
HAL Id: hal-01514668
https://inria.hal.science/hal-01514668

Submitted on 26 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Checking Compatibility of Web Services Behaviorally
Kais Klai, Hanen Ochi

To cite this version:
Kais Klai, Hanen Ochi. Checking Compatibility of Web Services Behaviorally. 5th International
Conference on Fundamentals of Software Engineering (FSEN), Apr 2013, Tehran, Iran. pp.267-282,
�10.1007/978-3-642-40213-5_17�. �hal-01514668�

https://inria.hal.science/hal-01514668
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Checking Compatibility of Web Services

Behaviorally

Kais Klai1 and Hanen Ochi2

1 Institut TELECOM SudParis , CNRS UMR Samovar
9 rue Charles Fourier 91011 Evry, France

kais.klai@telecom-sudparis.eu
2 LIPN, CNRS UMR 7030, Université Paris 13

99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

hanen.ochi@lipn.univ-paris13.fr

Web services composition is an emerging paradigm for enabling application
integration within and across organizational boundaries. In this context, we pro-
pose an approach based on Symbolic Observation Graphs (SOG) allowing to
decide whether two (or more) web services can cooperate safely. The compati-
bility between two web services is defined by the well known soundness property
on open workflow nets. This property guarantees the absence of anomalies (e.g.
deadlock) that can appear after composition. We propose to abstract the con-
crete behavior of a web service using a SOG and show how composition of web
services as well as the compatibility check can be achieved through the com-
position of their abstractions (i.e. SOGs). This approach allows to respect the
privacy of the services since SOGs are based on collaborative activities only and
hide the internal structure and behavior of the corresponding service.

1 Introduction

Service oriented architecture (SOA) has evolved to become a promising technol-
ogy for the integration of disparate software components using Internet protocols.
These components, called Web Services, are available in the distributed environ-
ment of the Internet. Organizations attempt to provide their own services to be
matched with others following a request, their complex tasks are resolved using
a combination of several web services. For automatically selecting and compos-
ing services in a well-behaved manner, information about the services has to be
exposed. Usually, web services are published by giving their public description
behavior in a repository, such as Universal Description, Discovery and Integra-
tion UDDI, in order to make possible the collaboration with potential requesters.
In particular, this information must be sufficient to decide whether the compo-
sition of two services is possible. However, organizations usually want to hide
the trade secrets of their services and thus need to find a proper abstraction
which is published instead of the service itself in the repository. Thus, the pub-
lic abstraction should satisfy two contradictory requirements: on one hand, it
should respect the privacy of the underlying organization. On the other hand, it

should supply enough information to allow the collaboration and the communi-
cation with potential partners in a correct way. Thus, correctness of the original
composite web service should be detected from the analysis of the composition
of the corresponding public abstractions. Among other abstraction approaches,
the Symbolic Observation Graph (SOG) based technique, initially introduced for
model checking of concurrent systems [4] and then applied to the verification of
inter enterprise business processes [8,11], is promising. A SOG is a graph whose
construction is guided by a subset of observed actions. The nodes of a SOG are
aggregates hiding a set of local states which are connected with non observed
actions. The arcs of a SOG are exclusively labeled with observed actions. Thus,
we propose to use SOGs as abstraction of web services. By observing the collab-
orative activities of a web service, publishing a SOG as an abstraction allows to
hide its internal behavior inside the aggregates. The strength of such approach
is that a SOG associated with a web service represents a reduced abstraction of
its reachable state space while preserving its behavioral properties (e.g. dead-
lock freeness, temporal properties, ...). Checking the compatibility of two web
services is reduced to check the compatibility on the composition of their SOGs.

In this paper, a web service is formally represented by an oWF-net [14]. Two
web services are said to be compatible if the composite oWF-net is sound [17].
The soundness property on a oWF-net is defined by three requirements: (1)
option to complete: starting from any reachable state, it is possible to reach a
final state, (2) proper completion: there is no reachable state strictly greater than
a final state, and, (3) no dead transitions : each action is executed at least in one
reachable state. Although, in practice, the behavior of web services is frequently
described using industrial description languages such as BPEL4WS, BPWL and
WSCI, several approaches allow to map these models to the formal description
languages [13][6] (Petri nets). Thus, our approach is relevant for a very broad
class of modeling languages and we can use an UDDI registry as a repository to
extract web service’s specifications for this purpose.

This paper is organized as follows: first, Section 2 presents some preliminary
notions on oWF-nets, their composition and the notion of soundness. Then, a
running example is presented in Section 3 allowing to illustrate our approach
through the paper. In Section 4, we present symbolic observation graphs and
how the soundness property is preserved by such an abstraction. Composition
of SOGs and checking the compatibility property is the issue of Section 5. In
Section 6, we discuss some related works. Finally, Section 7 concludes the paper
and presents some aspects of the future work.

2 Preliminaries

2.1 Description models

Petri nets The need for formal methods and software tools for describing and
analyzing web services is widely recognized. Petri nets [15], a well known for-
malism for modeling real-time systems, can be used for describing and analyzing
the behavior of web services.

