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Abstract. Uncertainty Quantification (UQ) for fluid mixing depends
on the length scales for observation: macro, meso and micro, each with
its own UQ requirements. New results are presented here for macro and
micro observables. For the micro observables, recent theories argue that
convergence of numerical simulations in Large Eddy Simulations (LES)
should be governed by space-time dependent probability distribution
functions (PDFs, in the present context, Young measures) which satisfy
the Euler equation. From a single deterministic simulation in the LES,
or inertial regime, we extract a PDF by binning results from a space
time neighborhood of the convergence point. The binned state values
constitute a discrete set of solution values which define an approximate
PDF. The convergence of the associated cumulative distribution func-
tions (CDFs) are assessed by standard function space metrics.

1 Introduction

LES convergence is an asymptotic description of numerical simulations of the
inertial, or self similar, scaling range of a turbulent flow. In the LES regime we
are not concerned with convergence in a conventional sense. Such mathematical
convergence to a classical or weak solution, as ∆x → 0, is a property of direct
numerical simulations (DNS), i.e., simulations with all length scales resolved. For
practical problems of turbulence this goal may be unrealistic. By contrast, in the
following we investigate LES convergence, defined as the behavior of numerical
solutions in the LES (inertial) regime under mesh refinement. In this regime
there is still a type of convergence but it may be weaker than that considered
by traditional DNS analysis. For example, rather than convergence to a weak
solution, it may be useful or even necessary to consider convergence of probability
distribution functions (PDFs) to a measure valued solution (Young measure).
The PDFs capture the local fluctuations of the solution, which are an important
aspect of the solution in the inertial regime.

In this article, we present such a picture, still incomplete, from perspectives
of mathematical theory, simulation and physical reasoning. It allows these two
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notions of convergence (DNS and LES; classical and w* Young measure limit)
to coexist.

The main result is a convergence study for PDFs and CDFs for a numerical
mesh refinement study of a Rayleigh-Taylor problem. At present meshes, we
find CDF but not yet PDF convergence, a minimum sampling size (supercell
size) for the stochastic convergence, and suitable norms for the measurement of
convergence.

2 Verification, Validation and Uncertainty Quantification
for RT mixing

2.1 The RT mixing rate α

The Rayleigh-Taylor (RT) instability is a classical hydrodynamical instability
driven by an acceleration force applied across a density discontinuity. The result
is a mixing layer, growing in time with a penetration thickness (of the bubbles,
i.e. the light fluid)

hb = αbAgt
2 , (1)

where A is the Atwood number, αb is a dimensionless buoyancy correction factor,
and g is the acceleration force. We have achieved excellent agreement with exper-
iment in our RT simulations; see Table 1. The results of Table 1, being stronger
than LES simulations of others, require detailed examination. A distinctive al-
gorithmic feature of our simulations is the combined use of front tracking and
subgrid scale models for LES, or FT/LES/SGS in brief. A second feature of our
work has been careful modeling of experimental detail. We summarize here two
issues important to this examination: initial conditions and mesh resolution.

Table 1. Comparison of FT/LES/SGS simulation to experiment. Simulation and ex-
perimental results reported with two significant digits. Discrepancy refers to the com-
parison of results outside of uncertainty intervals, if any, as reported.

Ref. Exp. Sim. Ref. αexp αsim Discrepancy
[21] #112 [8] 0.052 0.055 6%
[21] #105 [4] 0.072 0.076 ± 0.004 0%

[21,20] 10 exp. [3] 0.055-0.077 0.066 0%
[19] air-He [13] 0.065-0.07 0.069 0%
[17] Hot-cold [8,4] 0.070 ± 0.011 0.075 0%
[17] Salt-fresh [4] 0.085 ± 0.005 0.084 0%

