
HAL Id: hal-01513773
https://inria.hal.science/hal-01513773

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Network-Aware Virtual Machine Allocation in Cloud
Datacenter

Yan Yao, Jian Cao, Minglu Li

To cite this version:
Yan Yao, Jian Cao, Minglu Li. A Network-Aware Virtual Machine Allocation in Cloud Datacenter.
10th International Conference on Network and Parallel Computing (NPC), Sep 2013, Guiyang, China.
pp.71-82, �10.1007/978-3-642-40820-5_7�. �hal-01513773�

https://inria.hal.science/hal-01513773
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Network-aware Virtual Machine Allocation in Cloud
Datacenter

Yan Yaoa Jian Cao*b Minglu Lic

a, b, c Department of Computer Science and Engineering, Shanghai Jiao Tong University
ayaoyan@sjtu.edu.cn, bcao-jian@cs.sjtu.edu.cn, cml-li@sjtu.edu.cn

Abstract. In a cloud computing environment, virtual machine allocation is an
important task for providing infrastructure services. Generally, the datacenters,
on which a cloud computing platform runs, are distributed over a wide area
network. Therefore, communication cost should be taken into consideration
when allocating VMs across servers of multiple datacenters. A network-aware
VM allocation algorithm for cloud is developed. It tries to minimize the com-
munication cost and latency between servers, with the number of VMs, VM
configurations and communication bandwidths are satisfied to users. Specifi-
cally, a two-dimensional knapsack algorithm is applied to solve this problem.
The algorithm is evaluated and compared with other ones through experiments,
which shows satisfying results.

Keywords: VM allocation; cloud datacenter; Two dimensional knapsack algo-
rithm.

1 Introduction

Cloud computing has emerged as a new paradigm for hosting and delivering services
over the Internet[1]. There are three service models in cloud computing: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)
which deliver the infrastructure, platform, and software (application) as services re-
spectively. These services are made available to consumers in an on-demand way. In
order to provide users with various cloud services, many cloud providers (e.g. Amazon,
Google) have built their cloud datacenters around the world.

Resource allocation is a core process in a datacenter. Recently, an increasing number
of cloud providers take advantage of virtualization technologies, such as VMware [3],
Xen [4], KVM [5] and OpenVZ [6], to implement a cloud datacenter. Typically, a user
submit his requests, including the number of Virtual Machines (VMs for short) and
their configurations through a portal of the provider. The provider will allocate the
VMs in the cloud datacenters to satisfy the requirements of the user. Thus VM alloca-
tion is becoming a new problem to be solved.

* Corresponding Author

There already exist many algorithms for VM allocations with different aims and
assumptions [7]. Some of them try to allocate VMs in an energy efficient way[8-11].
Energy consumption is a big concern for cloud providers. But other factors should be
considered in VM allocation as well, such as network. Some works have been done on
VMs allocation in a network-aware way [12-15]. However, there still exists several
open issues to be solved. Firstly, the existing allocation algorithms considering the
consumptions of network resources are designed for traditional datacenters whose
network architectures are often centralized, not distribute over a wide area. In a cloud
data center, the distances between different sub-datacenters greatly affect the perfor-
mance of applications. In addition, the VMs requested by users have various configu-
rations, such as different number of processors or amount of memory. Thus the issue
of the heterogeneity should be considered.

In this paper, we focus on the two open issues mentioned above. As it is well
known that the resource allocation problem is NP-hard, here we developed a heuristic
algorithm, a Network-aware VM allocation algorithm based on Maximum Clique
(MCNVMA for short), with the goal of minimizing the maximum latency in commu-
nication between the sub-datacenters. MCNVMA considers constraints on local
physical resources, such as CPU and memory, as well as the network. In order to make
it more practical, the VMs and the datacenters both are heterogeneous in MCNVMA.

The rest of this paper is organized as follows: Section 2 discusses related work and
Section 3 introduces the problem in details. Section 4 illustrates detail steps of the
MCNVMA we developed. Experimental results are illustrated in Section 5 to show
performance evaluation of MCNVMA. Section 6 concludes the paper.