Definition 1. A Petri net is 4-tuple N = 〈P, T, F, W 〉 where:

– P is a finite set of places (circles) and T a finite set of transitions (squares)
with (P ∪ T) 6= ∅ and P ∩ T = ∅,

– A flow relation F ⊆ (P × T) ∪ (T × P),
– W : F → N

+ is a mapping that assigns a positive weight to any arc.

Each node x ∈ P ∪ T of the net has a pre-set and a post-set defined respec-
tively as follows: •x = {y ∈ P∪T | (y, x) ∈ F}, and x• = {y ∈ P∪T | (x, y) ∈ F}.
Adjacent nodes are then denoted by •x• = •x ∪ x•. The incidence matrix C

associated with the net is defined as follows : ∀(p, t) ∈ P × T : C(p, t) =
W (t, p) − W (p, t)

A marking of a Petri net N is a function m : P → N. The initial marking of
N is denoted by M0. The pair (N, M0) is called a Petri net system.

A transition t is said to be enabled by a marking m (denoted by m t
−→) iff

∀p ∈ •t, W (p, t) ≤ m(p). If a transition t is enabled by a marking m, then its

firing leads to a new marking m′ (denoted by m t
−→m′) s.t. ∀p ∈ P : m′(p) =

m(p) + C(p, t). Given a set of markings S, we denote by Enable(S) the set
of transitions enabled by elements of S. The set of markings reachable from a
marking m in N is denoted by R(N, m). The set of markings reachable from a
marking m, by firing transitions of a subset T ′ only is denoted by Sat(m, T ′).
By extension, given a set of markings S and a set of transitions T ′, Sat(S, T ′) =
⋃

m∈S Sat(m, T ′) . For a marking m, m 6→ denotes that m is a dead marking,
i.e., Enable({m}) = ∅.

oWF-nets We define a web service by its behavior and its interface. An instance
of a given service corresponds to an execution of this service. The interface
consists of a set of ports. A pair of ports can be connected using a channel, thus
enabling the exchange of messages sent or received by services. A web service can
be viewed as a control structure describing its behavior according to an interface
to communicate asynchronously with other services in order to reach a final state
(i.e. a state representing a proper termination). We use a particular Petri net for
modeling the control-flow dimension of a web service, called open Work-Flow net
(oWF-net) and introduced in [14]. It is essentially a liberal version of workflow
nets [1], enriched with communication places representing the interface. Each
communication place models a channel to send (receive) messages to (from)
another oWF-net. Transitions in a oWF-net correspond to activities and places
represent pre-conditions for activities.

Definition 2. An open workflow net (oWF-net for short) is defined by a tuple
N = 〈P, T, F, W, m0, I, O, Ω〉 where:

– 〈P ∪ I ∪ O, T, F, W 〉 is a Petri net;
– m0 is the initial marking;
– I (resp. O) is a set of input (resp. output) places (I ∪ O represents the set

of interface places) satisfying:

• (I ∪ O) ∩ P = ∅
• ∀p ∈ I : •p = ∅ (input interfaces places)
• ∀p ∈ O : p• = ∅ (output interface places)

– Ω is a set of final markings.

From now on, given an oWF-net N , the subnet N∗ = 〈P, T, F ∗, W ∗〉 is called
the inner net of N . F ∗ and W ∗ are derived (by projection) from F and W ,
respectively, by removing the input and the output interface places of N .

Based on the notion of oWF-nets, we have to analyze the behavior of web
services from the local point of view. So we can check the soundness property
[17] to detect the anomalies on web services. The soundness property on a oWF-
net N concerns its inner Petri net N∗ and is defined by three requirements: (1)
option to complete: starting from any reachable marking, it is possible to reach
a final marking, (2) proper completion: there is no reachable marking strictly
greater than a final marking, and, (3) no dead transitions : each transition is
firable at least in one reachable marking.

Definition 3. Let N = 〈P, T, F, W, m0, I, O, Ω〉 be an oWF-net. N is sound iff
the following requirements are satisfied:

– option to complete: ∀m ∈ R(N∗, m0), ∃mf ∈ Ω s.t. mf ∈ R(N∗, m);
– proper completion: ∀m ∈ R(N∗, m0), ∀mf ∈ Ω m ≥ mf =⇒ m = mf ;

– no dead transitions: ∀t ∈ T, ∃m ∈ R(N∗, m0) s.t. m t
−→.

Composition of web services The basic web services infrastructure provides
simple interactions between a client and a web service. However, the implemen-
tation of a web service’s business needs generally the invocation of other web
services. Thus it is necessary to combine the functionalities of several web ser-
vices. The process of developing a composite service is called service composition.

Composite services are recursively defined as an aggregation of elementary
and composite services. The composition of two or more services generates a
new service providing both the original behavior of initial services and a new
collaborative behavior for carrying out a new composite task. From modeling
point of view, a composite service can be described as a recursive composition of
oWF-nets. Communication between services takes place by exchanging messages
via interface places. Thus, composing two oWF-nets is modeled by merging their
respective shared constituents which are the equally labeled input and output
interface places. Such a fused interface place models a channel and a token on
such a place corresponds to a pending message in the respective channel. As
it is convenient to require that all communications are bilateral and directed,
i.e., every interface place p ∈ (I ∪ O) has only one oWF-net that sends into p

and only one oWF-net that receives from p. Thereby, oWF-nets involved in a
composition are pairwise interface compatible.

