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Yolanta Beres, Jonathan Griffin
HP Labs, Bristol, UK

{yolanta.beres, jonathan.griffin} Ghp.com

Abstract. Patch management of networks is essential to mitigate the risks feoexploitation of vulnerabilities
through malware and other attacks, but by setting too rigoaquatching policy for network devices the ITwsec
rity team can also create burdens for IT operations or disngto the business. Different patch deployment
timelines could be adopted with the aim of reducing this dipea cost, but care must be taken not to substa
tially increase the risk of emergency disruption from potenkiplaits and attacks. In this paper we explore how
the IT security policy choices regarding patching timelines eamhde in terms of economically-basedidec
sions, in which the aim is to minimize the expected overall costs wrgheization from patching-related aétiv
ty. We introduce a simple cost function that takes into account cestsdd from disruption caused by planned
patching and from expected disruption caused by emergendyimz To explore the outcomes under different
patching policies we apply a systems modelling approach awdeMCarlo style simulations. The results from
the simulations show disruptions caused for a range of patch depibyimelines. These results together with
the cost function are then used to identify the optimal patchimglities under different threat environmenteo
ditions and taking into account the organization's risk tolerance.

1 I ntroduction

Security decisions often involve trade-offs: a security policy choice fitahizes time spent by the security team
might create burdens (cost) for IT operations or the business of@me main tasks faced by the security operations
team is vulnerability and patch management. The reasoning belglyithgmpatches to remove system vulnerabil
ties thereby reducing security risk is well understood. The longesystems stay unpatched the bigger the risk that
a vulnerability may be exploited by malicious attacks or fast spreadingameal However, applying patches usually
has many undesirable implications, mainly in terms of businesgti@ma. These disruptions are particularly high
when patching network devices such as routers and switchesspacially so in such highly network reliant env
ronments, as cloud infrastructures. Any time a piece of network equipis patched, there is a risk of something
going wrong: if the patch fails, or results in unexpected interactitmather devices or current configurations, the
disruptions caused can have significant impact on the busines$, rghes on the network infrastructure. Foee
ample, patching Cisco devices usually requires the replacement of the catepieteoperating system; this is very
different from the patching of Windows servers. After patching, it ceaklly turn out that the existing configur
tion does not work with the new OS version, or a routing protocoltneigth up being broken.

When setting their patching strategies, many organizations adopt regulaupdtth cycles, where the patches
are required to be deployed once within a set time period, be it witieinthree, or six months. Since patching a
tomation for network devices is currently still technically difficuthis time-bound schedule is used to plan and
allocate time periods for manually patching all necessary network dewittes the schedule. The chosen patching
schedule has to optimally address two objectives: minimize busineggtitins from planned patches and upgrades,
and minimize the time and the number of devices that remain exposedtieganpatched for a long time.

These two objectives present a conflict, however. To reduce the numblanoéd disruptions due to patching
the operations staff would prefer to adopt patching schedules that syg@n periods of time, as more time can be
spent on thoroughly testing each patch and also due to the fact that severed patghbe released by the vendor
when waiting longer and so several patches can be batched togetherlatiapghe same time, reducing the level

! Due to high variability of network device OS typesdalue to the fact that many patches require upgrafi®S, and thus might require lnu
tiple reboots, and possible re-configurations.



of disruption from patching. However, from a threat perspedtieelonger policy would increase the exposure of
network devices to potential exploits and attacks due to many devices remainegie for long periods.

In this paper we explore how IT security policy choices regardindhppatschedules for network equipment can
be made in terms of economically-based decisions, in which the amrimimize the expected overall cost to the
organization from patching-related activity. We apply a methodology thabinem methods from economies
specifically, cost and utility functiorstogether with simulations of the executable system model capturingnthe
derlying processes

First, we introduce a simple cost function that takes into account custged from disruption caused by
planned patching and from expected disruption by an emergeney arh exploit or malware emerges. We then
construct a system model of the patch management pegcessch is executed in the context of a stochastic model
of the threat environment. To gain insight into the actual netwatéh management processes, we have worked
with security teams and network operations staff across a couplegefdeganizations. In our model, we capture
the main attributes of this process, but include some simplifications ke tha model computationally feasible.
We also make assumptions about the characteristics of the threat enviropeudfit £0 network exploits andt-a
tacks, mostly based on historical (though sparse) data on netwdoikterper the past several years since 2004

Finally we perform the experimental simulations, and show how ckanghe patch deployment schedulés a
fect the planned and unplanned disruption levels. These results togithtre cost function are then used tg-su
gest the optimal patching schedules for different tolerance levels of disrgtibrisk. Since the threat enviro
ment is ever changing, we perform additional simulations to stewthe patching schedules should be adjusted
under worsening threat conditions.

