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Abstract. In this paper we consider large scale distributed committee machines 
where no local data exchange is possible between neural network modules. 
Regularization neural networks are used for both the modules as well as the 
combiner committee in an embedded architecture. After the committee training 
no module will know anything else except its own local data. This privacy pre-
serving obligation is a challenging problem for trainable combiners but crucial 
in real world applications. Only classifiers in the form of binaries or agents can 
be sent to others to validate their local data and sent back average classification 
rates. From this fully distributed and privacy preserving mutual validation a 
coarse-grained matrix can be formed to map all members. We demonstrate that 
it is possible to fully exploit this mutual validation matrix to efficiently train 
another regularization network as a meta learner combiner for the committee.  

1 Introduction 

A committee machine [1] exhibits an intrinsically parallel and distributed architec-
ture [2] in which multiple modules of independently trained neural networks are com-
bined for the same task. An ensemble learner of this kind is an ideal candidate for data 
mining large scale physically distributed data repositories in institutions/organizations 
or Peer-to-Peer networks. However privacy preserving and scalability are crucial 
issues for these real life applications. The Regularization Networks [3][4][5] are ker-
nel based classifiers known to use as hidden neurons the real training data points, to 
form the kernel functions and capture the data closeness approximate of the under-
lined problem distribution. Using real points is valuable when data features have dis-
crete values, e.g., in cases of image processing, computer vision [1] and data mining 
[8], a fact that elevates such type of kernel based ridge regression methods [9] [10] to 
state of the art. For these distributed Regularization Network (RN) modules if another 
Regularization Network can be trained to act as a high level combiner then can serve 
as a meta-learner in a distributed data mining system [11]. Such a meta-learner is 
looked at in detail here for the distributed privacy preserving case.  



A committee of neural networks has excellent generalization capabilities, [6] since 
typically the committee error is reduced considerably by taking the average error of 
the combined networks. All neural networks classifiers are first trained in parallel 
based on local data to construct local data models. Then the committee combines [7] 
all individual decisions through proper weights to form the global data model used for 
collective decisions. Committees can be used in data mining physically distributed 
data repositories as well as peer-to-peer systems. Gather large volumes of distributed 
data to a single location for centralized data mining is usually unfeasible. The causes 
that prevent this lay in technical issues like limited network bandwidth and enormous 
main memory demands, practical issues like huge required training times, algorithmic 
issues in where mining algorithms operate only on data in main memory, and espe-
cially privacy preserving concerns that restrict the transferring of sensitive data.  

To this context the task to build a global model from data distributed over worksta-
tions, without moving or sharing local data itself, and with little centralized coordina-
tion, is challenging. The trainable combiner requires a separate test set to find proper 
weights for the neural network modules. Thus it requires the use of extra information 
from their input-output mappings. At least two-by-two the classifiers must share ei-
ther input vectors, or output vector results with respect to instances of an independent 
test set. Without exposing data between modules or without aggregating a portion of 
data this is tricky. A regularization network as a meta-learner committee of regulari-
zation networks trained by a simple distributed privacy preserving mutual validation 
matrix is presented here, as an effort to the solution of the problem. 

2 Distributed Privacy-Preserving Data Mining 

Distributed privacy-preserving data mining is the study of how to extract globally 
interesting models, associations, classifiers, clusters, and other useful aggregate statis-
tics from distributed data without disclosing private information within the different 
participants. Data exchange and free flow of information is frequently prohibited by 
legal obligations or by commercial and personal concerns, since the participants may 
wish to collaborate, but might not fully trust each other. The basic idea of a secure 
multiparty computation is that a distributed computation is secure if at the end no 
party knows anything except its own input and the aggregate results. For example, 
secure sum protocol [12] computes the sum of a collection of numbers without reveal-
ing anything but the output sum. Classifiers which need total sums like Naive Bayes 
can be worked in this fashion. Data sets are usually distributed in horizontal partitions 
where different sites contain different sets of records with the same attributes. Classi-
fier examples that have been generalized to this distributed privacy preserving data 
mining problem are the Naïve Bayes Classifier [13][14], the SVM Classifier with 
nonlinear kernels [15] and the k-nearest neighbour classifier [16]. Since for multi-
class problems classical neural networks are proven the best over the years, here we 
present an embedded architecture Regularization Network committee machine of 
Regularization Networks distributed over workstations, of which the training leave 
the processor nodes with no extra knowledge for the other participant inputs.  