Definition 4. Let N1 and N2 be two oWF-nets with pairwise disjoint con-
stituents except for interfaces. If only input places of one oWF-net overlap with
output places of the other oWF-net, i.e., I1 ∩ I2 = ∅ and O1 ∩ O2 = ∅, then N1

and N2 are interface compatible.

Definition 5. Let Ni = 〈Pi, Ti, Fi, Wi, m0i, Ii, Oi, Ωi〉, for i ∈ {1, 2}, be two
interface compatible oWF-nets. Their composition, namely N1⊕N2, is the oWF-
net N = 〈P, T, F, W, m0, I, O, Ω〉 defined as follows:

– P = P1 ∪ P2, T = T1 ∪ T2, F = F1 ∪ F2, W = W1 ⊕ W2

– I = (I1 ∪ I2) \ (O1 ∪ O2), O = (O1 ∪ O2) \ (I1 ∪ I2),
– m0 = m01 ⊕ m02 and Ω = Ω1 ⊕ Ω2.

The oWF-net composition is commutative and associative i.e. for interface com-
patible oWF-nets N1, N2 and N3: N1 ⊕N2 = N2 ⊕N1 and (N1 ⊕N2) ⊕ N3 =
N1 ⊕ (N2 ⊕ N3). An oWF-net with an empty interface (I = ∅ and O = ∅) is
called a closed net.

A composite web service modeled as a closed net is a service that consists of
the coordination of several conceptually autonomous but interface compatible
services (open nets). Although, it is not easy to specify how this coordination
should behave, we focus here on semantic compatibility between web services.

Definition 6. Let N1 and N2 be two interface compatible open nets and let
N = N1 ⊕N2. Then, N1 is said to be compatible with N2 iff N is sound.

3 Running Example

p0

p1

p2 p3

p4

p5

p6

p7

p8

order

payement

delivery

verifart

receiveorder

issuepay

choosedeliv

acceptpay

keepinfo

initdeliv

(a) Online shop

p0

p1

p2

p3

p4

p5

order

delivery

payment

startorder

selectart

submitorder

paybill

waitdeliv

(b) Customer C1

p0

p1

p2

p3

p4

p5

order

payment

delivery

startorder

selectart

submitorder

waitdeliv

paybill

(c) Customer C2

Fig. 1. The oWF-nets of an online shop and two customers

Throughout this paper, we use an example of three web services, inspired
from [16] (see Figure 1): an online shop and two different customers. The exam-
ple is modeled using oWF-nets. The dashed circles denote the interface places

(input/output places). While browsing an online shop, the first customer (Fig-
ure 1(b)) selects items he is interested in, pays his bill and proceeds for delivery
step. For the online shop (Figure 1(a)), once the order is submitted, the subse-
quent payment handling and the verification process of delivery are triggered.
These two tasks can be done concurrently. After verifying information about
payment, the order is automatically delivered. Figure 1(c) represents a customer
who behaves in a different way, since he pays his bill only after receiving the
goods already bought. Note that all these oWF-nets are sound locally, and that
the online shop’s model is interface compatible with both customers’ models.

4 Symbolic Observation Graph

4.1 Abstraction of web services

In this section we propose to use symbolic observation graphs (SOG) [4,12] in
order to abstract oWF-nets. Exposing a SOG related to a service allows to
hide internal activities while checking compatibility is still possible using locally
computed information. Before we give the definition of a SOG, let us give some
basic notations.

Observed actions Given an oWF-net N , we distinguish the transitions con-
nected to the interface places, called interface transitions, from the internal
transitions. The first are called observed transitions while the last are called
unobserved transitions.

Definition 7. Let N = 〈P, T, F, W, m0, I, O, Ω〉 be an oWF-net. The sets of
observed transitions (Obs) and unobserved transitions (UnObs) are respectively
defined as follows:

– Obs = {t ∈ T | (•t ∪ t•) ∩ (I ∪ O) 6= ∅},
– UnObs = T \ Obs.

Observed behavior Given an oWF-net N , the observed behavior is defined
as a mapping applied on the reachable markings, R(N∗, m0), of the inner net
N∗. It is then extended progressively to sets of states. It will be established
that the observed behavior is the necessary and sufficient local information to
be retained so that compatibility between two web services can be checked. For
this purpose, and for the remaining part of this paper, we assume an additional
virtual observed transition term belonging to Obs. Observing term means that
the system properly terminates. In the following, we denote by Sat(S) the set of
markings reachable from a marking m ∈ S, by firing only unobserved transitions
(i.e., Sat(S, UnObs)).

