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Abstract. This paper illustrates how interval analysis can be used as a
basis for generalized models of uncertainty. When epistemic uncertainty
is presented as a range and the aleatory is based on available informa-
tion, or when random variables are assigned an interval probability, the
uncertainty will have a Probability Bound (PB) structure. When Interval
Monte Carlo (IMC) is used to sample random variables, interval random
values are generated. Interval Finite Element Method (FEM) is used to
propagate intervals through the system and sharp interval solutions are
obtained. Interval solutions are sorted and PBs of the system response
are constructed. All relevant statistics are calculated characterizing both
aleatory and epistemic uncertainty. The above mentioned sequence is
presented in this work and illustrative examples are solved.

Keywords: interval, finite elements, reliability, aleatory, epistemic, prob-
ability bounds

1 Introduction

The presence of uncertainty in all aspects of life is evident. However, quanti-
fying uncertainty is always advancing. There are various ways in which types
of uncertainty might be classified. One is to distinguish between “aleatory” (or
stochastic) uncertainty and “epistemic” uncertainty. The first refers to underly-
ing, intrinsic variability of physical quantities, and the latter refers to uncertainty
which might be reduced with additional data or information, or better modeling
and better parameter estimation [1].

Probability theory is the traditional approach to handling uncertainty. This
approach requires sufficient statistical data to justify the assumed statistical
distributions. Analysts agree that, given sufficient statistical data, probability
theory describes the stochastic uncertainty well. However, probabilistic model-
ing cannot handle situations with incomplete or little information on which to
evaluate a probability, or when that information is nonspecific, ambiguous, or
conflicting [2], [3],and [4]. Many generalized models of uncertainty have been de-
veloped to treat such situations, including fuzzy sets and possibility theory [5],
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Dempster-Shafer theory of evidence [6], [7], random sets [8], probability bounds
[9], [2], and [10], imprecise probabilities [4], convex models [11], and others.

These generalized models of uncertainty have a variety of mathematical de-
scriptions. However, they are all closely connected with interval analysis [12].
For example, the mathematical analysis associated with fuzzy set theory can be
performed as interval analysis on different α levels [13] and [14]. Fuzzy arithmetic
can be performed as interval arithmetic on α cuts. A Dempster-Shafer structure
[6] and [7] with interval focal elements can be viewed as a set of intervals with
probability mass assignments, where the computation is carried out using the
interval focal sets. Probability bounds analysis [9], [2], and [10] is a combina-
tion of standard interval analysis and probability theory. Uncertain variables
are decomposed into a list of pairs of the form (interval, probability). In this
sense, interval arithmetic serves as the calculation tool for generalized models
of uncertainty. A short description of probability bounds is given in the next
section.

2 Probability Bounds

Probability Bounds (PB) identifies a specific mathematical framework for anal-
ysis when precise discrete probabilities (or PDF) are not completely known [4].
Probability bounds are normally associated with epistemic sources of uncertainty
where the available knowledge is insufficient to construct precise probabilities.
Calculations on PB can be conducted using Monte Carlo methods combined
with an interval finite element method [15], or by using various discretization
methods.

The arithmetic for piecewise constant discretization on PB can be found
in publications such as [16], [17], [18], [10]. Let the behavior of the system be
modeled by a function y = f(x), where x = (x1, x2, . . . , xn) is the parameter
vector, and each xi is represented by a probability-bounds structure. The CDF
of a particular value y∗, F (y∗), is to be determined. The objective of probability-
bounds analysis is to obtain an interval to bound the precise probability F (y∗)
of interest (in the classical sense). The numerical implementation of probability-
bounds analysis can be done using interval analysis and the Cartesian product
method. The general procedure can be found in publications such as [19], [20],
[21], and [10].

For example, Fig. 1 depicts probability-bounds circumscribing a normal dis-
tribution whose mean is sure to lie within the interval [5.6, 6] and whose standard
deviation is 1. Such bounds can result from the addition of a normally distributed
random variable with a mean of 5.6 and a standard deviation of 1 with a variable
bounded between 0 and 0.4.

