N
N

N

HAL

open science

Role Mining under Role-Usage Cardinality Constraint
John C. John, Shamik Sural, Vijayalakshmi Atluri, Jaideep S. Vaidya

» To cite this version:

John C. John, Shamik Sural, Vijayalakshmi Atluri, Jaideep S. Vaidya.
Usage Cardinality Constraint. 27th Information Security and Privacy Conference (SEC), Jun 2012,

Heraklion, Crete, Greece. pp.150-161, 10.1007/978-3-642-30436-1_13 . hal-01518246

HAL Id: hal-01518246
https://inria.hal.science/hal-01518246

Submitted on 4 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Role Mining under Role-

https://inria.hal.science/hal-01518246
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Role Mining under Role-Usage Cardinality
Constraint

John C. John!, Shamik Sural!, Vijayalakshmi Atluri?, and Jaideep S. Vaidya?

'School of Information Technology
Indian Institute of Technology, Kharagpur, India
{johnj,shamik}@sit.iitkgp.ernet.in
2MSIS Department, Rutgers University, USA
{atluri@cimic, jsvaidya@rbs}.rutgers.edu

Abstract. With the emergence of Role Based Access Control (RBAC)
as the de facto access control model, organizations can now implement
and manage many high level security policies. As a means of migration
from traditional access control systems to RBAC, different role mining
algorithms have been proposed in recent years for finding a minimal set of
roles from existing user-permission assignments. While determining such
roles, it is often required that certain security objectives are satisfied. A
common goal is to enforce the role-usage cardinality constraint, which
limits the maximum number of roles any user can have. In this paper, we
propose two alternative approaches for role mining with an upper bound
on the number of roles that can be assigned to each user, and validate
their performance with benchmark data sets.

Keywords: Role Based Access Control, Constrained Role Mining, Boolean
Matrix Decomposition

1 Introduction

In traditional access control mechanisms, a user can access a resource if he has
been given appropriate permission on that resource. These user permissions can
be represented as a matrix, called User to Permission Assignment (UPA), where
the value in each cell (1 or 0) indicates whether a user has the permission or
not. In a typical organization with tens of thousands of users and hundreds
of thousands of permissions, the size of the UPA matrix could be quite large,
making security administration increasingly difficult.

To alleviate the burden of security administration, organizations are migrat-
ing to an alternative access control mechanism known as Role Based Access
Control (RBAC) [11,12]. In RBAC, users obtain permissions by virtue of being
assigned to roles. A role may be assigned to multiple users. Since the number of
roles is orders of magnitude lower than the number of users, RBAC significantly
reduces security administration overhead.

For implementing RBAC in an organization currently using traditional UPA
based access control, suitable roles have to be formulated. This process of for-
mulation of roles is known as Role Engineering [8]. Generally there are two

John C. John et. al.

approaches to role engineering: top down and bottom up. In the top down ap-
proach, business processes are initially divided into independent functional units
called job functions. Roles are assigned to these job functions by associating the
required permissions. Since the usual number of business processes, job functions
and users is quite large, real life implementation of top down approach happens
to be difficult, error prone and not quite cost effective. On the other hand, bot-
tom up approaches use the existing user permission assignments. From the UPA,
roles with corresponding permissions are derived and users are assigned to these
roles. Two binary matrices UA (User to Role Assignment) and PA (Permission
to Role Assignment) are thus formed. UA represents which users belong to which
roles, and PA represents which permissions are contained in which roles. It is
intuitively obvious that the bottom up approach can be conveniently automated.
Such an automated procedure for deriving roles from a given UPA matrix, and
thereby forming the UA and PA matrices is known as role mining [1,13].

While there could be many possible decompositions of a given UPA matrix
into UA and PA matrices, a useful notion is to obtain a decomposition that
minimizes the number of roles, which is the number of columns in the UA matrix
and equivalently the number of rows in the PA matrix. This is known as the
basic Role Mining Problem (RMP) [1]. RMP is an optimization problem and its
decision version has been shown to be NP-Complete.