Definition 8. Let N = 〈P, T, F, W, m0, I, O, Ω〉 be an oWF-net. The observed
behavior is progressively defined by :

1. λN : R(N∗, m0) → 2Obs

λN (m) =

{

• (Enable(Sat(m)) ∩ Obs) ∪ {term} if Sat(m) ∩ Ω 6= ∅

• Enable(Sat(m)) ∩ Obs otherwise

2. λN : 2(R(N∗,m0)) → 22Obs

λN (S) = {λN (m) | m ∈ S}

3. λmin : 2R(N∗,m0) → 22Obs

λmin(S) = {X ∈ λN (S) |6 ∃Y ∈ λN (S) : Y ⊂ (X \ {term})}

Informally, for each marking m in R(N∗, m0), the observed behavior of m,
λN (m), represents the set of observed actions which can be executed from m,
possibly via a sequence of unobserved actions. In addition, term is a member
of λN (m) if and only if a final marking is reachable from m using unobserved
actions only. The observed behavior λN associated with a set of markings S is
a set of sets of observed actions. This set contains the observed behavior of the
markings of S. Finally, the observed behavior mapping λmin applied to a set
of markings S is the minimal set of subsets (w.r.t. the set inclusion relation) of
λN (S). The inclusion relation does not concern the term action. For instance, if
there exist two markings m, m′ ∈ S such that λN (m) = ∅ and λN (m′) = {term},
then both sets ∅ and {term} will belong to λmin(S). This way we distinguish a
dead marking from a final marking reached in S.

From now on, a state (marking) m is said to be dead if and only if its observed
behavior is the empty set. This generalizes the original definition of a dead state
since a terminal livelock (a livelock from which no observed action is enabled) is
considered as a deadlock as well.

Symbolic Observation Graph The construction of the SOG corresponding
to an oWF-net is guided by the set of observed transitions. A SOG is defined
as a graph where each node is a set of markings linked by unobserved transi-
tions and each arc is labeled by an observed transition. Nodes of the SOG are
called aggregates and may be represented and managed efficiently using decision
diagram techniques (BDDs, see e.g., [2]). In practice, due to the small number
of observed transitions in loosely coupled oWF-nets, the SOG has a very mod-
erate size and thus the time complexity of the verification process is negligible
in comparison to the building time of the SOG (see [4,10,9,8] for experimental
results). Before we define the SOG, let us define what an aggregate is.

Definition 9. Let N = 〈P, T = Obs ∪UnObs, F, W, m0, I, O, Ω〉 be an oWF-
net. An aggregate of N is a couple a = 〈S, λ〉 defined as follows:

1. S is a nonempty subset of R(N∗, m0) s.t.: m ∈ S ⇔ Sat(m) ⊆ S;
2. λ = λmin(S).

From now on, a.S and a.λ denote the attributes of a given aggregate a. Note that
the observed behavior attached to an aggregate allows to determine whether it
is a final aggregate or not and whether it contains a deadlock or not. Indeed, an
aggregate a contains a dead marking iff ∅ ∈ a.λ. It contains a final marking iff

∃Q ∈ a.λ : term ∈ Q. In practice, since an aggregate is represented by a BDD,
the computation of the corresponding observed behavior should be performed
symbolically (using sets operations). A symbolic algorithm for the computation
of the observed behavior is proposed in [7].

A0λ : {{receiveorder}}

A1λ : {{acceptpay}}

receiveorder

A2λ : {{initdeliv}}

acceptpay

A3λ : {{term}}

initdeliv

(a) A SOG of online shop

B0 λ : {{submitorder}}

B1 λ : {{paybill}}

submitorder

B2 λ : {{waitdeliv}}

paybill

B3 λ : {{term}}

waitdeliv

(b) A SOG of customer C1

B′

0
λ : {{submitorder}}

B′

1
λ : {{waitdeliv}}

submitorder

B′

2
λ : {{paybill}}

waitdeliv

B′

3
λ : {{term}}

paybill

(c) A SOG of customer C2

Fig. 2. SOGs of the running example models

Definition 10. A symbolic observation graph (SOG(N) for short) is a 5-tuple
〈A,Act ,→, a0, Ω

′〉 associated with an oWF-net N = 〈P, T, F, W, m0, I, O, Ω〉,
s.t. T = Obs ∪ UnObs, where:

1. A is a finite set of aggregates satisfying:
– If for some a ∈ A and t ∈ Obs the set Ext(a, t) = {m′ 6∈ a.S | ∃m ∈

a.S, m t
−→m′} is not empty, then there exist non-empty pairwise disjoint

sets S1 . . . Sk s.t. Ext(a, t) = S1 ∪ . . . Sk, and ∀i = 1 . . . k, there exists
an aggregate ai ∈ A s.t. ai.S = Sat(Si,UnObs).

2. Act = Obs;
3. →⊆ A× Act ×A is the transition relation satisfying:

– if a 6= a′, (a, t, a′) ∈→ iff Ext(a, t) 6= ∅ and a′.S = Sat(S′,UnObs) for
some S′ ⊆ Ext(a, t).

– (a, t, a) ∈→ iff Sat({m′ ∈ R(N∗, m0) | ∃m ∈ a.S, m t
−→m′},UnObs) =

a.S

4. a0 is the initial aggregate s.t. a0.S = Sat(m0,UnObs).
5. Ω′ is a set of final aggregates defined by Ω′ = {a ∈ A | a.S ∩ Ω 6= ∅}.

Notice that Definition 10 does not guarantee the uniqueness of a SOG for a
given open net. In fact, it supplies a certain flexibility for its implementation.
In particular, the SOG can be nondeterministic. It is clear that the canonical
minimal SOG is obtained when the SOG is deterministic. However, one can take
advantage of the nondeterminism to obtain smaller aggregates. Indeed, when

two (for instance) states within an aggregate a enable an observed transition
to, then a has one successor a′ if the SOG is deterministic and two successors
a′
1 and a′

2 (s.t. a′
1 ∪ a′

2 = a′) if not. Thus, even if the SOG obtained by this
way has more aggregates, its construction might consume less time and memory
(aggregate’s size is smaller). Our definition generalizes the one given in [12]. The
construction algorithm given in [4] is an implementation where the obtained
graph is deterministic.