Probability-bounds structure can also arise by forming probability distribu-
tions of intervals. In this context, probability-bounds structure is mathemati-
cally analogous to a standard discrete probability distribution except that the
probability mass is assigned to an interval rather than to a precise point; thus,
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Figure 1. Excel graph 

 

Figure 2 is attached separately. 

 

Figure 3 is attached separately. 

Fig. 1. Probability-bounds associated with normal distribution with mean = [5.6, 6]
and standard deviation = 1.).

the probability-bounds structure can be specified as a list of pairs of the form
(interval, probability mass).

The advantage of the probability-bounds approach is that it can capture a
wider range of uncertainties than the standard probabilistic approach. On the
other hand, the standard probability distribution and interval number are two
degenerate cases of probability-bounds structure; thus the probability-bounds
approach provides a general framework for handling problems with a mixture of
interval-based information and standard probabilistic information.

When and if additional knowledge of a system is obtained, the probability
bounds can be refined. Just as interval and scalar calculations can be easily
mixed, conventional precise probabilities and probability bounds may be mixed
in a single calculation. However, how to accomplish this in a computationally
efficient method for finite element analysis is unresolved. In this work interval
Monte Carlo (IMC) will be used.

3 Interval Monte Carlo

When a random variable is described in a probability-bound structure, one nat-
ural approach for sampling such a random variable is the use of interval Monte
Carlo (IMC). A discretization approach can be used as well [15]; however, this
approach has not yet been developed for the general case. IMC has been pro-
posed to generate fuzzy numbers in [22] and for the first time for structural
reliability in [15].

The first step in the implementation of interval Monte Carlo simulation is the
generation of intervals in accordance with the prescribed probability bounds. The
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inverse transform method is often used to generate random numbers. Consider
a random variable x with CDF F (x). If (u1, u2, . . . , um) is a set of values from
the standard uniform variate, then the set of values

xi = F−1
x (ui), i = 1, 2, . . . ,m (1)

will have the desired CDF F (x). The inverse transform method can be extended
to perform random sampling from a probability bound. Suppose that an impre-
cise CDF F (x) is bounded by F (x) and F (x), as shown in Fig. 2. For each ui in
Eq. (1), two random numbers are generated

xi = F
−1

x (ui) and xi = F−1
x (ui) (2)

Such a pair of xi and xi form an interval [xi, xi] which contains all possible
simulated numbers from the ensemble of distributions for a particular ui. The
method is graphically demonstrated in Fig. 2 for the one-dimensional case. The
next step is to solve for the generated interval values using interval finite elements
described in the next section.
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Fig. 2. Generation of random number from distribution with probability-bound struc-
ture.).
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4 Interval Finite Element Methods

One of the main features of interval arithmetic is its capability of providing guar-
anteed results. However, it has the disadvantage of overestimation if variables
have multiple occurrences in the same expression. For example, if x is an interval,
evaluation of the function f(x) = x − x using naive rules of interval arithmetic
will not return zero but rather an interval that contains zero. Such situations
lead to extremely pessimistic results, and have discouraged some researchers of
pursuing further developments using interval representations.

The Finite Element Method (FEM) is a numerical method for solving differ-
ential and partial differential equations with enormous applications in different
fields of the sciences and engineering. Interval Finite Element Methods (IFEM)
have been developed for the last 15 years to handle the analysis of systems
for uncertain parameters described as intervals. Since the early development of
IFEM during the mid-1990s of the last century [23], [24], [25], [26], [27], and
[28], researchers have focused, among other issues, on two major problems: the
first is how to obtain solutions with reasonable bounds on the system response
that make sense from a practical point of view, or in other words, with the least
possible overestimation of their bounding intervals; the second is how to obtain
reasonable bounds on the derived quantities that are functions of the system
response.

The most successful approaches for overestimation reduction are those which
relate the dependency of interval quantities to the physics of the problem being
considered; details on these developments can be found in the works of the
authors and their collaborators [24], [29], [30], and [31].

A brief description of IFEM formulation is presented below, details can be
found in the authors’ work [31]. The two major issues in this formulation are:

1. Reducing overestimation in the bounds on the system response due to the
coupling and transformation in the conventional FEM formulation as well
as due to the nature of used interval linear solvers (Muhanna and Mullen,
2001).

