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Abstract. In this paper we consider large scale distributmtimittee machines
where no local data exchange is possible betweemaheetwork modules.
Regularization neural networks are used for bothiodules as well as the
combiner committee in an embedded architectureerAfte committee training
no module will know anything else except its ownabdata. This privacy pre-
serving obligation is a challenging problem foiineble combiners but crucial
in real world applications. Only classifiers in thoem of binaries or agents can
be sent to others to validate their local datasent back average classification
rates. From this fully distributed and privacy mesng mutual validation a
coarse-grained matrix can be formed to map all reemiNe demonstrate that
it is possible to fully exploit this mutual validan matrix to efficiently train
another regularization network as a meta learnebager for the committee.

1 Introduction

A committee machine [1] exhibits an intrinsicallgrpllel and distributed architec-
ture [2] in which multiple modules of independentigined neural networks are com-
bined for the same task. An ensemble learner sfkinid is an ideal candidate for data
mining large scale physically distributed data s¥mwies in institutions/organizations
or Peer-to-Peer networks. However privacy presgnand scalability are crucial
issues for these real life applications. The Raigdtion Networks [3][4][5] are ker-
nel based classifiers known to use as hidden nsutenreal training data points, to
form the kernel functions and capture the dataerless approximate of the under-
lined problem distribution. Using real points iduable when data features have dis-
crete values, e.g., in cases of image processorgpater vision [1] and data mining
[8], a fact that elevates such type of kernel baggk regression methods [9] [10] to
state of the art. For these distributed Regulddnatletwork (RN) modules if another
Regularization Network can be trained to act agyh level combiner then can serve
as a meta-learner in a distributed data miningesystl1]. Such a meta-learner is
looked at in detail here for the distributed priyaceserving case.



A committee of neural networks has excellent gdiearigon capabilities, [6] since
typically the committee error is reduced considbrdty taking the average error of
the combined networks. All neural networks classffiare first trained in parallel
based on local data to construct local data modélen the committee combines [7]
all individual decisions through proper weightddaom the global data model used for
collective decisions. Committees can be used ia daihing physically distributed
data repositories as well as peer-to-peer systGather large volumes of distributed
data to a single location for centralized data ngris usually unfeasible. The causes
that prevent this lay in technical issues like tedi network bandwidth and enormous
main memory demands, practical issues like hugeimed) training times, algorithmic
issues in where mining algorithms operate only atadn main memory, and espe-
cially privacy preserving concerns that restriet ttansferring of sensitive data.

To this context the task to build a global modehirdata distributed over worksta-
tions, without moving or sharing local data itselfid with little centralized coordina-
tion, is challenging. The trainable combiner regsiia separate test set to find proper
weights for the neural network modules. Thus iuregp the use of extra information
from their input-output mappings. At least two-hyetthe classifiers must share ei-
ther input vectors, or output vector results wekpect to instances of an independent
test set. Without exposing data between modulesithout aggregating a portion of
data this is tricky. A regularization network asnata-learner committee of regulari-
zation networks trained by a simple distributed/gacy preserving mutual validation
matrix is presented here, as an effort to the moludf the problem.

2 Distributed Privacy-Preserving Data Mining

Distributed privacy-preserving data mining is thedy of how to extract globally
interesting models, associations, classifierstefgssand other useful aggregate statis-
tics from distributed data without disclosing ptivanformation within the different
participants. Data exchange and free flow of infation is frequently prohibited by
legal obligations or by commercial and personalceons, since the participants may
wish to collaborate, but might not fully trust eaatner. The basic idea of a secure
multiparty computation is that a distributed congiain is secure if at the end no
party knows anything except its own input and thgragate results. For example,
secure sum protocol [12] computes the sum of @&ctidin of numbers without reveal-
ing anything but the output sum. Classifiers whigled total sums like Naive Bayes
can be worked in this fashion. Data sets are usdatributed in horizontal partitions
where different sites contain different sets obrels with the same attributes. Classi-
fier examples that have been generalized to thEBildited privacy preserving data
mining problem are the Naive Bayes Classifier [18][ the SVM Classifier with
nonlinear kernels [15] and the k-nearest neighlwassifier [16]. Since for multi-
class problems classical neural networks are prédverbest over the years, here we
present an embedded architecture Regularizationvdikt committee machine of
Regularization Networks distributed over workstatipof which the training leave
the processor nodes with no extra knowledge foother participant inputs.