Our paper is organized as follows. Section 2 describes the network patchitenprand introduces the cost
function. In section 3, we present the model, constructed to captupatch management process in the network
environment. Section 3 also describes how we model the external threat enviroimeaction 4, we describe
results and analysis from a set of simulation experiments based oartbtructed model and under the assumptions
of the introduced cost function. The analysis shows the changielg lef planned patching and emergency disru
tions under different patch deployment timelines, and suggests some optielatds for the certain emergency
tolerance level. Section 5 describes results from another set of experimerascvithging threat environment, and
looks at how this affects the optimal timeline choice. In section @iseriss the implications of our analysis and
some future work. Séion 7 reviews related work in this area. Our paper finishes with §ioaleeonclusions.

2 Disruption Trade-Offs

In this paper we examine two types of disruptions that sedediys dealing with vulnerability management across
network devices have to encounter:

1. Planned operational disruptions that are caused by the device downtirte mhiehing. These can range from
relatively short downtime due to device reboot to longer downtime whergatoh failed and requires re-
application or changes in the system configuration.

2. Unplanned disruptions that are caused by deployment of emergencdymescevhenever there is emergence of
exploit or malware. Even larger scale disruptions are encountered whestwhiglnis actually hit by attack that
exploits unpatched vulnerabilities. The cost of emergency procedureslishigher than the planned disruption
caused by patching. These emergency procedures could encompass expéctiied, or deployment of eme
gency workarounds. And so the savings in reduced operati@maption achieved with longer patch deplo
ment timelines have to be weighed against the potential increase these type of disruptio

2.1 Cost Function

Based on the two forms of business disruption ohiced above we define a cost function that is used to determine
the acceptable trade-offs when choosing the patch deployment schedules.
We use the following notation:

* CuatcniS the cost of applying a patch to a single device (or upgrading thd ©8evice), which for the purpose of
this paper is mainly the disruption caused to the business becadswitteeis offline and not usable;



® CemergencyS the cost of applying an expedited fix or a workaround to glesidevice in case of exploit or actual
breach/attack; this again is mainly the disruption caused to the busaessse the device is not usable;

* Pemergendt) iS the probability that an exploit will emerge during some tinterial [t,,t;], raising the need for an
emergency. This probability varies at different points in tinvehiret is the time elapsed from the vulnerability
disclosure. In section 3.1 we will choose a specific probability defusittion for our model of the threat énv
ronment.

Since an individual organization has hundreds or thousands ioeddhat might be vulnerable to the samé vu
nerability and require patching, the overall cost of an individual tagktohing is multiplied across the population
of all vulnerable devices, denoted as gewq

dpatch: Cpatchde%atched

We assume that the cost of applying a patch does not fluctuate significaotg diferent types of network
equipment or from one patch to another. We recognize that in sometltiasesa simplification as patch quality
may vary, and some network devices have a more critical role and cawséisraption when offline, but to make
our analysis and modeling generic rather than organization- ooxapécific we assume that downtime during
patch application is relatively similar across the vulnerable devices.

The cost of an emergency, however, is incurred only if achremaimminent due to the emergence of an exploit
or the detection of an actual attack, and so the emergency disrigoti@pendent on the number of vulnerable
(upatched) devices at the time of emergency, denoted as.dext). The meaning for the cost of the emergency
that we use in this paper does not take into account disruptions caubeddsyuial attacks on the unpatched devices
or the implications of more complex attacks that exploit vulnerabilities on the hepatevices. For the purpose of
our analysis we assume that the emergency disruption cost émmesmergency patching of network equipment
which happens when an exploit is known about, but before an actual tattaskplace (attacks are rare). The tesul
ing disruption is similar in kind to that caused by planned/operati@atehimg, but of much greater severity as the
operations and security teams have to rush to deploy patches or emenggkarounds across the remaining
upatched devices causing disruptions outside the agreed allowed downtiots pexd more severely impacting
organization’s business processes.

The arrival of an emergency event is modeled by the probability,a.(t). We define the disruption during
emergencies, fergency @S the expected value of emergency disruption across the unpatchidipof devices:

demergency_‘ Cemergency(devunpatcheét) pemergenc(/t) dt

Combining the two types of disruption together, the expectedabidisruption caused by vulnerability maeag
ment through patching is the patching cost plus the expected cost of ecgergen

D = dhatent Jemergeny

The cost of disruption from patching or in case of emergencyvi®wdly organization- and patch-specific, but
for our analysis we need to make some simplifications. We sayhthaidruption cost per device caused by eme
gency procedures is o times greater than the disruption caused by applying a patch. This alktesstate that:

Cemergency™ @ Cpatch

The actual value of is organizatiorspecific, and should be selected depending on organization’s tolerance level
for emergencies, including the procedures for the patch deployment escaldéplm;ment of workarounds, or
redundancies built into the network that might minimize the disruptiansedaby an actual attack.