3 A Regularization Networks Committee Machine 

The committee training [17][18][19], like in neural network training has to find a 
proper weight for each individual neural network. A Regularization Network (RN) 
committee of embedded Regularization Networks classifiers illustrated in fig.1, is 
analysed in this section. An individual RN [3] [4] [5] has one input layer, one hidden 
layer, and one output layer. All real data points are loaded to the hidden neurons to 
form the kernel functions. For a training set N
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optimum weights w for the output f() by solving in Reproducing Kernel Hilbert Space 
HK a minimization problem for a regularized functional which consists of a usual data 
term plus a second regularization term that plays the role of the stabilizer [3] [4] [5]  
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For a class C the weights wC is the solution of a linear system (K + NγI)wC = yC , 
where I is identity matrix, K is the kernel matrix, γ > 0 is the regularization parameter 
and yC = (y1, . . . , yN) are the desired output labels, 1 for class C and 0 for the others. 
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Fig. 1. Architecture of a Regularization Network committee machine of embedded regulariza-
tion networks for the three class problem.  

For the three class problem in fig.1 a Regularization Network module consists of a 
hidden layer with N neurons of kernel units and three linear outputs. fi,class=j( x

r ) is the 
output of the RN module i for class j. The RN committee machine of L embedded 
RNs has also three outputs. While the training of local RNs can provide the weight 
vectors WA, WB and WC, one for each class output, the high level weight vectors GA, 
GB and GC for the outer regularization network committee are still unknown.  



4 The Distributed mutual validation matrix 

To find the weight vectors GA, GB and GC in fig.1 without reveal the training data 
vectors between modules we must first introduce in this section the mutual validation 
matrix S. Assume an ensemble of three hidden Regularization Networks namely 
RN(1), RN(2) and RN(3) that are trained independently from each other based on 
their local datasets. For privacy reasons the different locations cannot contribute or 
share any even smallest part of their data to other modules. Only RN networks in the 
form of binaries or agents can be sent to other modules to validate their data. Then 
schematically one can work with measures of classification rates between RN(1), 
RN(2) and RN(3) train patterns. The RN(1) classifies its own train data points to pro-
duce 1-1 measure. Likewise RN(2) classifies its own data to produce 2-2 measure and 
RN(3) produce 3-3 measure. These three are internal (or intra) measures, as they con-
trolled by internal characteristics. In consequence RN(1) classifies train data of RN(2) 
to produce 1-2 measure and RN(2) classifies RN(1) data to produce 2-1 measure. In 
the same manner the measures 1-3, 3-1, 2-3 and 3-2 are produced. These six asym-
metric measures are local (or inter) as they are based on the performance of 
neighbours data. A coarse-grained mutual validation matrix can be filled with these 
average rates. The validation set for one classifier is the train set of the other and vice 
versa. This mutual validation matrix maps the RN members is illustrated in fig. 2. 
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Fig. 2. (A) An ensemble of three different Regularization Networks RN(1), RN(2) and RN(3), 
inter-connected with each other via accuracy measures, (B) the mutual validation matrix.  

The paradigm in fig. 2 is an illustrative example of the simple point-to-point com-
munications involved. The diagonal measures of the matrix are the self-validation 
average positive hits of each RN. Upon receiving a Regularization Network i the 
module j apply it to classify its own local data and send back a simple average learn-
ing rate equal to S(i, j) = PositiveLocalHits(j)/LocalTrainSize(j), where positive hits 
are the number of correctly classified local samples of module j and local train size is 
their number Nj of training points. In this way privacy preserving is achieved.  