An important feature of any RBAC system is the ability to impose various
constraints [11,12]. The constraints help to express the organizational security
policy, thereby achieving desired security objectives. In many situations, a re-
striction is imposed on the maximum number of roles that can be played by any
user, either due to security restrictions or due to balanced work distribution.
We denote this as the role-usage cardinality constraint. Since the role mining
process is expected to generate organizational roles and corresponding user as-
signments in an automated way, it is imperative that such a constraint be taken
into consideration while mining the roles from a given UPA matrix. Further,
from a security administration point of view also, it makes sense to let users
achieve their requisite permission through lower number of roles. However, none
of the existing work on role mining addresses this issue.

In this paper, we propose two alternative approaches for considering role-
usage cardinality constraints while mining the roles. The first approach, called
the Role Priority based Approach (RPA), as the name suggests, first prioritizes
the roles based on their size (i.e., number of permissions within the role) and
then limits the number of roles assigned to a user using this priority order. The
second approach, called the Coverage of Permissions based Approach (CPA)
chooses roles by iteratively picking the role with the largest number of permis-
sions that are not yet assigned to that user by any other role, and then imposes
the role-usage cardinality constraint. Since both these approaches use different
greedy strategies, we have implemented and validated both RPA and CPA using
benchmark data sets; our results show that RPA fares significantly better than
CPA.

Role Mining under Role-Usage Cardinality Constraint

The rest of this paper is organized as follows. In Section 2, we present our pro-
posed approaches with detailed algorithms. In Section 3, the results of running
the two proposed algorithms on different datasets are presented and analyzed. In
Section 4, we review the related work on role mining. Finally, Section 5 concludes
this paper and provides directions for future work.

2 Role Mining with Role-usage Cardinality Constraints

In this section, we present our two proposed approaches: the Role Priority based
Approach (RPA) and Coverage of Permissions based Approach (CPA), which
mine the minimum set of roles from a UPA matrix under the constraint that the
number of roles assigned to any user cannot exceed a specified upper bound.

We start off with some notation. First, as discussed earlier, UA, PA and UPA
are all boolean matrices. Assume that there are n users and m permissions, with
g candidate roles. Thus, UA is n x ¢, PAis ¢ x m and UPA is n x m. Let ¢;;
represent the UA matrix entry for user ¢ (i = 1...n) and role j (j = 1...q),
and let rj; represent the PA matrix entry for role j (j =1...¢) and permission
t (t = 1...m). Finally, let z;; represent the UPA matrix entry for user 7 and
permission t. Then, for any correct decomposition, the following conditions must
be met [2]: 2321 ¢ijrje > 1 for z;; = 1 and 23:1 ¢ijrje = 0 for x; = 0.

Given the above, the role-usage cardinality constraint can be represented as
Z?:l ¢ij < mazxcount, forl <i < n.

2.1 Role Priority based Approach (RPA)

The Role Priority based approach prioritizes roles by their size (i.e., the number
of permissions in the role). Now, roles are assigned to each user by picking the
roles whose permissions are a subset of the permissions required by that user, and
are not redundant (i.e., the permission has not already been assigned through
another prior-picked role). While any set of candidate roles could be used, in this
paper, we use the candidate roles generated from the UPA by the greedy strategy
for optimal boolean matrix decomposition (referred to as OBMD) proposed by
Liu et al. [2]. Note that OBMD can produce redundant roles for some of the
users. A role r is considered redundant (for a user ¢) if the permissions of r form
a subset of the permissions of one or more other roles of the same user i. This
is because the greedy approach only eliminates those candidate roles which are
not used by any of the users. OBMD does not check the redundancy of roles for
each user. Therefore, we eliminate such redundant roles in the candidate roles
generated by OBMD. Also, the roles generated by Fast Miner [5], which OBMD
uses as base, do not cover the permissions which are exclusively assigned to a
user. To cover these permissions, separate roles are generated. The roles are then
prioritized based on the number of permissions contained in each role. To restrict
the number of roles of each user upto the specified upper bound, the roles are
selected in the order of their priority. If all of the permissions of the user are
not covered after selecting mazxcount — 1 roles, where maxcount is the specified

John C. John et. al.

upper bound, the remaining uncovered permissions are formed into a separate
role.