By substituting this into previous equation we have:

D= Cpatch(de\{)atched+ aj.devunpatcheét) pemergenca) dt)

Since gaichis constant, the overall disruption cost depends mainly on the nuhtlevices requiring a patch and
the expected number of devices that remain unpatched at the time of aereayerg

This cost is incurred for each patch or batch of patches releaseé kgrttior, so if, for example, a vendexr
leases three patches in a year that apply across the same population of devicest D triples. In one year an
organization usually has to apply hundreds of patches across its v@y&tems and applications. For netwoek d
vices, the number of patches released by vendors is considerable smadlity,indans rather than in hundreds per
year, which is still quite a large number, considering that a typical largaiaegion might have hundreds or tho
sands of network devices.



2.2  Reducing the Cost of Disruption

The security team can reduce the cost of disruption by planningatisl deployment timelines and using patch
batching capabilities to bundle several patches together and apply them in onEstetample, by bundling two
patches together the administrator would cause half as much disruptiochadegae has to be touched onoe i
stead of twice. The number of patches that can be bundietidois dependent on the vendor’s patch release life-
cycle. In order to meet the deadlines set in the patch deployment policiesrinéstdtors would usually starpa
plying one patch across the first set of devices, and once anotheripattdased will batch it with the previous
patch and apply them together across the next set of devices.

Looking at our cost functions the aim of the batching of patchesréit@e the cost dpatch for each patchdsy r
ducing the number of devices that the patch has to be applied to individBglinncorporating the patch batching
effect for each patch, we can subtract from the total patchable populationicdsdthe population for which the
patch can be batched with the next or a superseding patch:

dpatch: Cpatch (de\{Jatched' de\batch_patch&i

We are making a simplification here by assuming that the disruption catwigedapplying the batch of patches is
the same as when applying a single patch. If the batch includes maplgx@atches, this might not be exactly the
case. However, it’s common within the network context that the next set of network patches is actually a full up-
grade that supersedes or includes any previous patches, and so the cplsirgf agnew upgrade is the same or is
increased only by small delta.

By choosing appropriate patch deployment deadlines that correlate withrvestch release schedules the aim
of the security team would be to increase the size of population l#Wgh parchea@nd thus achieve lower overall
patch disruption costs. If,gd:was the only cost within D the biggest reduction of cost woulevdiging for as
many patches of possible and applying them together.

The other cost within D, the cost of emergency disruptigr.f.., however, increases with longer patcipde
loyment timelines, as the population of devices unpatched at the timeeofergency growd he aim would be to
identify the appropriate patch deployment deadline that decregggéthie patch has to be applied across minimum
number of devices) while not increasing considerally gnc,(minimum number of devices remaining unpatched
in case of emergency), and thus minimizes the overall disrupticauBed by patching.

3 A Systems Model of Network Vulnerability Management

To explore the effia of different patching timelines on the cost of disruption, we ustesys modeling and sinail
tions. With the systems modeling the aim is to accurately capturedtectdristics and behavior of the vulnerabil
ty disclose-exploit-patch lifecycle [1, 12], including the patch testingpatch deployment stages. We use & sy
tems modeling methodology based on process algebra and queuing[1®ddhat has been developed for framing
and exploring models of complex systems and processes. Within thisaah the processes, such as patqh de
loyment, are captured stochastically and events that cause changes in the, mace as vulnerability exploit or
patch release, as discrete events whose occurrence is specified withlipyabstiibutions or as time-based cycles.
The models themselves are developed using specially created Gnosismprnogalanguage [25] and are
represented visually as an activity type diagrams, with each compaoentireg certain distinct features of thessy
tem.