2.2 Uncertainty Quantification for Initial Conditions and Mesh

Convergence

For most experiments, the initial conditions were not recorded, and the possi-
bility of influence of long wave length initial perturbations has been a subject
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of speculation. We have quantified the allowed long wave length perturbation
amplitudes, by an analysis of the recorded early time data [5,6,4]. Including an
estimate of the uncertainty of this backward extrapolation of data propagated
backward to t = 0, we estimate the uncertainty in αb to be 10% or less, based
on simulations which included (I) no initial long wave length perturbation and
(II) double the reconstructed long wave length perturbation amplitudes. This
range of initial conditions encompasses our estimates in the uncertainty of the
reconstruction. See Figure 1.
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Fig. 1. Plot of the bubble penetration distance hb vs. a scaled acceleration distance
Agt2. The slope is the mixing growth rate αb. We plot the experimental data points and
three simulation results, which have (I) 0× and (II) 2× our best reconstruction of the
initial long wave length perturbations, as extrapolated by backward propagation in time
from the early time experimental plates. (III) Inferred initial conditions for long wave
length perturbations fully resolved, with a mesh ∆x = 111µm < lWe = 780µm where
lWe is the critical bubble size (predicted by Weber number theory). The simulation III
is still in progress.

3 Young Measures

We explain the concept of a Young measure. For a turbulent flow, in the inertial
regime, i.e, for LES simulations of turbulence, the Young measure description of
the flow is a much deeper and more useful notion than is a classical weak solution
or its numerical approximation. We generalize the notion of test function and of
observation, using expectation values 〈· · ·〉 defined for the integration over the
(state) random variables. See also [9].
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To start, we suppress the spatial dependence. Thus we have a random system,
whose state ξ takes on random values. We introduce a measure space Ω with
ξ ∈ Ω and a probability measure (unit total measure) dν(ξ) on Ω. We denote
the result of integrating with respect to ν as 〈· · ·〉. Then 〈1〉 =

∫
Ω
dν(ξ) = 1.

A measurement is defined by a continuous function f of ξ, and defines a
mean or expected value of repeated measurements of f in the random system
state dν, given by the integral

〈f〉 =

∫

Ω

f(ξ)dν(ξ) . (2)

If the expectation yields the value 1/2, we may conclude that repeated measure-
ments will give a 50% measurement for f , on the average. But we do not know
whether the value 1/2 occurs with each measurement (probability 1), i.e., perfect
mixing with no fluctuations, or whether, at the other extreme, the value 1 occurs
with probability 1/2, that is, no mixing at all and total fluctuations. For fur-
ther information, we look at moments. The second moment of the concentration
(f(ξ) = ξ), useful for chemical reaction kinetics, is

〈f(1 − f)〉 =

∫

Ω

f(ξ)(1 − f(ξ))dν(ξ) . (3)

Eq. (3) gives information regarding the spread, or dispersion, of the measure ν.
A common normalization of (3), is the coefficient of variation for f ,

θ =
〈f(1− f)〉

〈f〉〈(1− f)〉
. (4)

Now we add a spatial and temporal variability to all of the above. The mea-
sure dνx,t(ξ) now depends on x, t. The added value in allowing such a Young
measure as a solution is that the local fluctuations are intrinsically associated
with the space time point x, t.

The measurement defined by the stochastic observable g(x, t, ξ) yields the
expected value 〈g(x, t, ·)〉 at the space time point x, t. We expect this function
of x, t to be a distribution, and so assuming that g is smooth (a test function) in
its dependence on x, t, the outcome of the measurement is

∫
〈g〉dxdt. Through

this formalism, we can apply differential operators to the state dν, and as we
have a governing PDE, we require dν to be a solution of this PDE.

In contrast to multiplication by a test function for a weak solution, the values
of the w* limit test function g multiply probabilities, while the state variable
values (density, momentum, concentration), etc., the usual units for the values
of the test function, now show up as an argument ξ of g. See Table 2.

A natural role for Young measures in a mathematical theory of the Euler
equation and their relation to the Kolmogorov turbulence theory is discussed
in [1] and references cited there. In this reference we assume bounds from Kol-
mogorov theory, which serve as a type of Sobelov inequality for the approxima-
tions, and derive strong convergence for solutions of the incompressible Navier-
Stokes equations (after passage to a subsequence) to weak solutions of the Euler
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Table 2. Comparison of weak solutions and Young measures in terms of test functions

weak solutions Young measures

g values multiply state variables probabilities
g arguments space, time x, t space, time, x, t; state values ξ
integration domain space-time space-time; state values
example g(x, t) multiplies g(x, t, ξ) multiplies

momentum, energy, concentration probability

equation limit, and w∗ convergence for passive scalars coupled to the Navier-
Stokes velocity field, to an Euler equation Young measure limit.