These steps are summarized in Algorithm 1. Formation of initial UA matrix
and the associated PA matrix using OBMD is done in Line 1. Then, a Role
Priority (RP) list is created in which roles are maintained in the descending
order of the number of permissions associated with each role (Line 2). The
variable mazcount denotes the maximum number of roles allowed for a user
and rolecount denotes the number of roles so far assigned to a user. In lines
4-12, for each user, the roles are selected one by one as per the order in the RP
list until all permissions of the user are covered or until the rolecount becomes
maxcount — 1. If the permissions of the selected role form a subset of already
covered permissions of the user, they are redundant and are eliminated during
the process (Lines 7-8). If the rolecount value reaches maxcount — 1 and all the
permissions of the user are not yet covered, a new role r is generated comprising
of all the uncovered permissions (if it is not an existing role; otherwise, uses the
existing role r) and includes r in the PA matrix, also setting the corresponding
cir cell of the UA matrix to 1 (Lines 13-23).

Table 1. Sample input data set (in the form of UPA matrix)

pl p2 p3 p4 p5
ulll 0 0 0 1
w0 0110
w3l 01 1 0
w4t 11 1 1
ubl0 0 1 1 0
wblt 1 0 0 0

Table 2. Initial UA and PA matrices generated by Fast Miner

rl r2 r3 r4 r5
ul|cii1 ci2 c13 c14 C15

|p1 p2 p3 p4 p5
rlIf1. 0 0 0 O

u2 C21 C22 C23 C24 C25

u3|c31 €32 €33 C34 C35 2110001
u4|ca1 Ca2 C43 Caq Ca5 3100110
ub|Cs1 C52 C53 Cs54 Cs5 el 10000

b1 0 1 1 0

ub|ce1 Ce2 Co3 Cea Co5

Illustrative Example We now consider an illustrative example given in Table
1 for explaining both the OBMD and RPA algorithms. OBMD employs the Fast
Miner algorithm to generate ¢ number of candidate roles and to form the binary

Role Mining under Role-Usage Cardinality Constraint

Algorithm 1 Role Priority based Algorithm (RPA)

1: Use the OBMD algorithm to form the decomposition into UA and PA matrices
2: Prepare Role Priority (RP) list by ordering the roles in descending order of the

number of permissions in the role

3: for each user i do

4: Set rolecover = null and rolecount = 0
5: while rolecover does not contain all permissions of ¢ and rolecount %
maxcount — 1 do
6: Find the next role, k, in the RP list whose permissions are a subset of the
permissions of user 7
7 if k C rolecover then
8: Set ¢ir =0
9: else
10: rolecover = rolecoverU{permissions of k} and Set rolecount = rolecount+
1
11: end if
12: end while
13: Set D = Permissions of ¢ - union of permissions of all roles of ¢
14: if D = ¢ then
15: Set all remaining roles of 7 to be 0
16: else
17: if D = existing role 7 in the PA matrix then
18: Set c¢i» = 1 and Set all remaining roles of ¢ to 0
19: end if
20: else
21: Generate a new role r with all permissions of D
22: Include 7 in the PA and UA matrices(set ¢;» = 1) and Set all remaining roles
of i to 0
23: end if
24: end for

Table 3. Final UA and PA matrices obtained from OBMD

rl r2r3 r4d
ulll 100 |p1 p2 p3 p4 p5
w20 010 rlf1 0 0 0 O
wfl 010 121 0001
ud[l 111 30 01 10
uwsl0 010 14l 1000
u6jl 0 0 1

John C. John et. al.

PA matrix. The initial UA and PA matrices consisting of five candidate roles
generated through Fast Miner are shown in Table 2.

The UA matrix is formed by selecting appropriate roles from the PA matrix
based on the count of the conditions being satisfied while selecting a role. Some
of the candidate roles which are not used by any of the users can finally be
rejected, thereby reducing the total number of roles. The final matrices after
applying the appropriate conditions as mentioned above are given in Table 3.

