,

DBPBat t (Distance between player and ball at time t), DTP (Distance travelled by

Player) and DTB(Distance travelled by Ball) respectively. Table 2 shows some tuples

from the csv file.

Table 2: Demonstration of some training instances

Time ballX ballY playerX player DBPBatt DTB DTP Behavior

6.26 5.369 1.505 0.687 0.300 4.834 0.002 0.009 ApproachBall

6.46 5.425 1.488 0.843 0.327 4.727 0.020 0.033 ApproachBall

11.66 5.577 1.520 4.009 0.890 1.690 0.001 0.003 Dribble

11.86 5.580 1.492 4.139 0.922 1.550 0.006 0.033 Dribble

Next, we used the PART[13] algorithm for rules generation from approx 6000 tuples

pertaining to ten games played by five different teams. Its configuration was set to a

confidence factor of 0.25 and support of 30 rules after successive experimentations by

varying these values. Some of the learned rules are shown below:

Rule 1:

If (DBPBat t > 1.615657 AND ballX > 5.354948 AND

 ballX <= 5.757669) then ApproachBall

Rule 2:

If (DTP > 0.000391 AND ballY <= 0.148716 AND

 ballY > -0.859947 AND ballX > 3.953067 AND

 playerY > -1.286594 AND playerY <= -0.0246) then DribbleTowardsGoal

The rules proved to be 84% accurate when we used training data. The results obtained

on training data are described in Table 3. Next we used training instances for a single

game of approx 1000 records and obtained an accuracy of 80.4%. The results on test

data are shown in Table 4.

Table 3: Results on training dataset
Behavior
(class)

Instances
(N)

Correctly
classified (C)

Incorrectly
classified (I)

Precision
(P)

Recall
(R)

F-measure
(F)

Approach Ball 2456 1936 520 0.78 0.792 0.78

Dribble 3966 3459 507 0.87 0.869 0.869

Table 4: Results on test dataset
Behavior

(class)

Instances

(N)

Correctly

classified (C)

Incorrectly

classified (I)

Precision

(P)

Recall

(R)

F-measure

(F)

Approach Ball 640 515 73 0.80 0.87 0.78

Dribble 423 298 125 0.70 0.80 0.746

5. Conclusion and Future Work

The paper presented an approach for rule based behavior classification of opponent

agents in Robocup Soccer Simulation 3D environment. The behaviors classified are

pertinent to the skills of the attacker namely Approach Ball and Dribble the ball

towards goal. The proposed approach used a parser for positional data extraction and

expert guidance for behavior identification and rule generation. The rules thus

generated aided in predicting the behavior of an agent. The approach is first of its

kind as it creates an opponent model based on 3D soccer simulation logfiles. The

approach, being tested on approximately 6000 records, seems very promising and has

generated good results. In the future we wish to extend this approach to classify if a

team is playing in a defensive or an offensive manner. Similarly, it can also be used to

distinguish between strong and weak teams. Furthermore, we can also learn the skills

of goal keeper, defender and supporter using the same technique. In addition,

currently the generated rules have crisp boundaries that somehow restrict the

proposed approach. We aim to fuzzify the rules so that they become generalized and

better readable by humans.

References

[1] A. Symeonidis and P. Mitkas, “A Methodology for Predicting Agent Behavior by the Use of Data

Mining Techniques,” Autonomous Intelligent Systems: Agents and Data Mining, V. Gorodetsky, J.
Liu, and V.A. Skormin, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 161-174.

[2] “Robocup official website (www.robocup.org).”

[3] T. Nakashima and H. Ishibuchi, “Mimicking Dribble Trajectories by Neural Networks for RoboCup
Soccer Simulation,” IEEE 22nd International Symposium on Intelligent Control, 2007. ISIC 2007,

IEEE, 2007, pp. 658-663.

[4] T. Nakashima, T. Uenishi, and Y. Narimoto, “Off-line learning of soccer formations from game
logs,” World Automation Congress (WAC), 2010, IEEE, 2010, pp. 1-6.

[5] B.M. Faria, L.P. Reis, N. Lau, and G. Castillo, “Machine Learning algorithms applied to the

classification of robotic soccer formations and opponent teams,” 2010 IEEE Conference on
Cybernetics and Intelligent Systems (CIS), IEEE, 2010, pp. 344-349.

[6] Ball, David & Wyeth, Gordon, “Classifying an opponents behavior in robot soccer,” Proceedings of

the Australasian Conference on Robotics and Automation, Australia, 2003.
[7] A. Ledezma, R.Aler, A. Sanchis, and D. Borrajo, “OMBO: An opponent modeling approach,” AI

Communications, 22(1):21–35, IOS Press, 2009.

[8] R. Fathzadeh, V. Mokhtari, and M.R. Kangavari, “Opponent Provocation and Behavior
Classification: A Machine Learning Approach,” RoboCup 2007: Robot Soccer World Cup XI,

Springer Berlin Heidelberg, 2008, pp. 540-547.

[9] J.A. Iglesias, A. Ledezma and , A. SANCHIS, “CAOS Coach 2006 Simulation Team: An Opponent
Modelling Approach,” Computing and informatics Journal, vol. 28, n. 1, 2009, pp. 57-80.

[10] G.Kuhlmann, W.B.Knox, P.Stone, "Know thine enemy: A champion RoboCup coach agent,"

Proceedings of the Twenty-First National Conference on Artificial Intelligence. (2006), pp. 1463–68
[11] G.Kuhlmann, P.Stone and J. Lallinger, “The UT Austin Villa 2003 Champion Simulator Coach: A

Machine Learning Approach,” RoboCup-2004: Robot Soccer World Cup VIII, pp. 636--644,

Springer Verlag, Berlin, 2005.
[12] Robocup Simulation Coach Competition "http://www.cs.utexas.edu/~ml/wasp/robocup-clang.html".

[13] Frank Eibe and Ian H. Witten, “Generating Accurate Rule Sets without Global Optimization,”

Proceedings of the 15th International Conference on Machine Learning, San Francisco, USA: 1998.
[14] Simspark : "http://simspark.sourceforge.net/wiki/index.php/Main_Page.”

[15] RoboViz official webiste: "https://sites.google.com/site/umroboviz/usage/startup.”

[16] G.Holmes, A. Donkin, and I. H. Witten “WEKA: A Machine Learning Workbench,” Proceedings of
Second Australia and New Zealand Conference on Intelligent Information Systems, Brisbane,

Australia, 1994