Figure 2 shows the SOGs associated with the oWF-nets of Figure 1. Fig-
ure 2(a) shows the SOG of the online shop model while Figure 2(b) (respectively
Figure 2(c)) illustrates the SOG of the customer model C1 (respectively C2).
Each aggregate is annotated with the corresponding observed behavior and one
can see that all these SOGs are sound. Moreover, the SOG of the online shop
is the one which most abstract the behaviors of the original model since it has
more local behaviors. Indeed, its reachability graph contains 12 reachable mark-
ings and 15 arcs against 4 aggregates and 3 arcs in the corresponding SOG.

In the following, we establish that the soundness of a oWF-net can be checked
by analyzing the corresponding SOG. As for a marking m, the set of aggregates
reachable from a given aggregate a is denoted by R(a).

Theorem 1. Let G = 〈A,Act ,→, a0, Ω
′〉 be a SOG associated with an oWF-net

N . N is sound iff the following requirements are satisfied:

– option to complete: ∀a ∈ A, ∅ 6∈ a.λ ∧ ∃af ∈ Ω′ | af ∈ R(a).
– proper completion: ∀a ∈ A, ∀m ∈ a.S, ∀mf ∈ Ω, m ≥ mf =⇒ m = mf ;
– no dead transitions :

⋃

a∈A
Enable(a.S) = T

From the local point of view, the internal behaviors of a service are available.
Thus, states inside aggregates can be analysed to check the soundness require-
ments but this should be done symbolically so that the efficiency of the BDD-
based representation and management of the aggregates is preserved.

5 Synchronized product of SOGs

5.1 Composition of SOGs

In this section, we tackle the main idea of this paper: we will define how we
compose two (ore more) web services (each ignoring internal details about the
other). Starting from two interface compatible oWF-nets N1 and N2 which are
already locally sound, this section shows how to check their compatibility using
their respective SOGs G1 and G2. Our objective is to reduce the verification
of the compatibility between N1 and N2 (structure of N1 ⊕ N2 is unavailable
anyway) to the analysis of the composition of G1 and G2, namely G1 ⊕ G2. To
reach this goal, and in order to take into account the asynchronous composition
between N1 and N2, we assume that each oWF-net exposes its input and output
places (resp. transitions). Then we define a medium net N12 as an open net
representing the interface between N1 and N2.

Definition 11. Let Ni = 〈Pi, Ti, Fi, Wi, m0i, Ii, Oi, Ωi〉, for i = 1, 2, be two
interface compatible oWF-nets. The medium net related to N1 and N2, denoted
by N12 = 〈P12, T12, F12, F12, m012, Ω12〉, is the closed net defined as follows :

– P12 = (I1 ∩ O2) ∪ (O1 ∩ I2)
– T12 = {t ∈ Ti;

•t• ∩ ((Ii ∩ Oj) ∪ (Oi ∩ Ij)) 6= ∅} for i, j ∈ {1, 2} and i 6= j

– F12 = F1|(P12×T12)∪(T12×P12) ∪ F2|(P12×T12)∪(T12×P12)

– W12 = W1|F12
∪ W2|F12

– m012 = {0} i.e. all places are empty
– Ω12 = {m012}

order

payement

delivery

online shop a customer

receiveorder

acceptpay

initdeliv

submitorder

paybill

waitdeliv

Fig. 3. The medium net of the running example

The transitions of the medium net are the interface transitions of N1 and N2

while its places are their interface places.
It is clear that the set of reachable markings of the medium net is infinite.

However, if we assume that the composed net N1 ⊕ N2 is bounded, then the
number of states that are reachable by the interface places is finite. If the bound
of an interface place is n then this place can be in n + 1 different states at most.
Under such an assumption and knowing the bound of each place of the medium
net, one can build a reachability graph that covers all the possible behaviors
related to the interface places in N1⊕N2. The obtained graph is called interface
graph and is defined as the following:

Definition 12. Consider two oWF-nets N1 and N2 and their medium net N12.
For each place pi (for i = 1 . . .m) of N12, let ni be the bound of pi in N1 ⊕N2.
For sake of simplicity, assume that each place pi has a single input transition
ini and a single output transition outi. Then, the interface graph is a a tuple
〈Γ,Act ,→, m0, Ω〉 s.t.:

1. Γ = {〈x1, . . . xm〉 | 0 ≤ x1 ≤ ni . . . 0 ≤ xm ≤ nm}
2. Act = {ini | i = 1, . . . , m} ∪ {outi | i = 1, . . . , m}
3. →⊆ Γ × Act × Γ is a transition relation such that:

0

1

2

3

4

5

6

7

Fig. 4. Interface graph of the medium net

(a) m
ini−→m′ iff m′(bi) = m(bi) + 1 ∧ m′(bi) ≤ ni

(b) mouti−→m′ iff m′(bi) = m(bi) − 1 ∧ m′(bi) ≥ 0

4. m0 = 〈0, . . . , 0〉 is the initial marking
5. Ω = {m0} is the set of final markings

The above definition constructs a reachability graph where each marking
represents a possible configuration of the interface places of N1 and N2. The
transition relation allows the evolution of the interface places’ states in the fol-
lowing manner: a successor of a given marking is a marking where the number
of tokens in one interface place has been increased or decreased (by one). More-
over, the initial marking (which is the final marking as well) is such that all the
interface places are empty.