Assume the value of the cardinality constraint (mazcount) is 2. In Step 1, the
OBMD algorithm gives an output as shown in Table 3. The RP list is prepared
as {r2, r3, r4, r1}. RPA then selects the appropriate roles from the list for each
user. For user ul, role r2 is selected. With this role all permissions of ul are
covered. Similarly, role r3 is found for user u2. The first role selected for user u3
is role 3. Now the value of rolecount becomes 1 which is equal to mazcount —1.
It can be observed that the remaining set of uncovered permissions is the same
as the existing role r1, and hence, r1 is selected. For user u4, role r2 is initially
selected. Again the value of rolecount becomes equal to mazcount — 1. Now the
uncovered permissions are not the same as any existing role and so a new role 5
is created with all the uncovered permissions. For user u5, the algorithm initially
selects role r4. With this role all permissions of the user are covered. Thus, the
algorithm finds a total of 5 roles for a maxzcount value of 2. The final UA and
PA matrices are shown in Table 4.

It may be noted that the OBMD algorithm generates four roles as shown in
Table 3. But user u4 has four roles which exceeds maxzcount. The decomposition
done by RPA restricts the number of roles of users to the specified upper bound.
The total number of roles is increased to five to satisfy this constraint.

Table 4. UA and PA matrices generated by RPA

rlr2r3rdrd |p1 2 p3 pd p5
wll0 1 0 0 0

T 0 0 0 0
w20 0100

211 000 1
uwdll 0100

300110
wilo 10 0 1

41 100 0
us0.0-1-00 50 1 110
wblo 0 0 1 0

2.2 Coverage of Permissions based Approach (CPA)

The second approach, called the Coverage of Permissions based Approach (CPA),
selects roles based on the number of permissions that are as yet unassigned to
a user, while still enforcing the cardinality constraint. Fast Miner is employed
to form the initial set of candidate roles, similar to that shown in Table 2.
Effectively, it works on decompositions containing all candidate roles. In order

Role Mining under Role-Usage Cardinality Constraint

to limit the number of roles of each user upto the specified bound, the algorithm
keeps on finding roles which contain the largest number of uncovered permissions
(permissions not yet assigned through any role) for the user. If all permissions
of the user are not covered after selecting maxcount — 1 roles, the remaining
uncovered permissions are grouped into a separate role. The redundant roles are
also eliminated during the process.

The steps are summarized in Algorithm 2. Fast Miner is used to generate
q candidate roles and form the initial PA matrix and the UA matrix in Line
1. Next, c;; values of the UA matrix are set to 0 according to the condition
> _1 cirje = 0 (Line 2). For each user i, in each step, the algorithm finds a role
which covers the maximum number of uncovered permissions of ¢ from among
all the roles r where ¢;- = 1. The process is repeated until all the permissions
of the user are covered or rolecount becomes mazcount — 1 (Lines 4-8). If the
rolecount is maxcount — 1 and all the permissions of user i are not yet covered,
a new role r is generated with the uncovered permissions (if it is not an existing
role; otherwise, the existing role r is used). Finally, r is included in the PA matrix
and the corresponding ¢;, of the UA matrix is set to 1 (Lines 9-20).

Algorithm 2 Coverage of Permissions based Algorithm (CPA)

1: Generate candidate roles by taking intersection of the permissions of every pair of
users. Form PA matrix and associated UA matrix. (Fast Miner approach)

2: Set the required cells of ¢;; to 0 as per 25:1 cijrye = 0 for all z =0

3: for each user ¢ do

4: Set rolecover = null and rolecount = 0
5. while rolecover does not contain all permissions of ¢ and rolecount #
mazcount — 1 do
6: Find the role k that contains the maximum number of permissions of ¢ which
are not yet contained in rolecover, while not adding any unallowed permissions
to 4
T Set cir to be 1, Set rolecover = rolecover U {permissions of k} and Set

rolecount = rolecount + 1
8: end while

9: Set D = Permissions of ¢ - union of permissions of all roles of ¢
10: if D = ¢ then

11: Set all remaining roles of i to be 0

12: else

13: if D = existing role r in the PA matrix then

14: Set ci» = 1 and Set all remaining roles of ¢ to 0
15: end if

16: else

17: Generate a new role r with all permissions of d
18: Include r in the PA and UA matrices

19: Set cir = 1 and Set all remaining roles of ¢ to 0
20: end if

21: end for

John C. John et. al.