3.1 Patch Release and Patch M anagement Processes

We have previously developed a model of the patch managementge®desexplore the risk exposure window
across Wintel environment in an organization [3]. We have adapted thil foodhetwork environment by irdr
ducing new features such as slower patching rate through patch fyntaken and allowing longer patch asses
ment and preparation time. We have also changed how the threat envirasmmeepressed to reflect the different
attacker and exploit developer behavior. Figure 1 shows the visual represenitsiiecreated model

The model diagram should be interpreted as follow&:the star and circular shaped components represent the
events that occur at regular intervals as defined with an event inter-arowalility distribution; a circular conap
nent has in addition the parameter defining the probability of an eventiiagp(b) the rectangular shapes care
pond to the process steps each with an internal logic, that consiste afuration or some manipulations of internal
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parameters(c) the rhombus shapes are if-type decision boxes, that return Boalkses wrue or false based on a
parameter value; and )finally, the process dynamics of the model is captured by the agomreecting events to
process steps and decision boxes.
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The main trigger of a vulnerability management processes acrossnkstig usually the release of a patch or a
batch of patches by a vendor. This is different from Wintel typé@mwents where such process is usuallg-tri
gered by the vulnerabity announcements, since the threat enviroaneexploit discovery characteristics are not
the same for network platforms. These are discussed in detail in se@tion 3

Some major network equipment vendors have recently adopted rpgtgarrelease cycles, and so we decided to
include this in our model, but also recognize that off-cycle patches négetéased in between. We have examined
historical data in Secunia reports [15] regarding the patch release frequetieythyee major network devicernve
dors adopted across large enterprises: Cisco, HP ProCurve, apdrJu@f these three, only Cisco has adopted a
regular patch release policy with the main patches being released at 6 montladsifdérin March and September,
and some critical patches in between. Many fewer patches are relea$BdPgCurve and Juniper, usually only 1
or 2 per year.

Since Cisco networking equipment is by far the most prevalentsalen@® organizations, we decided to use the
six-monthly cycle as the patch release frequency in the componerfito{d) model: faich reguialtpatcn= 60.

We model the arrival of off-cycle patch releases as a Poisson processwitker-arrival time based on an exp
nential probability distribution, with the mean time between occurreseteto one year. This is defined in therco
ponent (2) in the modekfen ofeycid(tpatcy)= 3656’

The process steps taken internally within an organization to managespatetsést of patch preparation anghde
loyment stages. Based on interviews with the network adminisgtrat@r found that large organizations typically

2 Everything is scaled in days in our model.



allow a fixed time for patch assessment and preparation; in our modi feisto be between 60 and 90 days. This
parameter is defined for the component (3),as forepar&tpaicn= U(60,90).

Once the patch has been assessed, we measure the progress of the @®lidespponent (4)). If the patch
has not been deployed across all vulnerable devices (decision compopehe(patch is bundled with the previous
patch and the bundle is deployed across that remaining population (comf@)er single patch is deployed
across all devices that already received the previous patch (if the preatobshps already been deployed across all
devices, they would all receive a single patch until the next patch is releabedsmssed) (component (7)). The
components (4)-(7) encode internal measurements, specifically regthdiproportion of device population having
bundled or single patches installed. The patch deployment is captur@dtivititomponent (8).

For the patch deployment stage (8) we needed to determine if duriegratigne period for patch deployment
across a number of devices, these devices are patched individually at regmaldror in groups. By examining
the patch deployment practices in several large organizations, we decided to gebgraseming that in most
cases the network devices would be patched individually at regularalstesw as to meet the deadlines set by the
organization’s policy. This would result in a linear patch uptake during patch deployment over the population of
vulnerable systems, as shown in figure 2. We also assumed eéhaattth uptake has the same characteristics no
matter what length the patching policy is set to; e.g. the devices would be pattarpdlly spaced intervals when
the policy deadline is set at 6 months or at 18 months. Based tatkhef automated tools for patching network
devices, and the limited number of allowed downtime periods set by tirebsiswe consider that these twe a
sumptions are not far off the actual network device patching practices.

3.2 TheThreat Environment

We include the threat environment event in the model that cause an ergendemcan exploit appears related to
the vulnerability being patched. In choosing how to represent the #mgasonment in our model, we hava-e
amined previously announced cases of network exploits. As veerttagd before, exploits on network devices are
much less frequent compared to the Wintel environment due to the daciefwork devices have many different
CPU architectures and multiple ranges of platforms, thus preventing effectiveadict@xploit development. It is
also much harder to reverse engineer the patches when hackers doenatdess to the variety of router types or
the necessary skills pool.

Up to now, the attacks and exploits that have been publicly annouaeedangeted specific versions of archite
ture and platform, making the likelihood of widespread attacks very Mithin the years 2002009 we have
found several, though sketchy, publi@nnounced instances of working exploits for Cisco vulnerabilitiEisese
exploits related to vulnerabilities for which a patch had been released oear aarlier by the vendor. Verizon
report on attack vectors observed2if08[22] tells similar story, with only a small percentage of hacks observed
that targeted routers, switches, or other network devices, and in daseshgse exploited vulnerabilities, the patch
has been available from a vendor a year or more before. This smddenwof working exploits together with are
dotal evidence from the hacker community [5, 6, 7, 9, 23] stgdest exploitation of network device vulnerabil
ties is generally difficult, with working exploits taking significaithe to be developed after the patch publication
by the vendor.