By observing all the transitions of the medium net, the interface graph of the
medium net can be seen as a SOG. In this SOG, the aggregates are singletons
(each reachable marking is an aggregate) and the observed behavior of each
aggregate is also a singleton : the set of transitions appearing on the outgoing
arcs of the corresponding marking. Finally, the set of final aggregates is again a
singleton containing the initial aggregate.

Figure 4 illustrates the SOG associated with the medium net of Figure 3.
The binary representation of each state number gives the state of the interface
places (order, payment and delivery respectively). For instance, state number 5
stands for 101, i.e., only the interface place of payment is not marked. Unlike the
SOGs associated with N1 and N2, the SOG of the medium net is not supposed
to be built a priori. Thus, the bounds of the places of N12 are not supposed to
be known, as long as the composed net N1 ⊕N2 is bound. In the following, the
SOG of the medium will be computed on-the-fly during the composition of G1

and G2. The composition of G1 and G2, denoted by G1 ⊕ G2 is then defined as
a synchronized product between three SOGs corresponding to N1, N12 and N2

respectively. Before we define the composition of SOGs, it is important to first
show how, using observed behavior of three aggregates a1, a2 and a12 of G1, G2

and G12 respectively, one can compute the observed behavior of the aggregate
resulting from their composition.

Note that the set of states a.S of an aggregate a has not to be stored explicitly
within an aggregate. Once the SOG is built, it will not play any role in the
composition process. However, since our goal is to reduce the compatibility check
of two oWF-nets to the analyzing of their SOGs, we need to know which are
the enabled transitions (especially local transitions) in each aggregate. Given a
oWF-net N = 〈P, T, F, W, m0, I, O, Ω〉 and an associated SOG G with respect
to the set of observed transitions Obs , an aggregate of G is henceforth identified
by its observed behavior λ and the set of enabled local transitions, namely E.
Formally, a.E = {t ∈ T \ Obs | ∃m ∈ a.S, m t

−→}.

Definition 13. Let Gi, for i = 1, 2, be two SOGs associated with two oWF-
nets and let G12 be the SOG associated with their medium net. Let a1, a2 and
a12 be three aggregates of these SOGs respectively. The product aggregate a =
(a1, a12, a2) is defined by:

1. a.λ = {((x ∩ y) ∪ (x ∩ (Obs1 \ Obs12))) ∪ ((y ∩ z) ∪ (z ∩ (Obs2 \ Obs12))) |
x ∈ a1.λ, y ∈ a12.λ and z ∈ a2.λ};

2. a.E = a1.E ∪ a2.E

Note first that a12.λ is a singleton, that Obsi ∩Obs12, for i = 1, 2, is not empty
(because N1 and N2 are interface compatible) but Obsi is not necessarily a
subset of Obs12, and that Obs1 ∩Obs2 = {term}. When we compose a1 and a2,
if a1 (resp. a2) can progress in G1 (resp. G2) by using local observed transitions
(i.e., transitions in Obs1 \Obs12 (resp. Obs2 \ Obs12)), the product aggregate a

should be able to do the same. If this is not the case, then a has to have the
same behavior as a1 (resp. a2) and a12 conjointly.

Definition 14. Let Gi = 〈Ai,Obsi,→i, a0i, Ωi〉, i = 1, 2 be two SOGs corre-
sponding to two oWF-nets N1 and N2. Let G12 = 〈A12,Obs12,→12, a012, Ω12〉
be the SOG of the medium net N12. The composition of G1 and G2, namely
G1 ⊕ G2 = 〈A,Act ,→, a0, Ω〉 is defined as follows:

1. A ⊆ A1 ×A12 ×A2;
2. Act = Obs1 ∪ Obs2;
3. → is the transition relation, defined by:

∀(a1, a12, a2) ∈ A, ∀(a′
1, a

′
12, a

′
2) ∈ A, (a1, a12, a2)

o
−→(a′

1, a
′
12, a

′
2) ⇔















a1
o

−→1a
′
1 ∧ a12

o
−→12a

′
12 ∧ a′

2 = a2 if o ∈ (Obs1 ∩ Obs12)
a′
1 = a1 ∧ a12

o
−→12a

′
12 ∧ a2

o
−→2a

′
2 if o ∈ (Obs2 ∩ Obs12)

a1
o

−→1a
′
1 ∧ a′

12 = a12 ∧ a′
2 = a2 if o ∈ (Obs1 \ Obs12)

a′
1 = a1 ∧ a′

12 = a12 ∧ a2
o

−→2a
′
2 if o ∈ (Obs2 \ Obs12)

4. a0 = (a01, a012, a02);
5. Ω = Ω1 × Ω12 × Ω2.