Distributed computations are required for the i-j, and j-i asymmetric measures be-
tween different RNs across the communication network. An asynchronous cycle is 
continually executed composed of commands, like sent local classifier, check for 
received classifier, compute local positive hits, and sent average. In terms of parallel 
and distributed computing this RN committee training approach is hybrid task as well 
as data parallel. Tasks are the RN classifiers which travel across the communication 
network and when arrive in a processing node are applied to the node’s local data. 



In this way one manages for the RN committee training to be transformed to a fully 
asynchronous embarrassingly parallel programming paradigm like the iterative de-
composition [20]. Iterative decomposition occurs when a loop parallel execution can 
be done in some independent and unconnected manner. The work is statically decom-
posed, but the work assignments are dynamically distributed to processes. Each node 
may operate independently and communicate its own results to another node, making 
it an appropriate choice for various types of asynchronous cycles. 

5 Training the Committee via the mutual validation matrix 

From the distributed and data privacy preserving mutual validation the coarse-
grained validation matrix formed can map all modules. Although so far such a matrix 
was ignored, we demonstrate here that it is possible to fully exploit it to efficiently 
train another regularization network as a meta learner combiner for the committee.  

Recall now that the weights per class output of each local Regularization network 
module i of the ensemble are given by solving a linear system of the form (K + λI)w = 
y, where λ=Niγ. While the weight vectors GA, GB and GC for the outer regularization 
network committee machine are unknown, the simple mutual validation matrix S can 
now enter into the training procedure. The weights GA, GB and GC can be found by 
considering the matrix S as the outer kernel and solving the linear equations, one for 
each class, in terms of the vectors YA, YB and YC. 
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The vectors YA, YB and YC correspond to classes A, B and C have all size equal to 
the number L of ensemble modules. A value ΥA(i) is positive local hits of RN classi-
fier i per overall train size, produced by applying the ith  RN module to the A class 
portion of its own ith dataset (if not any set 0). Respectively ΥB(i)  is the overall classi-
fication rate produced by the ith RN module for the B class portion (if not any set 0) of 
its data, and YC(i) similarly for the C class portion. The regularization parameter is 
again λ, and I is again the identity matrix.  

Besides the simplicity of this method another interesting observation is that if the 
local neural network classifiers all are reduced to have only a single train example 
then, the mutual validation matrix reduces to a usual kernel matrix and the proposed 
committee machine in fig.1 switches to the single conventional Regularization Net-
work. For systems where data movement across local sites is hindered like those stud-
ied at this point the above observation can serve only as a proof of correctness. How-
ever simply means that the more fine-grained the modules are, the more accurate the 
committee could become. Fine-grained modules can be accomplished by globally 
finding compact dense clusters of data points and training all the RN modules based 
on these data clusters. Then this RN committee of RNs method can be possibly ex-
tended for large kernel ridge regression approximation in open systems.  



6 Experimental Results 

The set of experiments aims at discovering the classification performance of the 
RN distributed privacy preserving committee tested on a separate test set of points. To 
this end several benchmarks are used, taken from the UCI machine learning data re-
pository. We compare our method against majority voting. To show the efficiency of 
the method we must create highly unevenly and without stratification data partitions, 
otherwise accurate estimations may emerge simply from the fact that we use an en-
semble. For the same reason a comparison with the majority voting rule is also done.  

The experimental design is as follows:  
1. A dataset is randomly split into a train set (70%) and a test set (30%) with 

stratification.  
2. The train set is distributed unevenly, randomly and without stratification 

across a number of processors.  
3. Every processor trains a local Regularization Neural Network classifier.  
4. An asynchronous computing cycle is executed to find all entries of the pro-

posed mutual validation matrix.  
5. The high level RN committee is trained using the mutual validation matrix.  
6. The final RN committee is tested on the test set.  
7. This procedure is repeated 10 times for each benchmark dataset and each cor-

responding processor number, and the error rate results are averaged. 
8. A single Regularization Neural Network is trained again on the same initial 

train set and tested on the same test set for comparison 
In step 2 the uneven as well as random and without stratification choice of a par-

ticular processor’s data is important for the experiment to simulate a real situation and 
to show the power of the method. To this end we allow a quarter of processors to 
randomly peek a population size between 5 and 300 train points. Likewise another 
quarter randomly peek a population size between 5 and 100. Similarly the remainder 
half of processors are allowed to have a size between 5 and 30. Then according to the 
total number of training points these population sizes are normalized, in favour of the 
smaller ones, for their sum to fit the total. This method produces a fairly uneven un-
stratified distribution, with half of processors populations being small. Many of them 
end up with no samples from some class. In addition small local populations are likely 
to produce singularities to the mutual validation matrix inversion, in order to make 
harder the proposed training method and show the benefits of the RN stabilizer. Other 
uneven and irregular distributions we try have worked as well as the former one. 