Illustrative Example Consider again the same dataset given in Table 1 and
assume the value of cardinality constraint to be 2. The initial decomposition is
as given in Table 2. In the next step, the CPA algorithm finds the cells of UA
matrix which are to be set to 0 using the condition 2321 cijrj+ = 0. Then, for
each user, it finds roles which cover maximum number of uncovered permissions.
User ul has two roles from which the algorithm selects role r2 since it covers
more permissions of u1 as compared to role r1 and with that role all permissions
of ul are covered. So it sets the remaining cells of u1 in the UA matrix to 0.
Similarly, user u2 gets role 3 and user u3 gets role r5. User u4 is assigned to
role r5 initially. Now the rolecount becomes equal to maxzcount — 1. So a new
role 76 is formed with all uncovered permissions. The new role is included in the
UA matrix and cg; is set to 1. Then user ub gets role r3 and finally user u6 gets
role r4. The unused role r1 is removed. The algorithm completes execution after
mining five roles. The final decomposition matrices are shown in Table 5 (after
renaming roles from 72 to r6 as r1 to r5).

Table 5. UA and PA matrices generated by CPA

rlr2r3rdrb pl p2 p3 pd p5
ul{l 0 0 0 O

rli1 0 0 0 1
u2(0 1 0 0 O

20 01 1 0
u3l0 0 0 1 0

r3jl1 1 0 0 0
u4/0 0 0 1 1

4]l 0 1 1 0
us)0- 1000 50 10 0 1
u6l0 0 1 0 0

As is evident, from the above discussions, RPA and CPA use different greedy
choices. The output decompositions in the examples are also different. But the
number of roles obtained is the same in the two cases for the example dataset even
though the actual roles are different. In the next section, we give a comparative
performance of both these algorithms with benchmark datasets.

3 Experimental Results

Algorithms 1 (RPA) and 2(CPA) were executed on a number of datasets as listed
in Table 6. These are real-world datasets used to evaluate the work reported in
[9]. Table 6 also provides the sizes of these datasets in terms of the number of
users, number of unique permissions as well as the permission size, which is the
total number of permissions added over all users.

We plot the variation of the number of roles (y-axis) generated by RPA and
CPA with varying constraint value (x-axis). The roles discovered by both algo-
rithms satisfy the given constraint. The plots are shown in Figures 1 to 3.

Role Mining under Role-Usage Cardinality Constraint

Table 6. Data sets

Dataset |Users|Permissions|Total permission size
Healthcare|46 46 1,486

Domino |79 |231 730

EMEA 35 13,046 7,220

Firewall 1 {365 |709 31,951

Firewall 2 {325 [590 36,428

The number of roles generated by RPA is less than or equal to that of CPA
in all datasets. By observing the output for the datasets Healthcare and Firewall
2, it can be concluded that the number of generated roles decreases when the
value of the constraint increases. The number of roles generated by OBMD in
the Healthcare dataset is 17. But RPA generates only 15 roles when the value of
the constraint is greater than or equal to 2. When the constraint value is set to
1, it generates 18 roles. On the contrary, CPA gives 18 roles for all values of the
constraint. Similarly, for Firewall 2 dataset, OBMD generates 10 roles and RPA
produces the same number of roles when the constraint value remains greater
than or equal to 2. It generates 11 roles for a constraint value of 1. Here also
CPA generates 11 roles for all cases.