2 Related Work

Existing work on the allocation of VMs can be categorized into three offering models:
reservation model, spot markets model and on-demand access model [17]. In the res-
ervation model, a user purchase a bundle of resources for a period (e.g., a whole year) ,
during which the specified VMs can get great discount for payment in advance. Spot
market model is a one-side auction market, consuming resources at a lower and flexible
cost. In on-demand access model, users simply requests a specified number of the VMs,
and pays for it according to a fixed schedule of fees. Here we restrict our study to
on-demand access model. There are two types of VM allocation decisions to be made:
initial placement [18] and optimizing (or migration) of VMs allocations over time [19].
In the current research, initial placement and VM migration as considered as separate
topics, though in some cases similar algorithms may be employed. We limit our study
to initial VM placement. Cluster and node are two levels considered in initial VM
placement. In general, we consider physical machines are put in an unstructured re-
source pool so that the default is a shared cluster.

Some constraints should be satisfied when VMs are allocated to physical machines,..
Usually, the constraints are put on some specific attributes such as CPU usage, memory
usage, and network usage. These constraints can be summarized into a weighted cri-
teria used to order physical machines. If the criteria is about energy, then the algorithm

tends to save energy [8-11]. If the criteria is about network, the algorithm tends to
reduce the network traffic[12-15]. We briefly introduce some of them related to our
work. In [12], the authors introduce a Traffic-aware VM Placement Problem
(TVMPP), trying to reduce the aggregate traffic. As TVMPP is NP-hard , the authors
introduce a heuristic approach to solve it. In [13], a Min Cut Ratio-aware VM Place-
ment (MCRVMP) is proposed. It considers both constraints on local physical re-
sources and network resources evolving from complex network topologies and dy-
namic routing schemas. They achieve them by exploiting the notion of network graph
cuts. While both TVMPP and MCRVMP assume static and well-defined traffic de-
mands, in [14] the authors focus on the equivalent capacity notion to consolidate VMs
with uncorrelated traffic demands. Traffic demands are modeled as stochastic va-
riables, and the optimization problem strives to place VMs while ensuring that the
maximum network capacity is not violated with a particular user-defined probability.
Hence, the final VM placement problem is a stochastic bin packing problem, and
authors introduce a new heuristic approach to solve it. However, all the above net-
work-aware VM allocation strategy ([12][13][14]) are designed for traditional data-
centers whose network architectures are often centralized and do not distribute over a
wide area. Mansoor Alicherry et. al in [15] proposed a network aware resource allo-
cation algorithm based on distributed datacenter. They also take it make a compare
with traditional datacenter and they regard the VMs as homogeny, which means all the
VMs requested by users have the same number of processors and the same amount of
memory. It is not applicable to real world. In this paper, we view datacenter are geo-
graphical distribution and VM requested by users are unique. The number of processors
and the amount of memory of the VMs requested can be arbitrary realistic value.

3 VM Allocation Problem in Cloud Datacenters

What exactly is the VM allocation? In brief, a user requests for a service hosted in the
cloud, requiring the allocation of VMs in the cloud datacenters, to meet the requested
service's computational needs. The datacenter should identify the suitable physical
resources for each requested VMs and allocate them.

A user’s request can be specified in terms of the number of VMs, their configura-
tions and the communication requirements. Sometimes a user may not have a priori
knowledge of the communication requirements among the VMs. However we can get it
by statistic analysis approach. In this paper, we assume that knowledge of the com-
munication requirements among the VMs is already known.

We use a small dataset for ease of illustrating. In reality, it can be much larger sets of
VMs and cloud datacenters. Suppose a user applies for ten VMs to run an application
over a cloud infrastructure. Each VMs has fixed processor and memory (See Table 1)
and the communication requirements(bandwidth) between VMs is collected (See Table
2). In Table 2, if the entry value is 0,it indicates there is no communication between two
virtual machines, otherwise, it represents the necessary communication bandwidth
needed. Suppose there are only five sub-datacenters to run these VMs. Each sub da-
tacenter has some free CPU and memory capacities (see Table 3), and the distance

between them are known as well(Table 4). Now, we need to find an VM allocation
meeting the following requirements:

 Processor and memory requirements of VMs allocated on a sub-datacenter should
not exceed its available free capacity.