4 Verification for Stochastic (Young Measure)
Convergence

The point of view presented here – w∗ convergence to a Young measure solution
and the coarse grain and sample algorithm to support this type of convergence
numerically – needs verification and validation. Preliminary results in this di-
rection have been established [11,10,12,7]. To discuss convergence of measures,
we need to introduce function spaces for convergence. The PDFs themselves are
noisy, and convergence of the PDFs directly appear to require difficult levels
of mesh resolution. We introduced [10] for this purpose the indefinite integral
of the PDFs, namely the probability distribution functions, i.e., the cumulative
distribution functions (CDFs). These are better behaved and easier to analyze.
Standard function space norms on the CDFs can be used, such as L1 or the
Kolmogorov-Smirnov norm L∞.

We study nonlinear functions of the solution through analysis of second mo-
ments. The convergence properties of the second moments depend on the specific
variables which enter into the second moment; some converge nicely while others
would benefit from a larger statistical ensemble and/or further mesh refinement.

W ∗ convergence assumes an integration both over the solution state vari-
ables and over space and time. It applies to nonlinear functions of the solution.
The idea of stochastic convergence is naturally appealing to workers versed in
turbulence modeling. It is, however, a point of view which has not had extensive
study in the numerical analysis literature, probably due to the requirements or
perceived requirements for mesh resolution and the known limits of practicality
for DNS simulations of many realistic problems. For this reason, it is of con-
siderable interest to document exactly what is needed to achieve exactly which
levels of convergence in exactly which topology.

Here we investigate multiple realizations of these ideas, in that the tradeoffs
and issues related to stochastic convergence appear not to be well documented
in the numerical analysis literature. We study integrated convergence through
an L1 norm (relative to integration both in solution state variables and over
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space-time) for the CDFs. We see that the L1 norm for spatial integration is
preferred to an L∞ norm, and that this choice for the CDFs appears to be
showing convergence. Additional mesh refinement, which we anticipate in the
future as a result of increased computing power, will clarify this property.

We also explore the size of the supercell used to define the PDFs and CDFs.
This size defines a tradeoff between enhanced statistical convergence and the
quality of the mesh (supercell mesh) resolution. The L1 norm convergence is
enhanced with larger supercells. We study convergence of the PDFs directly. The
PDFs do not show convergence in the L1 norm with present levels of numerical
and statistical resolution, but the trend of results suggests that convergence is
possible with further mesh refinement.

4.1 Convergence of Second Moments

Here we show the convergence under mesh refinement of the second moments
for species concentration and velocities, two quantities of interest in a misci-
ble Rayleigh-Taylor experiment [21]. Since the quantities we report were not
measured experimentally, this study is verification only, not validation. A re-
lated simulation study [9] includes comparison to the water channel experiments
[15,16], in which the second moments were measured, and thus for which vali-
dation was studied.

It is commonly believed (and observed in numerical studies) that fluctuating
quantities obey a type of Kolmogorov scaling law. This property, if correct, im-
plies that the fluctuations are represented by a convergent integral, and should
exhibit convergence under mesh refinement. Thus the convergence we report here
should not be a surprise. Still, our results provide new information with respect
to the level of refinement needed to observe convergent behavior. We gener-
ally observe satisfactory convergence through comparison between the medium
and finest of the three spatial grids considered here, and unsatisfactory (poor
agreement with the refined grid) properties for the coarsest grid. The limits at
late time encounter a varying loss of statistical resolution due to the diminished
number of statistically independent degrees of freedom at late time. The three
grids have a size 520 to 130 microns (4 to 8 to 16 cells per elementary initial
wave length). Of these, we have generally used the medium grid in our previous
simulations, while the coarse grid is commonly favored in RT studies [2]. All
second moments reported here represent mid plane values, i.e. a slice z = const
from the center of the mixing zone with t fixed, and are averaged over all x, y
values.