Based on this analysis, we made the assumption that exploits arrive relatiredyiently and some time after
patch publicatioh Therefore, when representing the threat environment withisyatem model, we concentrated
on two factors, the rate of arrival of exploits, and how long afi&ztppublication the exploit appearsvhich repe-
sents the time it takes for attackers/hackers to develop working expleit ¢do the model, for each released patch
we perform Bernoulli test on whether an exploit will be developed or not. rdte of arrival of exploits determines
the likelihood that an exploit will be developed for any given patch, #.the exploit arrival rate is one per year
and the average number of patch releases is three per year, then the praifadiliexploit being developed for
each patch is 1/3. In the initial settings of the model we chose the expileal rate as 1 emergency (significantly

8 March 2004 toolkit exploited vulnerabilities from 20@003 [16], Nov 2006 SNMP exploit exploited vulaletlity with patch available in
2004-2005 [17], Da los rootKit [24] in 2008, Yersinia t&ilreleased in 2005.

We recognize that in some cases the vulnerabilitiearameunced and exploits could be available befor@éteh is released by the vendor.
However, at the moment the evidence suggest that faorlevulnerabilities these would be rare cases, espefialan effective exploit to
be available much before patch release.



threatening exploit) every 2 years, as that seems to be closest to the anecdotet ewdiable for Cisco vulme
abilities.

As described above, exploits for network equipment generally take somecdtibe developed. To capture this
property we decided to use a Weibull distribution for the exploit devedaptime with a mean of 1 year and a
standard deviation of 0.5 years (resulting@ghape parameter k=2.10 aadcale parameter [=1)

Thus component (9) in our model has two parameters, namely:

pa’nergencgpatchzo-]-G and eﬁ(ploit_dela{texploit): 365 X 2-:]-O(t;xploit)lle_(texploit)zl

These basic settings for parameters regarding the prevailing threat envit@mesed in what we call the core
simulation experiments, the results of which are described in sectidio4eflect potential changes in the threat
environment such as increased exploit development rate, or in internalngagcbcesses, we also make various
changes in the parameters for additional experiments, which are descriketidn §

After exploit has been released, we measure in our model the fioopof unpatched population (component
(10)) that needs emergency patch to be deployed (component (11)).

3.3 Measuring Disruption

During the simulations across different patch deployment schedudesjeasure the overall disruption caused by
normal patching and emergency procedures. We measure the total discapised per year, as this seemed a-pra
tical measure that can be used by the security teams in their policy decgimce many security policies and gud
ets are determined on yearly basis.

As noted in section 3 the disruption caused by patching mainly deperttie size of the device population that
requires a patch to be applied individually. During the simulations, we naecthsurelative proportion of the pop
lation rather than the exact number of devices, as comparisons acrosttgching policies were done based on
the relative increase or decrease in disruption with different pattiniedines, rather than the exact number. The
same approach was applied for emergency disruption, whereceedrthe proportion of the population remaining
unpatched at the time of an exploit.

For example, throughout our set of experiments, the resulthich are depicted across the charts in the next
couple of sections, the disruption measured ranges from 0 tbh&0disruption of 1 means that full population of
devices would be impacted by the operational or emergency patchinghrtase, if an organization has 10® ne
work devices, all of these 100 devices will be disrupted, usually mg lidfline for a certain period of time. The
disruption of 3 means that full population of devices would be dovee ttimes per year. As was described it se
tion 2, the disruption caused during emergency patching is assutned tones greater than the one caused during
planned operational patchihg

4 Resultsfrom Simulationswith Core Model Settings

In the first set of simulation experiments, we look at how gitson changes with increasingly longer patch dgplo
ment timelines, with timelines increasing by one month at a time with amaxof 24 months. The result of these
simulations is plotted in figure 3. It shows the mean operational disnuffom patching per year {g.), and the
mean emergency disruptiongfd¢ency @s longer patch deployment timelines are being adopted by the sequrity o
erations team.

As can be seen from these plots, with longer timelines the operationgitiia decreases quite substantially,
while the increase in the emergency disruption is more gradual ankkisméthe savings are even bigger after the 6
month timeline. This point corresponds with the 6 month lifeEewhen the vendor releases a new patch. kor e
ample, when the patch deployment time is set at 8 months the expeetedional disruption is half that when
patching policy requires patches to be applied immediately, corresponding to the tire#in® swonths. However,
for policies with timelines longer than 15 months the operational disruftiprovements are smaller with éac
longer timeline.