The composition of the SOGs is similar to the classical synchronized product
between graphs, except the fact that nodes are aggregates (carrying additional
information) instead of single states. However, the asynchronous composition
of the corresponding oWF-nets has been reduced to a synchronous composition

involving the medium net. The evolution in G1 ⊕ G2 can stand for a local evo-
lution to G1 (resp. G2) by using point 3 (resp. 4) of the transition relation in
Definition 14, or a simultaneous evolution in G1 (resp. G2) and G12 by using
point 1 (resp. 2). Given a local transition t in N1, for instance, one can check
whether it remains enabled after composition or not. Indeed, the union of the E

attribute of each aggregate a1, being a part of an aggregate of G1 ⊕ G2, should
contain t. Otherwise, the transition t is not enabled by the composite net and the
transition t becomes dead in the composition. If all the local transitions remain
enabled, the other requirements of soundness can be deduced by analyzing the
synchronized product of the SOGs.

(A0, 0, B0)

λ : {{submitorder}}

(A0, 4, B1)λ : {{receiveorder paybill}}

submitorder

(A1, 0, B1)λ : {{paybill}}

receiveorder

(A0, 6, B2)

λ : {{receiveorder}}
paybill

(A1, 2, B2)λ : {{acceptpay}}

paybill receiveorder

(A2, 0, B2)

λ : {{initdeliv}}

acceptpay

(A3, 3, B2)

λ : {{waitdeliv}}

initdeliv
(A3, 0, B3)

λ : {{term}}

waitdeliv

(A0, 0, B′

0)

λ : {{submitorder}}

(A0, 4, B′

1) λ : {{receiveorder}}

submitorder

(A1, 0, B′

1)λ : {∅}

receiveorder

Fig. 5. the SOG synchronized product

Figure 5 illustrates the two SOGs obtained by synchronizing the SOG of
online shop of Figure 2(a) with the SOGs of costumer C1 and C2 of Figure 2.

Theorem 2. Let N1 and N2 be two oWF- nets and let G1 and G2 be the corre-
sponding SOGs respectively. Then, G1 ⊕G2 is a SOG of N1 ⊕N2 with respect to
Obs1 ∪ Obs2.

5.2 Checking Services Compatibility

Our goal is to check compatibility between two interface compatible oWF-nets
N1 and N2 using their respective SOGs G1 and G2. We assume that the two
oWF-nets are already sound. For checking compatibility, we have to check the

soundness property of N1 ⊕N2. This verification will be reduced to the analysis
of the synchronized product of G1 and G2, denoted G1 ⊕ G2.

Theorem 3. Let N1 and N2 be two oWF-nets locally sound and let G1 and
G2 be the corresponding SOGs respectively. Assume that all the local transitions
remain enabled in the composition G1 ⊕ G2. Then, N1 ⊕N2 is sound ⇔

1. for each aggregate a in G1 ⊕ G2, ∅ 6∈ a.λ,
2. for each aggregate a in G1 ⊕ G2, ∃ a final aggregate af such that af ∈ R(a),

3. for each observed transition t, ∃ two aggregates a, a′ in G1 ⊕ G2 s.t. a t
−→a′.

Corollary 1. Let N1 and N2 be two oWF-nets and let G1 and G2 be the corre-
sponding SOGs respectively. N1 is compatible with N2 ⇔ G1 ⊕ G2 satisfies the
three conditions of Theorem 3.

By analyzing Figure 5, we can see that the composition of the online shop
with the first customer is possible while it is not with the second: the correspond-
ing composed SOG contains a deadlock (i.e., composite oWF-net not sound). For
this particular example, checking the soundness property on the composition of
SOGs (4 nodes and 3 edges) is easier than analyzing the original reachability
graph which contain 24 nodes and 32 edges.

6 Related work

Several approaches investigated the issue of Web services composition. Even
with emergence of web service process technologies such as industrial language
BPEL4WS, WSCL, etc, this specification is still not the most suitable for the
verification process of compatibility behavior on composition of web services.
Thus, many researchers have been interested in formal modeling and analyzing
methods to better formalize the behavior of web services such as Petri net model
and its variants. Authors in [5] propose a Petri net-based Algebra for modeling
web services control flows. The model is expressive enough to capture the se-
mantics of complex service combinations. Formal semantics of each composition
operator (e.g. sequence, selection, refinement) is expressed by a Petri net. Using
this mechanism, the analysis of web services supports the verification of web ser-
vices composition by checking properties like correct termination. An other tech-
nique for modeling multiple web services interactions between BPEL processes
is discussed in [19] using an extention of Petri net models called composition
net (C-net). Authors analyze the model through structural properties instead of
the reachability states space in order to check compatibility: the compatibility
is ensured when the composite net contains a non empty minimal siphon. They
impose constraints on the model to prevent it from reaching incompatible cases
by using a corresponding policy based on appending additional information to
channels. Then, these channels are transformed back to a BPEL description so
that a new compatible web service is obtained. An other approach [3] based on
mediation aided composition has been widely adopted when dealing with incom-
patibilities of services. In this work, given two services modeled by oWF-net, the

authors propose to compose them using Mediation Transitions (MTs). They serve
as information channel specifying the transferring relation of messages between
different services. Then composition compatibility is verified by automatically
constructing and analyzing the modular reachability graph (MRG) of the com-
position which is an abstraction of the original state graph. It is true that the
performance of this approach is notable compared to classical ones, but MRG is
represented explicitly which can be expensive.