On all tested datasets the RN committee outperforms majority voting. The Iris 
dataset has 150 examples, 4 input features and 3 classes. The Diabetes dataset has 768 
examples, 8 input features and 2 classes. The Wisconsin breast cancer dataset has 683 
examples, 9 input features and 2 classes. The Vehicle dataset has 846 examples, 18 
features and 4 classes. The Glass dataset has 214 examples, 9 input features and 6 
classes.The Wine dataset has 178 examples, 13 input features and 3 classes. Although 
the uneven un-stratified splitting produces highly irregular data distributions, the RN 
committee was found to perform better not only than majority voting but also slightly 
better than the single RN on datasets like the Iris, Wine and Wisconsin. 



Table 1. Iris dataset results 

RN 

modules

Majority Voting 

error

RN committee   

error

single RN  

error

10 5,2% 3,1% 3,3%

11 8,3% 2,7% 3,1%

12 6,3% 2,7% 2,7%

13 5,8% 2,5% 2,7%

14 4,2% 3,8% 2,5%

15 4,2% 3,5% 2,9%  

In table 1, RN modules column indicates the number of RNs in the ensemble layer, 
and is used to show the range of the applicability. All error rates are measured by the 
ratio (falsely classified samples)/(total) on the test set. In the second column all mod-
ule networks in the ensemble layer perform simple majority voting to produce error 
rate. The third column shows the proposed distributed privacy preserving RN com-
mittee error. The fourth column shows the single RN error when trained on the whole 
train set. The RN committee outperforms the majority voting and unexpectedly re-
covers the single RN error rate in most of the experimental cases. A marginally better 
performance of RN committee over the single RN is also present in some cases. 

Table 2. Diabetes dataset results 

RN 

modules

Majority Voting 

error

RN committee  

error

single RN  

error

50 30,2% 26,7% 25,9%

55 29,3% 25,4% 25,4%

60 29,7% 26,7% 24,6%

65 31,5% 25,9% 25,0%

70 32,3% 25,0% 24,1%

75 31,0% 26,7% 26,3%  

In table 2, for the Diabetes dataset, the error rate of a single RN was found in last 
column to be about 25% on the same test set. The RN committee outperforms major-
ity voting and manages to be as accurate as the single RN which was unexpected. 

Table 3. Wisconsin dataset results 

RN 

modules

Majority  Voting 

error

RN committee  

error

single RN  

error

10 3,7% 3,5% 3,7%

20 3,6% 2,9% 3,2%

30 4,3% 3,6% 3,3%

40 4,4% 3,3% 3,5%

50 4,1% 3,5% 3,5%

60 4,9% 3,5% 3,8%  

In table 3, for the Wisconsin dataset, the RN committee again performs better than 
majority voting and achieves the same error as the single RN, which also marginally 
overrun in some cases.  



Table 4. Vehicle dataset results 

RN 

modules

Majority Voting 

error

RN committee   

error

single RN  

error

5 27,3% 23,4% 21,5%

10 31,3% 25,4% 20,7%

15 33,2% 27,7% 21,1%

20 32,4% 27,3% 20,7%

25 33,6% 28,5% 20,7%

30 37,5% 30,1% 21,1%  

In table 4, for the Vehicle dataset the single RN error rate in last column was found 
to be about 21%. The RN committee performs much better than majority voting and 
as expected in all cases the error produce where in between majority voting and the 
single RN error.  