As we recall from section 2, we made an assumption that the disruptionecast\ice caused by emergency
procedures is o times greater than the disruption caused by applying a patch. We stated this as an equation:

5 In the simplest case this would mean that during an emeygisruption a device is down for a longer periochpared to the planned oper

tional patch application, as the emergency workadampatch is more likely to cause failures due to legstedpent on testing.

7



Cemergency @ Cpatch When we scale the emergency disruption results by choosing the value 0=10, we get the third line

in the same graph. This is the case when an organization regarggidis caused by the emergency procedures,
be it the patch deployment escalations, deployment of workarountiie disruptions caused by an actual attack, as
being ten times higher than disruptions caused by the plarateld @oplication. In such cases within the graph we
get a crossover point at a timeline of 9 months whgf@®demegency  This represents the patching policy for which
the overall disruption is caused by equal measures of operational patchiqgidisand emergency disruption.

35 ‘ 7
3 ! — 6 T
. +drsm.monfmm ’ — - —|  —#—alpha=s
5. patching 5. -
g 8- emergen: g - - =T -8 alpha=10
-2 15 < disrustio:/m .g RS= _,./nll"’"'H—l
case of exploit y\m'\l\‘::_"_}_al/l aphass
B emergency 2 — -
disruption * =
0s K‘\H’\H‘{ a\uhap:w . — alpha=20
—a—8—8—8— 8
om -_LH-ipH-l._a—HH—HH-H ,
0 3 6 B 12 1 13 2 % 0 3 6 B 12 15 18 n u
Patch deployment time in months (after testing) Patch deployment time in months
Fig. 3. Operational patching disruption and emerger Fig. 2. Changes in the overall disruption (oper
disruption across changing deployment timeline. tional+emergency) under differevalues of a.

Based on our cost functions from section 2, the optimal patch deplogi®adline would be the one where the
expected cost of overall disruption, D Fagh+ Gimergency is minimal for a certain value of a. As the value of o is
dependent on a particular organization, its capabilities for dealing with argency (such as redundancies across
network devices), and its risk appetite, we plotted the overall disruptiomder different timelines for severallva
ues ofa (figure 4.

Whena=10 the optimal policy is 9 months and this corresponds to the pregiogsover point. & is larger
than that, the optimal policy deadline is much shorter, witih5 this being at 3 months and witk20 this being at
2 months. This means that for organizations where emergeraptilis is regarded as being more than 10 times
worse than the operational disruption caused by normal patch applichdéqulicy should be adopted with patches
required to be deployed within a month or two across vulnerableegev

If, however, emergency disruption is regarded as similar to oslightly worse than operational disruption6, the
longer timelines would be more cost effective. For examplenwhs5, the lowest overall disruption is achieved
when the patch deployment deadline is set at 13 months. But even vélimésrionger than that, the overalkdi
ruption increases only very slightly.
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Patch deployment time in months

Fig. 4. Operational and emergency disruption with long patch gemat timelines

5 This is quite likely the case within the current threavironment, where past exploits on network equigrhame mostly resulted in denial of
service (DoS) attacks, rather than attacks that give@lete access to the router or switch. The DoS attakusually not regarded asha
ing big impact due to the redundancies that are cortyntrilt in to the network architecture.
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When we run experiments with even longer timelines, with maximurog®ent time corresponding to 5 years,
the results of which can be seen plotted in figure 5, a point is readiere the amount of emergency disruption
exceeds the operational disruption. This is when the timelinestatiee leager than 33 months. This suggests that
with much longer patch deployment timelines the benefits of reducegtiis become smaller and smaller. €Th
operational disruption cost is reduced only slightly over longer tirglimhile the emergency disruption cost does
not increase, since, based on the assumptions in our model, aftes hgeaore exploit is expected for a patch.
Also at some point in time batching multiple patches together might notdibléeanymore as there might be phy
ical restrictions that prevent successful installation of new upgrades on old hardware.

5 Changesin the Threat Environment

The results described in the previous section were generated from simalatiwhich the threat environment was
as specified in section 4, corresponding to a mean exploit developmentftil year after patch publication, and an
arrival rate of exploits of one every 2 years. With some of thdamsrof network equipment aiming to adopt more
uniform OS architectures across their range of network devices, devekxphgts that impact network devices
may become much easier [8], and so the frequency of exploitsntrase and the time taken for an exploit to be
developed may decrease [13]. The policy which is optimal giveerduthreat conditions may be far from best if
the threat level changes. In the next set of simulation experimentscided to explore how emergency disruption
changes under a worsening threat environment, and how the policy dsashiould be adjusted so that to achieve
minimal disruption costs.