3 A Regularization Networks Committee Machine

The committee training [17][18][19], like in neuraktwork training has to find a
proper weight for each individual neural network.R&gularization Network (RN)
committee of embedded Regularization Networks dlass illustrated in fig.1, is
analysed in this section. An individual RN [3] [&] has one input layer, one hidden
layer, and one output layer. All real data points l@aded to the hidden neurons to
form the kernel functions. For a training $&t,y.}" , a kernel functiork(:,), usually

a Gaussian, and a Kernel matrix K with; K k(x;, X;), the RN training phase finds
optimum weightswv for the output f() by solving in Reproducing Kerkblbert Space
Hk a minimization problem for a regularized functibnéiich consists of a usual data
term plus a second regularization term that plaggtle of the stabilizer [3] [4] [5]
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For a class C the weights\is the solution of a linear system (K #INvc = y¢
where | is identity matrix, K is the kernel matrixz> O is the regularization parameter
and ¥ = (y1, . . ., ) are the desired output labels, 1 for class C and O fathiees.

fi,A(X) = ZWA,n -K(%,, %)
o (%)= 2 W, k(% %)
(0 =2 W k(%, %)
YA(X) = ZgA,l : fI,A(X)
YB(X) = ZgB,i : fi,B()—()

Yc()—() = ch,i : fi,c()-()

L
class(X) = argmjaxgl:gLi g (%)

Input Layer Ensemble Layer  Output Layer

Fig. 1. Architecture of a Regularization Network committeachine of embedded regulariza-
tion networks for the three class problem.

For the three class problem in fig.1 a Regularratletwork module consists of a
hidden layer withiN neurons of kernel units and three linear outffifg.;( X) is the
output of the RN module i for class j. The RN corted machine of L embedded
RNs has also three outputs. While the trainingoofll RNs can provide the weight
vectors W, Wi and W, one for each class output, the high level weiglttors G,
Gg and G for the outer regularization network committee stitk unknown.



4 The Distributed mutual validation matrix

To find the weight vectors 5 Gz and G in fig.1 without reveal the training data
vectors between modules we must first introducthiis section the mutual validation
matrix S. Assume an ensemble of three hidden Regatin Networks namely
RN(1), RN(2) and RN(3) that are trained indepenigefiom each other based on
their local datasets. For privacy reasons the miffelocations cannot contribute or
share any even smallest part of their data to otfatules. Only RN networks in the
form of binaries or agents can be sent to otherutesdto validate their data. Then
schematically one can work with measures of clasdibn rates between RN(1),
RN(2) and RN(3) train patterns. The RN(1) classifis own train data points to pro-
duce 1-1 measure. Likewise RN(2) classifies its o\ata to produce 2-2 measure and
RN(3) produce 3-3 measure. These three are intén@htra) measures, as they con-
trolled by internal characteristics. In consequeRbE1) classifies train data of RN(2)
to produce 1-2 measure and RN(2) classifies RNéta tb produce 2-1 measure. In
the same manner the measures 1-3, 3-1, 2-3 andr8-fAroduced. These six asym-
metric measures are local (or inter) as they arsedbaon the performance of
neighbours data. A coarse-grained mutual validati@trix can be filled with these
average rates. The validation set for one class#ithe train set of the other and vice
versa. This mutual validation matrix maps the RNmbers is illustrated in fig. 2.

é é S: S» Sa
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Fig. 2. (A) An ensemble of three different Regularizatetworks RN(1), RN(2) and RN(3),
inter-connected with each other via accuracy mess\B) the mutual validation matrix.

The paradigm in fig. 2 is an illustrative exampfetlee simple point-to-point com-
munications involved. The diagonal measures of tarix are the self-validation
average positive hits of each RN. Upon receivinRegularization Network i the
module j apply it to classify its own local datadasend back a simple average learn-
ing rate equal t&(i, j) = PositiveLocalHits(j)/LocalTrainSize(j), wheregitive hits
are the number of correctly classified local samgiEmodule j and local train size is
their number Nof training points. In this way privacy preserviisgachieved.