For the datasets Domino and EMEA, the reverse occurs. There the number
of roles generated shows a decrease when the value of the constraint decreases.
This appears to be contradictory. However, the reason is that the candidate roles
generated by the Fast Miner algorithm in those datasets do not contain roles
which produces optimum result. Also, presence of many exclusive permissions in
the dataset, results in increased number of roles. Such exclusive roles are not part
of the roles generated by Fast Miner. For the Domino dataset, OBMD produces
29 roles. However, the optimal number is 23, which is produced by both RPA
and CPA algorithms for the constraint value 1. Similarly for the EMEA dataset,
the number of roles generated by OBMD is 122 but the optimal number is 34
which is produced by both the proposed algorithms for the constraint value 1.
Thus, OBMD does not give optimal number of roles for these datasets. In both
of our approaches, when the value of the constraint is reduced and it approaches
a value of 1, many of the roles get merged with other roles to form a new role.
As a result, in these datasets, the algorithms give optimal result when the value
of the constraint is low. An improvement in the Fast Miner algorithm would give
a better candidate role generation.

For the Firewall 1 dataset, OBMD produces 75 roles. RPA gives the optimal
result for constraint values greater than or equal to 4 and the minimum number
of roles generated by this algorithm is 72. When the value of the constraint is
less than 4, the number of roles generated by RPA increases and for a value of 1
it produces the highest number of roles, which is 90. However, for this dataset,
CPA never finds an optimal result. It produces minimum number of roles (90
roles) for the constraint value 1.

John C. John et. al.

— —RPA

CPA — —RPA

CPA

32

T 30
229
E 28
o 17
L
£ 25
15 =
22
14 + T T T T T T T T T | 21

0 2 4 6 8 10 12 14 16 18 20 20 e

Numberof roles
I
N
I

0 2z 4 6 8 10 12 14 16 18 20
Maximum number of roles per user Maximum number of roles per user

(a) (b)

Fig. 1. Number of roles generated for (a) Healthcare dataset and (b) Domino dataset

— —RPA CPA — —RPA CPA
125 110 -
115 -
208 J 105 -
» 95 - 100 4
£ a5 2
[1 g 95
e 75 -
2 s 2 90
'E 55 4 2
3 45 - E & \
35 - Z g0
25 75 \
15 ey
s —— 7T 70 ——————
0 2z 4 6 & 10 12 14 16 18 20 0 2z 4 5 8 10 12 14 16 18 20
Maximum number of roles per user Maximum number of roles per user

(a) (b)

Fig. 2. Number of roles generated for (a) EMEA dataset and (b) Firewall 1 dataset

— —RPA CPA

12 4
3

11 A
A \
s \
2
3 \
=2 10 A
z

S T T T T T T T T T d

o 2 4 6 8 10 12 14 16 18 20
Maximum number of roles per user

Fig. 3. Number of roles generated for Firewall 2 dataset

Role Mining under Role-Usage Cardinality Constraint

4 Related Work

Several attempts have been made so far for bottom-up identification of roles
in RBAC. Schlegelmilch and Steffens [4] introduced a role mining tool named
ORCA which forms a hierarchy of permission clusters. A subset enumeration
technique is used in [5]. After clustering the users having similar permissions, it
intersects all possible combinations of user’s permissions and generates a set of
candidate roles. These roles are then prioritized based on the number of users
sharing the roles. The work in [1] maps RMP into an equivalent problem — the
Largest Uncovered Tile Mining (LUTM) problem, which uses the concept of
database tiling [6]. Generating minimum number of roles in RMP is equivalent
to finding the minimum number of tiles in the tiling problem. Zhang et al.
[8] use a graph optimization technique to form role hierarchies. In [2], Lu et al.
model the problem into optimal Boolean matrix decomposition problem. In order
to generate practical roles, [7] ignores some permission assignments. Authors
of [9] proposed an algorithm which uses bipartite graph formulation to find
approximately minimum number of roles by forming biclique cover of edges of
the graph.

Little work has been done on RMP with cardinality constraints. Kumar et
al. [10] considered RMP with a constraint which limits the maximum number
of permissions that a role can have. They use a combination of clustering and
constrained permission set mining to generate roles. Recently, Hingankar and
Sural [3] have worked towards role mining with a constraint on the maximum
number of users in a role. They use the biclique cover approach to arrive at the
solution. However, there is no available literature on RBAC role mining with an
upper bound on the number of roles a user can have.