Finally a similar approach has been introduced in [18]. In this work, the
authors present a technique based on the Operating Guideline [14] for automat-
ically checking accordance between a private view and a public view associated
to each service involved in the overall process (composition of partners). A mul-
tiparty contract is specified in order to define the rules of engagement of each
partner without describing its internal behavior. It can be seen as the composi-
tion of the public views from all partners. Based on the resulting contract, all
participants implement their private view on the global process in such a way
that it agrees with the contract. Then, checking accordance guarantees that the
process is deadlock-free and that it will always terminate properly. The main dif-
ferences with our approach are: (1) this approach works only for oWF-net with
acyclic behaviors (and hence deadlock freedom coincides with weak termination),
(2) It is an up-down approach in the sens that it starts from a public compo-
sition (contract) whose components can be modified locally under constraints.
In our case, each component ignores all about the possible partners and we also
allow local changes as long as the SOG is not modified. Finally, this approach
uses operating guidelines [14] to abstract services and we established in [8] that,
for most cases, the SOGs-based approach is more effective in terms of memory
and time consumption. In conclusion, to the best of our knowledge, none of the
existing approaches combine symbolic (using BDDs) abstraction and modular
verification to check the compatibility of services. They always deal with an ex-
plicit representation of the system’s behavior, which accentuate the state space
explosion problem.

7 Conclusion

In this paper, we proposed an approach based on a suitable model, namely Sym-
bolic Observation Graph, to abstract web services and to analyze their composi-
tion. Such an abstraction allow to respect the privacy of each publisher by hiding
service’s details, and at the same time it represents the necessary information
to expose on a repository for possible collaboration with other web services. We
established that and how symbolic observation graphs can be extended and ef-
ficiently used for that purpose. Using such abstraction, checking compatibility
between two web services (a requester and a provider) is reduced to checking
compatibility on the synchronized product of the corresponding SOGs.

We are currently developing a graph-based registry for abstract web services
advertisement and discovery. the next step would be to extend the presented
work in order (1) to deal with other compatibility criteria (e.g., other variants

of soundness, specific properties expressed with temporal logics, ...) and (2) to
deal with richer models (e.g. shared resources, the explicit time).

References

1. V. D. Aalst. The application of petri nets to workflow management, 1998.
2. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys, 24(3):293–318, 1992.
3. Y. Du, X. Li, and P. Xiong. A petri net approach to mediation-aided composition

of web services. IEEE T. Automation Science and Engineering, 9(2):429–435, 2012.
4. S. Haddad, J.-M. Ilié, and K. Klai. Design and evaluation of a symbolic and

abstraction-based model checker. In ATVA, pages 196–210, 2004.
5. R. Hamadi and B. Benatallah. A petri net-based model for web service composi-

tion. In ADC ’03, pages 191–200, 2003.
6. S. Hinz, K. Schmidt, and C. Stahl. Transforming bpel to petri nets. In (BPM’05),

volume 3649 of LNCS, pages 220–235. Springer-Verlag, 2005.
7. K. Klai and J. Desel. Checking soundness of business processes compositionally

using symbolic observation graphs. In FMOODS/FORTE, volume 7273 of Lecture
Notes in Computer Science, pages 67–83. Springer, 2012.

8. K. Klai and H. Ochi. Modular verification of inter-enterprise business processes.
In eKNOW, pages 155–161, 2012.

9. K. Klai and L. Petrucci. Modular construction of the symbolic observation graph.
In ACSD, pages 88–97, 2008.

10. K. Klai and D. Poitrenaud. MC-SOG: An LTL model checker based on symbolic
observation graphs. In Petri Nets, pages 288–306, 2008.

11. K. Klai, S. Tata, and J. Desel. Symbolic abstraction and deadlock-freeness verifi-
cation of inter-enterprise processes. In BPM’09 of LNCS, pages 294–309. Springer-
Verlag, 2009.

12. K. Klai, S. Tata, and J. Desel. Symbolic abstraction and deadlock-freeness verifi-
cation of inter-enterprise processes. In BPM’09 of LNCS, pages 294–309, 2009.

13. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting bpel
processes. In BPM’06 of LNCS, pages 17–32. Springer-Verlag, 2006.

14. P. Massuthe, W. Reisig, and K. Schmidt. An operating guideline approach to the
soa. Annals Of Mathematics, Computing and Teleinformatics, 1:35–43, 2005.

15. C. A. Petri. Concepts of net theory. In MFCS’73, pages 137–146. Mathematical
Institute of the Slovak Academy of Sciences, 1973.

16. C. Stahl, P. Massuthe, and J. Bretschneider. Transactions on petri nets and other
models of concurrency ii. chapter Deciding Substitutability of Services with Oper-
ating Guidelines, pages 172–191. Springer-Verlag, 2009.

17. W. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, H. Verbeek, M. Voorho-
eve, and M. Wynn. Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects of Computing: applicable formal methods, 23(3):333–363,
2010.

18. W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. Multi-
party contracts: Agreeing and implementing interorganizational processes. Com-
put. J., 53(1):90–106, 2010.

19. P. Xiong, Y. Fan, and M. Zhou. A petri net approach to analysis and composition
of web services. IEEE Transactions on Systems, Man, and Cybernetics, Part A,
pages 376–387, 2010.