Distributed computations are required for theasd j-i asymmetric measures be-
tween different RNs across the communication nétwéin asynchronous cycle is
continually executed composed of commands, like &mral classifier, check for
received classifier, compute local positive hitsgd @ent average. In terms of parallel
and distributed computing this RN committee tragnipproach is hybrid task as well
as data parallel. Tasks are the RN classifiers lwtravel across the communication
network and when arrive in a processing node apéegpto the node’s local data.



In this way one manages for the RN committee tngino be transformed to a fully
asynchronous embarrassingly parallel programmingdigm like the iterative de-
composition [20]. Iterative decomposition occursewta loop parallel execution can
be done in some independent and unconnected martrekvork is statically decom-
posed, but the work assignments are dynamicallyildiged to processes. Each node
may operate independently and communicate its @sults to another node, making
it an appropriate choice for various types of alyaoous cycles.

5  Training the Committee viathe mutual validation matrix

From the distributed and data privacy preservingualuvalidation the coarse-
grained validation matrix formed can map all modullthough so far such a matrix
was ignored, we demonstrate here that it is pasdblfully exploit it to efficiently
train another regularization network as a metankracombiner for the committee.

Recall now that the weights per class output ohdacal Regularization network
module i of the ensemble are given by solving edirsystem of the form (KM)w =
y, whereA=N;y. While the weight vectors £ Gz and G for the outer regularization
network committee machine are unknown, the simpl¢ual validation matri>xS can
now enter into the training procedure. The weidhbts Gg and G can be found by
considering the matri$ as the outer kernel and solving the linear eqoatione for
each class, in terms of the vectors Yg and Y.

G, =(S+ A1),
Gy =(S+A1)Y, (2)
Ge = (S+ A1)V,

The vectors X, Yg and Y; correspond to classes A, B and C have all sizalequ
the number L of ensemble modules. A vali) is positive local hits of RN classi-
fier i per overall train size, produced by applyithg f" RN module to the A class
portion of its own ' dataset (if not any set 0). Respectivilfi) is the overall classi-
fication rate produced by thd RN module for the B class portion (if not any @gbf
its data, andvrc(i) similarly for the C class portion. The regulatina parameter is
againi, andl is again the identity matrix.

Besides the simplicity of this method another iesting observation is that if the
local neural network classifiers all are reducech&we only a single train example
then, the mutual validation matrix reduces to aalgernel matrix and the proposed
committee machine in fig.1 switches to the singd@wentional Regularization Net-
work. For systems where data movement across $iteal is hindered like those stud-
ied at this point the above observation can senlg @s a proof of correctness. How-
ever simply means that the more fine-grained thdutes are, the more accurate the
committee could become. Fine-grained modules camdeemplished by globally
finding compact dense clusters of data points amidihg all the RN modules based
on these data clusters. Then this RN committeeNd Riethod can be possibly ex-
tended for large kernel ridge regression approxondh open systems.



6 Experimental Results

The set of experiments aims at discovering thesiflaation performance of the
RN distributed privacy preserving committee tesiadc separate test set of points. To
this end several benchmarks are used, taken fren@l machine learning data re-
pository. We compare our method against majoritiyngo To show the efficiency of
the method we must create highly unevenly and witlstratification data partitions,
otherwise accurate estimations may emerge simpiw fthe fact that we use an en-
semble. For the same reason a comparison with #jerity voting rule is also done.

The experimental design is as follows:

1. A dataset is randomly split into a train set (7080 a test set (30%) with

stratification.

2. The train set is distributed unevenly, randomly amithout stratification

across a number of processors.

3. Every processor trains a local Regularization NieNedwork classifier.

4.  An asynchronous computing cycle is executed to éificentries of the pro-

posed mutual validation matrix.

5. The high level RN committee is trained using theualvalidation matrix.

6. The final RN committee is tested on the test set.

7. This procedure is repeated 10 times for each beadhdataset and each cor-

responding processor number, and the error ratétsese averaged.