Table 5. Glass dataset results 

RN 

modules

Majority Voting  

error

RN committee  

error

single RN  

error

10 38,8% 34,3% 32,8%

12 40,3% 38,8% 33,6%

14 38,8% 37,3% 32,1%

16 39,6% 36,6% 32,8%

18 43,3% 35,8% 34,3%

20 44,8% 37,3% 32,8%  

In table 5, for the Glass dataset, again the RN committee performs much better 
than majority voting. As expected from the highly uneven and un-stratified data dis-
tribution across processors in all cases the RN committee error produce where in be-
tween majority voting and the single RN error. 

Table 6. Wine dataset results 

RN 

modules

Majority Voting 

error

RN committee  

error

single RN  

error

11 3,6% 2,7% 2,4%

12 2,5% 2,5% 2,5%

13 3,1% 3,1% 2,5%

14 3,8% 2,7% 2,9%

15 2,7% 1,8% 1,8%

16 3,6% 2,0% 2,2%

17 3,8% 2,7% 2,7%  

In table 6, for the Wine dataset, again the RN committee error results are better 
than majority voting and once more are comparable to the single RN case. While we 
run the method 60 times for each dataset, more experiments are needed, and are there-
fore planed for future research in an extensive collection of benchmark datasets dif-
ferent in record size and feature complexity, together with another training method. 



7 Conclusions and future work 

For large scale distributed committee machines we consider the challenging case 
where no local data exchange is possible among the neural network classifiers. Regu-
larization neural networks are used for both the classifiers as well as the combiner 
committee in an embedded architecture. After the RN committee training finished no 
RN module will know anything else except its own input local data vectors. The pre-
sent study proposes a simple method to accomplish such a task. Using the distributed 
system a mutual validation matrix among them is computed asynchronously. The 
mapping is done based on classification rates between them. The train set of one be-
comes the validation set of the other.  Then it is possible to exploit this mutual valida-
tion matrix to train another high level regularization network as a RN committee 
combiner for the individual RN modules. Experimental results were supportive, and 
the proposed privacy preserving RN committee outperforms the majority voting rule 
in all of the cases.  

It must be noted here that as the mutual validation method improves accuracy, the 
gaining speed is also remarkable, producing a highly scalable system. The complexity 
of a single RN is about O(N^3). For N>1.000.000, this algorithm is difficult to im-
plement. It is possible for the RN committee machine presented here to assist in split-
ting the work without significant loss of accuracy. Training with fine-grained modules 
can be done by globally finding compact dense clusters of data. In the future we will 
try using a different mutual validation matrix for each class. Since these are asymmet-
ric matrices and might have zeros in the diagonal we plan to resolve this issue by 
using regularized alternating least squares for the weights training. 

Let a general loss function denoted as V(f(x), y, u) where f() the classifier, x the 
feature vector, y the label and u the parameters vector (weights etc.) of the classifier. 
The minimization of V with respect to u like in eq. 1 gives the solution of parameter 
vector u [4]. When two classifiers are compared versus a common separate test set, 
the comparison is made on their outputs, so their distance measure d(i,j) is usually 
dependent on their pair of parameter vectors u1 and u2, meaning the outcome d(i,j) is 
biased from their joint biases. The proposed mutual validation matrix method is inde-
pendent of the joint parameter vectors u1 and u2. In our case an asymmetric measure 
s(i,j) depends only on parameter vector u1 of classifier i and thus is independent from 
the bias and variance of the classifier j. So it can be used as uncorrelated distance 
measure estimation for conventional ensemble training. 

Unlike the on-line neural network training, or gradient descent methods, the train-
ing phase of a regularization network is always off-line, using kernel methods, and 
thus the stable solution is restricted to solving a linear system of the form (K + λI)w = 
y. Thus with or without the privacy preserving constrain, the static training of a meta-
learner RN committee which consists of any other type of classifier modules (SVM, 
RBF, MLP etc.) requires a coarse-grained high level kernel matrix. For example con-
strained regression training uses a covariance matrix usually computed from the aver-
age errors of classifiers to find module weights. In the future we plan to present ex-
tensive experiments that directly compare the proposed method performance with 
ensembles of RNs trained via bagging, constrained regression and stacking. 
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