5.1 Increased Arrival Rate of Exploits

First we increased the arrival rate of exploits, leaving the exploit developimenthe same as before set at 1 year.
The changes in increased emergency disruption for various emgrgeival rates are plotted in figure 6. As can
be seen from the chart, the emergency disruption increases considerablaaiv#h rate increases, with the highest
increase when an exploit appears every 6 months (0.5 year).

When we plot the overall disruption with 0=10 in figure 7, we can see that with a worsening threat environment
the previously optimal patch deployment policy of 9 months no longgiesp Although with the rate of arrival of
exploits going up from one p& years to one per 1.5 years and one per year, we don’t see a substantial increase in
the overall disruption, with the rate at one per 0.5 years the increasehshigger. The best option in such a case
would be to patch immediately.
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Fig. 6. Emergency disruption for different exploit arrive Fig. 5. Overall disruption when a=10 and exploit devel-
rates, with exploit development time constant at 1 year. opment time is 1 year for different exploit arrival rates.

5.2 Faster Exploit Development

When we reduce the mean exploit development time from the initial valliey@dr to 6 months or 3 months, the
changes in overall disruption are quite significant, as seen in figure 8
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Fig. 7. Overalldisruption when a=10 and emergency frequency is every 2 years, varying exploit development time.

The results for a mean development time of 6 months are as viw exigect, with the earlier exploit arrival
times increasing the expected level of emergency disruption, resinltthg optimal policy being to deploy patches
as quickly as possible. The results for a mean development timmofht®is seem anomalous at first glance, until
we observe that this is the same as the time taken for patch testinghss case a large proportion of emergencies
arrive before patch deployment has even started. This limits the potentidtiofpchanges in patch deployment
timescales and under such threat environment conditions, both tthersemd the organizations would need to re-
think the patch release and testing lifecycles and timelines or consider additibgation mechanisms.

6 Discussion

Our analysis explored the trade-off between operational and emergengytidn by recognizing that normal phtc
ing does introduce disruption, which is not negligible, and thisigiiem can be reduced with longer patchingdiea
lines, that in turn would potentially increase the risk of a securityganey or breach. This analysis was done u
der certain assumptions about the parameters in the model. The resuftssaigensitive to the changing threat
environment conditions, and that is why we explored the impact of thesges in detail in the previous section.
As the threat environment gets worse, with exploits appearing frdgaen soon after patch publication, the trade-
off between operational and emergency disruption changes, wetilually the only option is to patch immediately.
This would be the case for the Wintel environment, and the disruptiondedahing in such cases is smalhreo
pared to emergency disruptions from the constant flow of malwalattecks. The reductions in overall disruption
in such cases have to be achieved in a different way, maybepltgnienting faster and less disruptive mitigation
approaches. Therefore, the analysis in this paper is best suitezl dorttext of vulnerability management for the
network environment, or other types of environment where ex@aitisattacks are less frequent (e.g., some server
environments, enterprise applications).

To help determine the appropriate timelines for patch deployment we chosaimaizaithe cost function that
was defined in terms of disruption. In turn, we decided to sfynghle definition of disruption so that it was mainly
dependent on the size of the population of devices that would betedpgmcthe specific task: patching or emerge
cy fix. Both of these can be predicted by running the simulationthe system model of the patch management
process. To apply the cost function within the context of a spexifianization the security team would need to
choose only one parameter a, which is an estimation of how much worse the emergency fix is to the operations of
the business than the planned patching.

Also our current interpretation of an emergency deals with an expeahee that is only dependent on themu
ber of devices unpatched and vulnerable at the time of the emergenisymid@ht be too simple as the threats to
networks become more sophisticated, and impact not only netwoikedetbut critical business applications and
transactions. So a more complex definition of emergency disruptight meed to be developed, that takes into
account the organization’s risk appetite and ability to tolerate emergencies. This might also require a more complex
system model that captures how an organization reacts to an emgrgeluding the effect of various processes
and security mechanisms that are deployed to deal with the emergency.
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7 Related Work

In recent years there has been some work examining the tifadevmlved in different patching policies, but none
that specifically address the patching of network devices. Beattie, et al. [2] weiestho explore the factors-a
fecting the best time to apply patches so that organizations minimize dissugdiosed by defective patches. Their
results indicate that patching during the period of 10 to 30 déysfast patch release date is the optimal period for
minimizing the disruption caused by defective patches. In ouk,wather than looking just at a single patch and
adjusting a single point in time to start patch deployment, we analyse the overathpatolement process that also
takes into account the time taken to apply the patches across all teeabldnnetwork devices in an organization;
this can be considerable for a large organization.