 The communication requirements among VMs can be satisfied.
 The communication between VMs which belonging to different sub-datacenters (or

servers) is minimized.
 In this paper, each VM can be placed on arbitrary datacenters and servers. We
propose a heuristic approach which consists of two consequent steps: datacenter se-
lection and server selection. Datacenter selection is to select sub datacenters , which are
geographically distributed, to place the VMs. And then assign individual VMs to the
selected sub datacenters. Server selection is to determine the servers in the selected
sub-datacenters and place the individual VMs to the servers. The two steps are very
similar in algorithm. And here we just provide an example of selecting sub datacenters.

Table 1. VM Requirements(processor number, memory amount)

VM Processor Requirement Memory Requirement
VM0 4 2
VM1 8 8
VM2 2 4
VM3 8 2
VM4 4 4
VM5 4 6
VM6 2 1
VM7 9 10
VM8 8 2
VM9 6 4

Table 2. Communication cost between VMs（Mbps）

Table 3. Datacenters Free Capacities

DC Processor Capacity Memory Capacity

DC0 60 15
DC1 22 18
DC2 40 12
DC3 20 13
DC4 80 21

Table 4. Distance between DCs (mile)

 DC0 DC1 DC2 DC3 DC4
DC0 0 2 7 11 10
DC1 2 0 5 7 1
DC2 7 5 0 9 20
DC3 11 7 9 0 15
DC4 10 1 20 15 0

4 VM Allocation Algorithm

4.1 Problem Formulation

Our problem statement can be briefly described as follows:

1. m cloud datacenters are available and their resource capacities given along processor
and memory dimensions. Noted as the set ܥܦ = {݀ܿଵ, ݀ܿଶ, … , ݀ܿ௠} . For each
݀ ௜ܿ ∈ ௗ௖௜ܥ with the capacity ,ܥܦ = ௗ௖௜݋ݎܲ) ;(ௗ௖௜݉݁ܯ,

2. There are n VMs to be placed. The requirements of these VMs are given in terms of
processors and memories needed, denoted as ܸܯ = ଵ݉ݒ} , ,ଶ݉ݒ … , ௡} and for݉ݒ
each ݉ݒ௜ ∈ ௩௠௜ܥ the capacity requirement is ,ܯܸ = ௩௠௜݋ݎܲ) , ;(௩௠௜݉݁ܯ

3. The communication cost between n VMs is denoted by a matrix ݐݏ݋ܥ =
 ;௡×௡(௜௝ݐݏ݋ܿ)

4. The communication distance between any two sub datacenters is given, denoted as
ݏ݅ܦ = -௠×௠. We regard the network resource as sufficiently enough, how(௜௝ݏ݅݀)
ever in server selection phase, the constrains on communication distance is
changed to the network resource (like bandwidth).

5. We need to find a mapping between VMs and sub datacenters that satisfies the VMs’
resource requirements while minimizing inter-datacenter traffic and intra-datacenter
traffic between VMs.

While finding such a mapping, we have to take care that the total resource re-
quirement of the VMs placed on the same sub datacenter should not exceed the data-
center's capacity.

4.2 MCNVMA Algorithm

The basic idea of our MCNVMA algorithm is: First of all, we identify a subset of the
datacenters with minimizing length of the paths between the datacenters. Additionally

we need to determine the datacenter assignment for each individual VM. For this
assignment, our objective is to minimize the inter datacenters traffic between the VMs.

Firstly, we select a set of datacenters to place the VMs. We view this problem as a
sub-graph selection problem, which is finding a maximum sub-graph with a given
diameter. For general graphs, it is an NP-hard problem and cannot be approximated
within 2-ε for any ε>0)[15].