2. Obtaining the secondary (derived) variables such as forces, stresses, and
strains of the conventional displacement FEM along with the primary vari-
ables (displacements) and with the same accuracy of the primary ones. Pre-
vious interval methods calculate secondary variable from interval solutions
of displacement which result in a significant overestimation.

4.1 Discrete Structural Models

In steady-state analysis, the variational formulation for a discrete structural
model within the context of the Finite Element Method (FEM) is given in the
following form of the total potential energy functional [32] and [33].

Π =
1

2
UTKU − UTP (3)
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with the conditions
∂Π

∂Ui
= 0 for all i (4)

where Π, K, U , and P are total potential energy, stiffness matrix, displacement
vector, and load vector respectively. For structural problems the formulation
will include both direct and indirect approaches. For the direct approach the
strain ε is selected as a secondary variable of interest, where a constraint can
be introduced as C2U = ε. For the indirect approach constraints are introduced
on displacements of the form C1U = V in such a way that Lagrange multipliers
will be equal to the internal forces. C1 and C2 are matrices of orders m× n and
k×n, respectively, where m is the number of displacements constraints, k is the
number of strains, and n is the number of displacements degrees of freedom. We
note that V is a constant and ε is a function of U . We amend the right-hand
side of Eq. (3) to obtain

Π∗ =
1

2
UTKU − UTP + λT1 (C1U − V ) + λT2 (C2U − ε) (5)

where λ1 and λ2 are vectors of Lagrange multipliers with dimensions m and k,
respectively. Invoking the stationarity of Π∗, that is δΠ∗ = 0, we obtain

K CT
1 CT

2 0
C1 0 0 0
C2 0 0 −I
0 0 −I 0



U
λ1
λ2
ε

 =


P
V
0
0

 (6)

The solution of Eq. (6) will provide the values of the dependent variable U
and the derived ones λ1, λ2, and ε at the same time.

The present interval formulation, which will be introduced in the next sec-
tion, is an extension of the Element-By-Element (EBE) finite element technique
developed in the work of the authors [29].

The main sources of overestimation in the formulation of IFEM are the mul-
tiple occurrences of the same interval variable (dependency problem), the width
of interval quantities, the problem size, and the problem complexity, in addition
to the nature of the used interval solver of the interval linear system of equa-
tions. While the present formulation is valid for the FEM models in solid and
structural mechanics problems, the truss model will be used here to illustrate
the applicability and efficiency of the present formulation without any loss of
generality.

The current formulation modifies the displacement constraints used in the
previous EBE formulation to yield the element forces as Lagrange Multipliers
directly and the system strains. All interval quantities will be denoted by non-
italic boldface font. Following the procedures given in [31] we obtain the interval
linear system 

K CT
1 CT

2 0
C1 0 0 0
C2 0 0 −I
0 0 −I 0




U
λ1

λ2

ε

 =


P
0
0
0

 (7)



278 Rafi L. Muhanna and Robert L. Mullen

where K is an interval matrix of dimension (dof × dof), where dof is the sum
of element degrees of freedom and the free node degrees of freedom. It consists
of the individual elements’ local stiffness and zeros at the bottom corresponding
to the free nodes’ degrees of freedom.

The accuracy of the system solution depends mainly on the structure of
Eq. (7) and on the nature of the used solver. The solution of the interval system
(7) provides the enclosures of the values of dependent variables which are the
interval displacements U, interval element forces λ1, the multiplier λ2, and the
element’s interval strains ε. An iterative solver is discussed in the next section.