8. A single Regularization Neural Network is traingghsm on the same initial

train set and tested on the same test set for atsopa

In step 2 the uneven as well as random and withwatification choice of a par-
ticular processor’s data is important for the ekpent to simulate a real situation and
to show the power of the method. To this end wevalh quarter of processors to
randomly peek a population size between 5 and Bl points. Likewise another
quarter randomly peek a population size betweends1®0. Similarly the remainder
half of processors are allowed to have a size bvdeand 30. Then according to the
total number of training points these populatiaresiare normalized, in favour of the
smaller ones, for their sum to fit the total. Thigthod produces a fairly uneven un-
stratified distribution, with half of processorsputations being small. Many of them
end up with no samples from some class. In add#tinall local populations are likely
to produce singularities to the mutual validatioatrix inversion, in order to make
harder the proposed training method and show theflig of the RN stabilizer. Other
uneven and irregular distributions we try have vearlas well as the former one.

On all tested datasets the RN committee outperfarmapority voting. The Iris
dataset has 150 examples, 4 input features araks8ed. The Diabetes dataset has 768
examples, 8 input features and 2 classes. The Wsgtbreast cancer dataset has 683
examples, 9 input features and 2 classes. The Metiataset has 846 examples, 18
features and 4 classes. The Glass dataset hasxatples, 9 input features and 6
classes.The Wine dataset has 178 examples, 13fegtutes and 3 classes. Although
the uneven un-stratified splitting produces higintggular data distributions, the RN
committee was found to perform better not only thaajority voting but also slightly
better than the single RN on datasets like the Wime and Wisconsin.



Table 1. Iris dataset results

RN Majority Voting RN committee single RN
modules error error error
10 5,2% 3,1% 3,3%
11 8,3% 2,7% 3,1%
12 6,3% 2,7% 2,7%
13 5,8% 2,5% 2,7%
14 4,2% 3,8% 2,5%
15 4,2% 3,5% 2,9%

In table 1, RN modules column indicates the nunafé®Ns in the ensemble layer,
and is used to show the range of the applicabiityerror rates are measured by the
ratio (falsely classified samples)/(total) on testtset. In the second column all mod-
ule networks in the ensemble layer perform simpégonity voting to produce error
rate. The third column shows the proposed disteduirivacy preserving RN com-
mittee error. The fourth column shows the single &Nr when trained on the whole
train set. The RN committee outperforms the majoviiting and unexpectedly re-
covers the single RN error rate in most of the expental cases. A marginally better
performance of RN committee over the single RNsgs @resent in some cases.

Table 2. Diabetes dataset results

RN Majority Voting RN committee single RN
modules error error error
50 30,2% 26,7% 25,9%
55 29,3% 25,4% 25,4%
60 29,7% 26,7% 24,6%
65 31,5% 25,9% 25,0%
70 32,3% 25,0% 24,1%
75 31,0% 26,7% 26,3%

In table 2, for the Diabetes dataset, the erra odita single RN was found in last
column to be about 25% on the same test set. Thed®iNnittee outperforms major-
ity voting and manages to be as accurate as tijeedRN which was unexpected.

Table 3. Wisconsin dataset results

RN Majority Voting | RN committee single RN
modules error error error
10 3,7% 3,5% 3,7%
20 3,6% 2,9% 3,2%
30 4,3% 3,6% 3,3%
40 4,4% 3,3% 3,5%
50 4,1% 3,5% 3,5%
60 4,9% 3,5% 3,8%

In table 3, for the Wisconsin dataset, the RN cottemiagain performs better than
majority voting and achieves the same error asihigle RN, which also marginally
overrun in some cases.



Table 4. Vehicle dataset results

RN Majority Voting [ RN committee single RN
modules error error error
5 27,3% 23,4% 21,5%
10 31,3% 25,4% 20,7%
15 33,2% 27,7% 21,1%
20 32,4% 27,3% 20,7%
25 33,6% 28,5% 20,7%
30 37,5% 30,1% 21,1%

In table 4, for the Vehicle dataset the single Ridrerate in last column was found
to be about 21%. The RN committee performs mucteb#tan majority voting and
as expected in all cases the error produce whebetimeen majority voting and the
single RN error.