Radianti, et al. [11] explore proactive and reactive patching policies usstgnsylynamics modelling. Although
their approach of modelling and simulation is similar to ours, the ifference is in the type of policies that are
chosen to explore. Radianti, et al. explore generic patching policies, whereas we [zgiédaly at exploring
patching of network devices, as these represent a very special case.

Cavusoglu, et al. [18, 19] use a game-theoretic model to study intesabgbneen a vendor releasing patches
and an organization deploying the patches across its environment. Tminexhe cost/benefit consequences of
the time-driven release policies adopted by a vendor and similar policieatétr deployment adopted by an arga
ization, and explore situations in which the socially optimal patch manageareie achieved. Under the cond
tion that the vendor and patching organization each choose the policies thatibdsmselves, they arrive at the
conclusion that “vendors are better off releasing patches periodically” and similar regular patch update policies are
the optimal strategies for the organization deploying patches. In our pameswme from the beginning that both
the vendor and the organization have adopted regular patch release andndaploycles, as that has bedmn o
served as common practice among vendors and most of the orgasizhtibwe have worked with. HoweveaC
vusoglu, et al. assume that patch deployment takes an insignificant arhdiome compared to the patch release
period, whereas this is not the case for patching of network equipahere, as mentioned above, automatedhpatc
ing is not generally available, and patch ldgment often takes significantly longer that the vendor’s patch release
period. Our analysis in this paper is specifically targeted at helpindgntify the optimal time period for deploying
patches as part of a regular patch cycle.

The work by Zhang, Tan and Dey [14] provides an analytical framevarcost-benefit analysis of different
patching policies. They assume that patching lead time (the time takeplftaggatch across the systems) igne
ligible or very small comparing to the overall patching lifecycle, whiehargue is not the case in large organiz
tions with thousands of systems requiring the same patch. Theraalso assume that the costs associated with
vulnerability exploitations can be estimated with relative ease by an organizatich,iwreality is very difficult to
determine with any accuracy. We believe that our proposed simulation-basedcipgllows an organization more
naturally and flexibly to explore the pragmatic outcomes from different patghnlicies than a purely analytical
framework would allow.

The topic on the cost of administration and cost of system downtimeekeived some attention [Z1] and is
aimed at identifying the cost to organizations of various administration @erateon tasks. Patterson [20] suggests
that the cost of downtime should be based upon calculation of ttardaevenue lost and work lost, but cagt b
come more complex and include such factors as morale and staff att@arch, et al. [21] explore the actudla
ministration cost incurred in response to various IT support requisisur paper we take a simplified view of the
cost of patching, this basically being the disruption caused to theebadiecause the device is offline and nat us
ble. However, for future work it might be useful to incorporateem@mmplex definitions of cost in our analysis.

8 Conclusions

In this paper we explored how IT security policy choices regardibghng timelines for network equipment can be
made in terms of economically-based decisions, in which the d@onnsnimize the expected overall costs to the
organization from patching-related activity.

We introduced a simple cost function that takes into account costs incrgnedlisruption caused by planned
patching and from expected disruption by an emergency when an expio@lware emerges. By lengthening the
required patch deployment timelines, the IT security policy decision makerseduce the disruption caused by
planned patching as more patches can be batched together, but thisnemadde the expected emergency glisru
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tion as the devices would remain unpatched for longer. We applied a systelelling and simulation approach to
explore the disruptions caused by changing patch deployment timeithé@sthe range of 0 to 24 months, and used
the results together with the cost function to identify the optimal patchireditien When modelling the network
vulnerability management process we tried to capture current netatmk management practices used across large
organizations, and modeled the network threat environment based on higtbhdogh sparse) data on network e
ploits over the past 4 years. The resulting optimal patch deploymigyt pb9 months should be viewed as apti

al under these assumptions. By increasing the frequency oftexplthe next set of experiments we saw that this 9
month timeline soon stops being an optimal policy, with the bestropéimg to patch immediately.

We believe that the analysis described in this paper provides guidelines forsieufity policy decision makers
in their respective organizations that can be applied when deciding oettark equipment patching policy that is
optimal for their organization and their IT environment, and reflects their rigkti and network emergenay-t
lerance level. It is our hope that this approach may one day formpraetite to follow not just in choosing patc
ing policy but in other areas of security decision-making.

This work has been done as part of the Cloud Stewardship Econawjiest 26], funded by Technology Stret
gy Board of UK Government.
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