Given a complete graph G = (V, E, c, l). The vertices V represent the datacenters, and
weights ܥௗ௖௜ = ௗ௖௜݋ݎܲ) ௗ௖௜) on them denote the number of processors and the݉݁ܯ,
amount of memory of the datacenter respectively. The edges E represent the path
between the datacenters and length l on them denotes the communication distance
between the sub datacenters (in server selection phase denotes bandwidth). Let s be the
number of VMs requested by the user. Then we should find a sub graph of G, denoted
as G', with m' vertices. G' meeting the flowing conditions<1, 2>, with minimum
maximal distance.
For ∀݅ ∈ {1,2,… ,݉′},

෍ܲ݋ݎ௩௠௝(݅) ≤ ௗ௖௜݋ݎܲ

௡

௝ୀଵ

						(1)	

෍݉݁ܯ௩௠௝(݅) ≤ ௗ௖௜݉݁ܯ

௡

௝ୀଵ

	(2)				

where ܲ݋ݎ௩௠௝(݅) equals to ݌௝ (represent the number of processors VMj required) if
VMj is deployed on data center i, otherwise is zero; and ݉݁ܯ௩௠௝(݅) equals to ௝݉
(represent the amount of memory VMj required) if VMj is deployed on datacenter i,
otherwise also is zero.

Since the original graph is a complete graph, the subgraph induced by the selected
vertices is also complete. And all of the complete graphs are their self-clique. Hence,
our goal is to find such a clique whose length of the longest edge is minimum.

Algorithm: MCNVMA(G, N, W[][],Value[])
Input: G =(V, E, w, l)
 N: the amount of VMs;
 Value[]: value of VMs;
Output: min_diameter.

for each vertex vV
 ܸ ′ ← ,{ݒ} ′ܧ ← ∅,݉ ← Count(ܸ),݃݅݁ݓℎݐ ← ;(ݒ)ݓ
 AllocatedVM←TDKnapsack(weight,W,Cost);
 ToAllocateVM←W-AllocatedVM;
 Sorted the vertices of G in increasing order of length to
v, noted as ݑଵ, ݑଶ, ݑଷ,..., ݑ୫ିଵ.
 ݅ ← 0
 while (݅ < ݉)
ݐℎ݃݅݁ݓ ← ;(௜ݒ)ݓ
 perform two dimensional knapsack algorithm.

 ݀ ݎ݁ݐ݁݉ܽ݅ ← max〈݀݅ܽ݉݁ݎ݁ݐ, ݈൫ݒ௝ , 〈௜൯ݑ ;
 ܸ ᇱ ← ܸᇱ ∪ ;{௜ݑ}
′ܧ ← ′ܧ ∪ ,′ݒ)} ,(௜ݑ ′ݒ ∈ ܸ′};
 compute to remain to allocated VMs.
 ݅ ← ݅ ++
 end while
 if min_diameter >diameter
 min_diameter ←diameter
 else if min_diameter > diameter
Compare the communication cost of clique
end while
end for
return min_diameter

Once a datacenter is selected, we will assign individual VMs to it. This assignment is
done during the process of datacenter selection. This problem can be regarded as a
variant of two dimensional knapsack problem. We regard each datacenters as a knap-
sack and each VM as an item. The capacity of knapsack consists of available processors
and memory. As mentioned in the problem statement, each item has two different kinds
of cost (processors and memory). The value of each VM is the sum of the bandwidth,
which is needed while communicating with others. The value is dynamic change
along with the implementation of the algorithm. Our goal is to find the allocation of
VMs with the maximum value under the conditions of limited capacity and minimum
communication.

The algorithm finds a sub-clique satisfying the constraints that include vertex v and
places VMs by invoking two dimensional knapsack algorithm which is implemented by
the dynamic programming method. After completing the two dimensional knapsack
algorithm, the VMs with lager communication requirement are placed on the same
datacenter, then the communication cost between different datacenter is least. The
algorithm finds maximum clique including vertex v by adding nodes in an increasing
order of length to v, until the weight of the clique meeting the constraints. The algo-
rithm computes the diameter of the resulting sub-clique as well. This is done by
maintaining the diameter as the nodes are added. When a node is added, the diameter of
the sub-graph change only if the length of the edges induced by that node is greater than
the current diameter.