4.2 Iterative Enclosures

The best known method for obtaining very sharp enclosures of interval linear
system of equations that have the structure introduced in Eq. (7) is the itera-
tive method developed in the work of Neumaier and Pownuk [34]. The current
formulation results in the interval linear system of equations given in (7) which
can be transformed to have the following general form:

(K +BDA)u = a+ Fb (8)

where D is diagonal. Furthermore, defining

C := (K +BD0A)−1 (9)

where D0 is chosen to ensure invertablility (often D0 is selected as the midpoint
of D), the solution u can be written as

u = (Ca) + (CF )b + (CB)d. (10)

To obtain a solution with tight interval enclosure we define two auxiliary
interval quantities,

v = Au (11)

d = (D0 −D)v

which, given an initial estimate for u, we iterate as follows:

v = {(ACa) + (ACF )b + (ACB)d} ∩ v, d = {(D0 −D)v} ∩ d (12)

until the enclosures converge, from which the desired solution u can be straight-
forwardly obtained.

This formulation allows obtaining the interval displacement U and the ac-
companied interval derived quantities λ1, λ2, and ε with the same accuracy. A
number of examples are introduced in the next section.
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Fig. 3. Truss structure.

5 Examples

Fig. 3 shows a planar truss. The reliability of this structure using single deflection
criteria has been presented by Zhang, et al. [15]. Two limit states are consid-
ered in this work, the serviceability and the strength. The deflection limit at the
mid-span is set to 2.4 cm, and the allowable stress in any member is set 200
MPa. Interval linear elastic analyses are performed. The element stress is calcu-
lated using conventional interval methods (stresses are calculated from interval
displacements) as well as the improved algorithm outlined in this paper. The
cross-sectional areas for the 15 members and the three loads are identified as the
basic random variables. All the 18 random variables are assumed to be mutually
statistically independent. Assume that based on experience, the cross-sectional
areas can be modeled by normal distributions, and the loads modeled by lognor-
mal distributions. Suppose the statistics for the random variables were estimated
from limited samples of data. Table 1 gives the available sample statistics for
the cross-sectional areas and the logarithm of the loads (Ln P). The Youngs
modulus is assumed deterministic (200 GPa).

Table 1. Sample statistics for the basic random variables (truss in Fig. 3).

Variables Sample mean Sample standard deviation No. of samples

A1 – A6 (cm2) 10.32 0.516 30
A7 – A15 (cm2) 6.45 0.323 30
Ln P1 3.2122 0.071474 20
Ln P2 3.9982 0.071474 20
Ln P3 3.2122 0.071474 20
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Table 2. Probability bounds for the basic random variables (truss in Fig. 3).

Variables Population means 90% Population standard
confidence interval bounds deviation

A1 – A6 (cm2) [10.160, 10.480] 0.516
A7 – A15 (cm2) [6.3498, 6.5502] 0.323
Ln P1 [3.1846, 3.2398] 0.071474
Ln P2 [3.9706, 4.0259] 0.071474
Ln P3 [3.1846, 3.2398] 0.071474
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Fig. 4. Probability bounds for central deflection, uncertain load.
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Figure 5. Excel graph 
Fig. 5. Probability bounds of maximum absolute stress in the structure, uncertain
load.
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Figure 6. Excel graph 
Fig. 6. Probability bounds of central deflection for uncertain loads and element cross-
sectional areas.

From the sample size, one can calculate confidence bounds on the mean of the
random variables. We will use these bounds to construct the bounding functions
defining the probability bounds for the random variables. Two cases are consid-
ered (1) the uncertain means for the (logarithm of) loads only and (2) uncertain
cross-sectional area as well as loading. The interval Monte Carlo method is used
to obtain probability bounds information on the variables associated with the
limit states as well as interval estimates for the failure probability. All results
are calculated using 10,000 realizations.

Fig. 4 presents the probability bounds for the central deflection of the truss
subject to uncertain loading. Using a limit state for deflection of 2.4 cm, the
bounds on the probability of survival is given by the intersection of a vertical
line at 2.4 cm and the probability bounds. The failure probability bounds are
then calculated from the survival bounds and are [1.34, 1.93]%. Fig. 5 presents
the probability bounds results for the maximum absolute value of the stress the
structure. Two different bounds are presented; the wider bounds are calculated
using standard interval methods while the narrower bounds result from the cur-
rent method. The calculated failure probabilities for the strength-based limit
state are: [0.01, 0.76]% using the current method and [< 0.01, 9.95]% using the
previous method. While both results bound the failure probability, the previous
method significantly overestimates the bounding values.