5 Conclusions and Future Direction

In this paper, we consider the problem of constrained role mining, by enforcing
the limit on the number of roles a user can have. We have presented two dif-
ferent approaches to enforce the role-usage cardinality constraint. Variation in
the number of generated roles by varying the value of the constraint has been
studied on real-world datasets for both these approaches.

Organizations may impose restriction on multiple RBAC parameters at the
same time. The parameters could be upper bounds on number of roles to a user,
number of permissions in a role, number of roles in a permission, etc. While
we consider a single constraint in this paper, the combined effect on the mining
process when many constraints are considered simultaneously needs be studied.
The work can be extended to find an optimal solution to the role mining problem
with such multiple constraints.

6 Acknowledgement

This work is partially supported by a research grant from the Department of Sci-
ence and Technology, Government of India, under Grant No. SR/S3/EECE/082/

John C. John et. al.

2007. The work of Atluri is supported in part by the National Science Foundation
under grant CNS-0746943.

References

1. Jaideep Vaidya, Vijayalakshmi Atluri and Qi Guo: The Role Mining Problem: Find-
ing a Minimal Descriptive Set of Roles. In: Proceedings of the ACM Symposium on
Access Control Models and Technologies (SACMAT), pp. 175-184. (2007)

2. Haibing Lu, Jaideep Vaidya and Vijayalakshmi Atluri: Optimal Boolean Matrix
Decomposition: Application to Role Engineering. In: Proceedings of the IEEE 24th
International Conference on Data Engineering, pp. 297-306. (2008)

3. Manisha Hingankar and Shamik Sural : Towards Role Mining with Restricted User-
Role Assignment. In: Proceedings of the 2nd International Conference on Wireless
Communication, Vehicular Technology, Information Theory and Aerospace Elec-
tronic Systems Technology (Wireless VITAE), pp. 1 -5. (2011)

4. Schlegelmilch Jiirgen and Steffens Ulrike: Role mining with ORCA. In: Proceedings
of the tenth ACM symposium on Access control models and technologies, pp. 168
176. (2005)

5. Jaideep Vaidya, Vijayalakshmi Atluri and Janice Warner: Role Miner: Mining Roles
using Subset Enumeration. In: Proceedings of the 13th ACM conference on Com-
puter and communications security, pp. 144-153. (2006)

6. Floris Geerts, Bart Goethals and Taneli Mielikinen: Tiling Databases. In: Discovery
Science, pp. 278-289. Springer (2004)

7. Dana Zhang, Ramamohanarao Kotagiri and Ebringer Tim and Yann Trevor: Per-
mission Set Mining: Discovering Practical and Useful Roles. In: Computer Security
Applications Conference, ACSAC , pp. 247-256. (2008)

8. Dana Zhang, Ramamohanarao Kotagiri and Ebringer Tim: Role Engineering using
Graph Optimization. In: Proceedings of the 12th ACM symposium on Access control
models and technologies, pp. 139-144. (2007)

9. Ene Alina, Horne William, Milosavljevic Nikola, Rao Prasad, Schreiber Robert and
Tarjan Robert E.: Fast Exact and Heuristic Methods for Role Minimization Prob-
lems. In: Proceedings of the 13th ACM Symposium on Access control Models and
Technologies, pp. 1-10. (2008)

10. Ravi Kumar, Shamik Sural and Arobinda Gupta: Mining RBAC Roles under Car-
dinality Constraint. In: Proceedings of the International Conference on Information
Systems Security. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
6503, pp. 171-185 (2010)

11. Ravi S. Sandhu , Edward J. Coyne , Hal L. Feinstein and Charles E. Youman: Role
Based Access Control Models. IEEE Computer Society Press, pp. 38-47 (1996)

12. David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn and Ra-
maswamy Chandramouli: Proposed NIST Standard for Role-Based Access Control.
In: ACM Transactions on Information and System Security 4(3) (2001)

13. Tan Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa Bertino,
Seraphin B. Calo, Jorge Lobo: Mining Roles with Multiple Objectives. In: ACM
Transactions on Information and System Security 13(4), 36 (2010)