The second moments of concentration, normalized to define the molecular
mixing correlation θ = 〈f(1− f)〉/〈f〉〈1− f〉, were studied experimentally (dis-
tinct experiments, not reviewed here). Our value for θ ≈ 0.8 is consistent with
values obtained numerically in related problems by others. However, significantly
smaller θ values were observed in the similar fresh-salt water miscible experi-
ments [15,16]. Since these differences are observed even at very early times, we
can attribute the differences to initial conditions, specifically to the thickness of
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the initial diffusion layer. Fig. 2 displays numerical results for convergence of θ
which model experiment [21], #112, with the three grids.
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Fig. 2. Plot of the molecular mixing correlation, θ, vs. time for a numerical sim-
ulation of the experiment [21] #112. Three levels of grid refinement are shown:
∆x = 520, 260, 130µ. θ is evaluated at the mid plane value of z, as an average over all
of x, y.

We study the turbulent correlations of density with the z component of the
velocity, uz, in Fig. 3. This correlation is related to gradient diffusion models for
subscale turbulence models.

Conventionally, velocity fluctuations are studied using mass weighted aver-
ages, ṽ = 〈ρv〉/ρ, and as such serve to define the Reynolds stress

R = 〈ṽv〉 −
〈ṽṽ〉

ρ
. (5)

In Fig. 4 we display the simulated Reynolds stress values for [21] experiment
#112. The convergence properties for Rzz appear to be satisfactory (Fig. 4,
left). The medium and fine grid display a reasonable level of agreement, while
the coarse grid shows a significant discrepancy to the fine grid.

A sensitive comparison is that of Rxx to Ryy, see Fig. 4, right frame. These
quantities should be (statistically) identical, so that the solid and dashed curves
of the same mesh level family should coincide. This property holds at early but
not late time, with the period of agreement increasing under mesh resolution.
Moreover, the three curve families should show convergence under mesh refine-
ment, a property which is observed at least up to the time for coincidence of
Rxx and Ryy. The difficulty in the convergence of these quantities appears to be
related to the inherently small size of the correlations relative to the statistical
noise present in their evaluation and to the loss of statistical significance at late
time. As the solution progresses, the correlation length increases, an inherent
feature of RT mixing. See the vz gray scale plot at t = 50 in Fig. 5, right frame.
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Fig. 3. Plot of ρ′u′
z vs. time. Data from the Z midplane, averaged over all of x, y.

Thus at late time, the statistical averaging to define R is drawn from a reduced
number of independent degrees of freedom, introducing small sample effects into
these components of R at late time.

Similar behavior is observed for Rxz and Ryz, see Fig. 5. Due to the ro-
tational symmetry of the statistical formulation, in the case of an infinite x, y
domain, these components should be zero, and any non-zero value is a finite
size effect in the statistical sampling. There is satisfactory agreement with these
two quantities between each other and with zero, up to a time which depends
on the mesh. Because the quantities are sensitive to the sign of vz statistically,
they have enhanced randomness and decreased convergence properties relative
to Rxx and Ryy; they possibly also show small sample size effects at late time.

1 1 1 1 1
1

1

1

1

2 2 2
2

2

2 2 2 2

3 3 3
3

3

3
3 3

time (ms)

R
ey

no
ld

s
st

re
ss

0 10 20 30 40 50 60 70 80
0

0.002

0.004

0.006

0.008

Rzz 520 micron
Rzz 260 micron
Rzz 130 micron

1
2
3

1 1 1 1
1

1

1

1 1

2 2 2
2

2

2
2

2

2

3 3

3 3
3

3

3 3

1 1 1 1 1
1 1 1 1

2 2
2

2 2 2
2 2

3 3

3 3
3

3 3
3

time (ms)

R
ey

no
ld

s
st

re
ss

0 10 20 30 40 50 60 70 80
0

0.0004

0.0008

0.0012

0.0016

Rxx 520 micron
Rxx 260 micron
Rxx 130 micron
Ryy 520 micron
Ryy 260 micron
Ryy 130 micron

1
2
3
1
2
3

Fig. 4. Plot of Reynolds stress Rzz (left) and Rxx, Ryy (right) vs. time.