Table 5. Glass dataset results

RN Majority Voting RN committee single RN
modules error error error
10 38,8% 34,3% 32,8%
12 40,3% 38,8% 33,6%
14 38,8% 37,3% 32,1%
16 39,6% 36,6% 32,8%
18 43,3% 35,8% 34,3%
20 44.8% 37,3% 32,8%

In table 5, for the Glass dataset, again the RNmoitie performs much better
than majority voting. As expected from the highlyewen and un-stratified data dis-
tribution across processors in all cases the RNnuittee error produce where in be-
tween majority voting and the single RN error.

Table 6. Wine dataset results

RN Majority Voting RN committee single RN
modules error error error
11 3,6% 2,7% 2,4%
12 2,5% 2,5% 2,5%
13 3,1% 3,1% 2,5%
14 3,8% 2,7% 2,9%
15 2,7% 1,8% 1,8%
16 3,6% 2,0% 2,2%
17 3,8% 2,7% 2,7%

In table 6, for the Wine dataset, again the RN cdtem error results are better
than majority voting and once more are comparablihé single RN case. While we
run the method 60 times for each dataset, morerimeets are needed, and are there-
fore planed for future research in an extensivéectibn of benchmark datasets dif-
ferent in record size and feature complexity, tbgetvith another training method.



7 Conclusions and futurework

For large scale distributed committee machines oresider the challenging case
where no local data exchange is possible amongeheal network classifiers. Regu-
larization neural networks are used for both tresgifiers as well as the combiner
committee in an embedded architecture. After thedg@Mmittee training finished no
RN module will know anything else except its owpuhlocal data vectors. The pre-
sent study proposes a simple method to accomplish & task. Using the distributed
system a mutual validation matrix among them is pot@d asynchronously. The
mapping is done based on classification rates ktwieem. The train set of one be-
comes the validation set of the other. Then ftdssible to exploit this mutual valida-
tion matrix to train another high level regularipat network as a RN committee
combiner for the individual RN modules. Experimém&sults were supportive, and
the proposed privacy preserving RN committee ofpers the majority voting rule
in all of the cases.

It must be noted here that as the mutual validatiethod improves accuracy, the
gaining speed is also remarkable, producing a higtdlable system. The complexity
of a single RN is about O(N"3). For N>1.000.000s thlgorithm is difficult to im-
plement. It is possible for the RN committee maehpnesented here to assist in split-
ting the work without significant loss of accuradyaining with fine-grained modules
can be done by globally finding compact dense elgsdf data. In the future we will
try using a different mutual validation matrix feach class. Since these are asymmet-
ric matrices and might have zeros in the diagomalplan to resolve this issue by
using regularized alternating least squares fomthights training.

Let a general loss function denoted as V(f(x), ywhere f() the classifier, x the
feature vector, y the label and u the parametertowéweights etc.) of the classifier.
The minimization of V with respect to u like in ehjgives the solution of parameter
vector u [4]. When two classifiers are comparedsusra common separate test set,
the comparison is made on their outputs, so thistadce measure d(i,j) is usually
dependent on their pair of parameter vectqrand y, meaning the outcome d(i,j) is
biased from their joint biases. The proposed mutalitiation matrix method is inde-
pendent of the joint parameter vectorsand y. In our case an asymmetric measure
s(i,j) depends only on parameter vectpoficlassifier i and thus is independent from
the bias and variance of the classifier j. So it b@ used as uncorrelated distance
measure estimation for conventional ensemble trgini

Unlike the on-line neural network training, or gextt descent methods, the train-
ing phase of a regularization network is alwayslio#, using kernel methods, and
thus the stable solution is restricted to solvidmear system of the form (K M)w =
y. Thus with or without the privacy preserving clvas, the static training of a meta-
learner RN committee which consists of any otheetgf classifier modules (SVM,
RBF, MLP etc.) requires a coarse-grained high |&eehel matrix. For example con-
strained regression training uses a covariancebmagually computed from the aver-
age errors of classifiers to find module weightstHe future we plan to present ex-
tensive experiments that directly compare the psegomethod performance with
ensembles of RNs trained via bagging, constraiageession and stacking.
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