Fig. 6 presents the probability bounds for the central deflection of the truss
subject to uncertain load and element cross-sectional areas. Using the same 2.4
cm limit state, the bounds on the probability of failure increase to [0.11, 5.39]%.
It should be expected that increasing the uncertainty associated with the anal-
ysis will increase the width of the bounds on failure probability. Fig. 7 presents
the probability bounds results for the maximum absolute value of the stress in
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Figure 7. Excel graph 
Fig. 7. Probability bounds of maximum absolute stress in the structure, uncertain load
and element cross-sectional area.

the structure. Again, two different bounds are presented: the new method of
this work and previous interval method. Using the same limit state, the failure
probabilities bound are: [0.04, 3.71]% using the new method and [< 0.01, 48.88]%
using the previous method. The overestimation using previous method of calcula-
tions of element stress clearly renders the previous method useless in engineering
design.

6 Conclusion

An interval Monte Carlo finite element method with improved calculation of the
bounds of secondary quantities is presented. Using element stress as an example,
the improved sharpness of the bounds is illustrated. This work resolves the is-
sue of engineering design with limit states calculated from secondary quantities
(stress) that existed in previous interval Monte Carlo finite element analyses.
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DISCUSSION

Speaker: Rafi Muhanna

Richard Hanson : Does the use of interval arithmetic in finte element methods
scale to the size of the structure show in your slide (large!)?

Rafi Muhanna : Yes. We have tested that and the results are reported in follow-
ing paper: Muhanna, R., Mullen, R., and Zhang, H., “Interval Finite Element
as a Basis for Generalized Models of Uncertainty in Engineering Mechanics,”
Reliable Computing Journal, Springer Netherlands, Vol. 13, No. 2, pp. 173-194,
April 2007, and it has been found that the computer time scaled cubically to the
number of interval variables which is similar to the conventional finite elements.

William Kahan : This talk illustrates that the use of interval arithmetic to get
bounds not grossly excessive requires close analysis and exploitation of a prob-
lem’s properties. Here the ideas that work on static analysis by finite elements
of elastic structures also works on elliptic partial differential equations. But the
methods presented here do not always succeed on dynamical systems, nor on
solutions of nonlinear systems of equations with interval coefficients. The right
person to ask about interval arithmetic’s successes is Professor Ulrich Kulisch in
attendence here.

Ulrich Kulisch : Yes, for dynamical systems double precision interval and
floating-point arithmetic are not very successful. Here long interval arithmetic is
the appropriate tool. For the logistic equation xn+1 := 3.75xn(1−xn), n ≥ 0, and
the initial value x0 = 0.5 double precision floating-point and interval arithmetic
totally fail (no correct digit) after 30 iterations. Long interval arithmetic still
computes correct digits of a guaranteed enclosure after 2790 iterations.

Rafi Muhanna : Note also that nonlinear structural problems have been suc-
cessfuly solved and reported in: ICASP’11: Applications of Statistics and Prob-
ability in Civil Engineering, Faber, Köhler and Nishijima (eds.), Taylor & Fran-
cis Group, London (2011), with the title: “Interval finite elements for nonlin-
ear material problems.” Linear dynamic problems are addressed in: Modares,
M., Mullen, R., L. and Muhanna, R. L. “Natural Frequency of a Structure
with Bounded Uncertainty,” Journal of Engineering Mechanics, ASCE, Vol. 132,
No. 12, pp. 1363–1371, 2006.

Ronald Boisvert : Have you written your own interval arithmetic software
infrastructure, or are you using tools developed elsewhere?

Rafi Muhanna : The results in this presentation are calculated using MATLAB
with the INTLAB toolbox.

Jeffrey Fong : Log normal or normal distributions are not suitable for the mod-
eling of ultimate tensile strength data because they do not predict a minimum
strength. A 3-parameter Weibull distribution with a positive location parameter
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is a better model for predicting a minimum strength. Do you have experience
using Weibull in interval finite elements?

Rafi Muhanna : In this work we did not model the material strength. The au-
thors have studied probability bounds using a 3-parameter Weibull distribution.
The results are not yet published.
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