226 T. Kaman, R. Kaufman, J. Glimm, D.H. Sharp

1 1 1 1
1

1

1

2 2 2 2 2 2

2

3 3 3
3

3

3
3

1 1 1 1 1
1

1
2 2 2 2 2 2

2
3 3 3 3

3
3

3

time (ms)

R
ey

no
ld

s
st

re
ss

0 10 20 30 40 50 60
-0.0005

0

0.0005

0.001

Rxz 520 micron
Rxz 260 micron
Rxz 130 micron
Ryz 520 micron
Ryz 260 micron
Ryz 130 micron

1
2
3
1
2
3

Fig. 5. Left: Plot of Reynolds stress Rxz, Ryz vs. time. Plotting time is restricted to a
maximum of t = 60 as discussed in the text. Right: Plot of vz (fine grid, t = 50) in the
midplane.

4.2 Convergence of PDFs and CDFs

To define w∗ convergence, we need to partition the simulation resolution into re-
sources assigned to the conflicting objectives of spatial resolution and statistical
resolution. We consider again the midplane z = const and t = const, and par-
tition the x, y plane into supercells. We consider several values for the supercell
grid, but show detailed results for an 8× 2 supercell grid. Here the coarsest grid
has for each supercell a resolution 9 × 6 with a z resolution of a single cell. For
the medium and fine grids, the supercell partition is unchanged, but the number
of cells in each direction increases by factors of 2 and 4.

For each supercell, we bin the concentration values into 5 bins, and count
the number of values lying in each bin, to obtain a probability. In principle,
the number of bins is another parameter in the analysis, variations in which are
not explored here. The result of this exercise is an 8 × 2 array of PDFs, each
represented in the form of a bar graph. The array is a graphical presentation of
the Young measure at the fixed z, t value. See Fig. 6. From this array of PDFs, we
can observe some level of coherence or continuity in the spatial arrangement of
the PDFs, in that the central supercells have a strong heavy fluid concentration,
while near the top and bottom, there is more of a mixed cell concentration.

Next we study mesh convergence of this 8× 2 array of PDFs and CDFs. At
the latest time completed for the fine grid, we compare the PDFs and CDFs on
the coarse to fine and medium to fine grids. The comparison is to compute the
L1 norm of the pairwise differences for each of the 8× 2 PDFs or CDFs. These
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Fig. 6. Spatial array of heavy fluid concentrations at t = 50, for z in the midplane, as
PDFs (bar graphs) and as CDFs (line graphs), Left: Medium grid. Right: Fine Grid.

differences yield an 8× 2 array of norms, i.e. numbers, which is plotted in gray
scale in Fig. 7.

The main results of this paper, namely the PDF and CDF convergence prop-
erties, are presented in Fig. 7. This data is further simplified by use of global
norms. With an L1 norm of the differences of the PDFs or CDFs for concen-
trations in each supercell, we consider both the L1 and L∞ norms relative to
x, y variables. With the convergence properties thus reduced to a single number,
we next explore the consequence of varying the definitions used for convergence.
These are (a) the mesh, (b) PDF vs. CDF, (c) L1 vs. L∞ for a spatial norm and
(d) the size of the supercell used to define the statistical PDF. See Table 3.

We see a convergence trend in all cases under mesh refinement, but useful
results for current meshes are limited to CDF convergence. Generally L1 norms
show better convergence, and generally there is a minimum size for the supercell
to obtain useful convergence. Since our convergence properties are documented
for the medium grid (through comparison to the fine grid), we can speculate
that the errors at the fine grid level would be smaller and that some of the
above restrictions might be relaxed in this case.
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Fig. 7. Left: Plot of heavy fluid concentration at the midplane, t = 50. Medium grid
(left). Fine grid (right). Right: Spatial array of L1 norms of CDF mesh differences
for heavy fluid concentrations at the midplane. Coarse to fine (left). Medium to fine
(right).

Table 3. Summary norm comparison of convergence for heavy fluid concentration
PDFs and CDFs at fixed values of z, t. In each supercell, an L1 norm is applied to the
difference of the PDFs or CDFs; this x, y dependent set of norms is measured by an
L1 or L∞ norm. The larger supercell sizes, the last four columns of the table, cover
the entire y domain. In this case, the space-time localization of the PDFs/CDFs are
in x, z, t only. We observe convergence for CDFs; while the PDF error is decreasing,
further refinement will be needed for usefully converged PDF errors. We see that a
coarsening of the supercell resolution (increase of the supercell size) to 18 × 12 coarse
grid cells per supercell is needed to obtain single digit convergence errors.

coarse grid supercell size 9× 6× 1 18× 12× 1 36× 12× 1
mesh comparison L1 norm L∞ norm L1 norm L∞ norm L1 norm L∞ norm

CDFs: coarse to fine 0.26 0.98 0.16 0.48 0.15 0.39
CDFs: medium to fine 0.18 0.54 0.08 0.16 0.03 0.10
PDFs: coarse to fine 0.93 4.89 0.59 2.40 0.54 1.98
PDFs: medium to fine 0.64 2.66 0.30 0.82 0.15 0.52
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5 Turbulent Combustion

Here we explain a primary rationale for our approach to convergence based on
fluctuations, PDFs and Young measures. The stochastic convergence to a Young
measure is certainly an increase in the complexity of the intellectual formalism
in contrast to a more conventional view of convergence to weak solutions.

A simple rationale for the more complicated approach is that pointwise con-
vergence to a weak solution generally fails in turbulent flows. New structures
emerge with each new level of mesh refinement and the detailed (pointwise) flow
properties are statistically unstable and in fact not observed to converge. Rather,
statistical measures of the solutions, of a nature that an experimentalist would
call reproducible, are used for convergence studies and these do generally dis-
play convergence. Thus we believe that our point of view finds roots in common
practices for turbulent study.

In the case of reactive flow (or more generally of a nonlinear process applied to
the flow), the stochastic convergence displays its power. Convergence of averages
is not usable in a study of nonlinear functions, which require an independent
convergence treatment. The LES formulation, moreover, is based on (grid cell or
filter) averages. Thus the primitive quantities of an LES simulation cannot be
used reliably if a nonlinear process (such as combustion) occurs in the fluid.

The conventional cure for LES turbulent combustion is a model of the flame
structure and an assumption that the flame follows a steady state path in
concentration-temperature space, with the partially burned state parametrized
through a reaction progress variable [18]. This assumption leads to a model,
called a flamelet model, imposed on the normal turbulent and mixing mod-
els. The approach adopted here, in contrast, allows direct computation of the
chemistry of a turbulent flame in an LES framework, without the use of (flame
structure) models. This approach is called finite rate chemistry. Conventionally,
finite rate chemistry is possible for DNS only and the extension to LES is a
major benefit derived from the stochastic convergence ideas advanced here.

Preliminary results are presented in [9] and will not be reviewed here.
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DISCUSSION

Speaker: James Glimm

Bill Oberkampf : You have presented several new ideas in both V&V as well
as UQ that are very innovative. I have two questions. What advantages do you
see in considering temporal and statistical convergence of PDF’s of quantities of
interest, as opposed to convergence of time averaged quantities at a point?

James Glimm : See Sec. 5.

Bill Oberkampf : When you examine mesh and temporal convergence in LES
simulations you are merging changing sub-grid scales (resulting in changes in the
math model) and changing numerical solution error. Since these are very different
sources of uncertainty, what are your ideas for separating these uncertainties?

James Glimm : This is an excellent and deep question, whose answer is con-
text dependent. For the case of turbulence models, we will address this issue in a
separate publication (manuscript in preparation). Briefly, and for turbulent mix-
ing, the SGS turbulent terms to be added to the Navier Stokes equations have a
formulation in terms of gradients of primitive solution variables, if the dynamic
subgrid models [14] are used. For this closure, convergence of the turbulence
SGS model terms is a numerical analysis issue, as is already defined from the
perspective of physics and modeling. Verification and validation of these models
(a much studied topic) should be addressed in each separate simulation or flow
regime. See for example, Sec. 4.
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