The algorithm finds a sub-clique meeting the constraints through the while loop for
each of the vertices, and selecting the one with the smallest diameter.

4.3 Example and Analysis

Now let's illustrate how to solve the problem introduced in Section 3.2 using
MCNVMA algorithm. First of all, we need to map datacenters onto the nodes of a
graph(Fig 3). The weights of nodes correspond to the capacity of datacenters (Table 3),
and the weights of edges correspond to distances between sub-datacenters (Table 4).

Firstly, we select a arbitrarily node, such as n0 as the start node. We use two di-
mensional knapsack algorithm to assign VMs set on it. The sum of each row of Table 2
is the VM's value (Table 5), which changing dynamically. Now we place {VM3, VM6,
VM7, VM8} on n0. As n1 to shortest among n0's neighbors. Next, we select and place
VMs on n1 from the remaining VMs list ({VM0, VM1, VM2, VM3, VM4, VM5, VM9 }).
This procedure repeats until all of the VMs have been allocated.

Table 5. VM value list

VM Value(Mbps)
VM0 1.9
VM1 2.1
VM2 1.35
VM3 2.71
VM4 1.6
VM5 1.7
VM6 2.61
VM7 2.76
VM8 3.22
VM9 2.03

Table 6. Result

Start node Clique Diame-
ter

n0 { n0, n1, n2} 7
n1 { n1, n4, n0} 10
n2 { n2, n1, n0} 7
n3 { n3, n1, n2} 9
n4 { n4, n1, n0} 10

We record the nodes and the diameter of the sub graph, which is induced by the
nodes (Table 6). Then we select the clique with minimum diameter C={n0, n1, n2}, that
is datacenter DC0, DC1, DC2.

Fig. 1. Graph G=(V,E)

Analysis: In the while loop needs to sort the lengths of edges incident on a node,
which takes nlogn time, where n is number of datacenters. While loop in the algorithm
may be executed once per node. Computing diameter takes O(n2) as there are n2edges.
And the dynamic programming based two dimension knapsack algorithm takes O(mn)
time as there are m VMs and n data centers. Hence, in the worst case, the running time
of while loop is O(n2). Algorithm MCNVMA executes the while loop times, one for each
node so that the worst case complexity is O(n3).

weight of vertices :
w={(60,15),(22,18),(40,12),(20,13),(80,21)}
weight of edges :
<0,1>=2,<0,2>=7,<0,3>=11,<0,4>=10
<1,2>=5,<1,3>=7,<1,4>=1
<2,3>=9,<2,4>=20
<3,4>=15

0

1 2

3
4

5 Evaluation

5.1 Experiment Settings

We compare MCNVMA algorithm with Random algorithm and Greedy algorithm.
Random algorithm selects a random datacenter and places VMs as many as possible on
it randomly. If there are more VMs in the request than available in the datacenter, then
the algorithm chooses the next datacenter randomly to place the remaining VMs. This
process is repeated until all the VMs are placed. Greedy algorithm selects the data-
center with maximum capacity. It places as many VMs from the request as possible on
that datacenter. If there are remaining VMs in the request to be placed, then the algo-
rithm selects the next datacenter with the largest free capacity. This process continues
until all the VMs are placed.

To measure the performance of the algorithms, we create random topologies and
user requests, and measure the maximum distance between any two VMs in the
placement output by these algorithms. The locations of datacenters are randomly se-
lected from 500x500 grid. In each of the experiments below, we report the results as
average of 100 runs.

5.2 Experiment Results

Firstly, we measure the maximum distance of the placement for a request of 100 VMs.
By varying the number of datacenters, we compare the maximum distance between
any two VMs, see Figure 2 and 3. MCNVMA algorithm has much smaller distance than
random algorithm. The communication cost between datacenters in MCNVMA is
lower than other two.

Fig. 2. Max distance for 100 VMs

Now, we set the number of datacenter to 50. We vary the number of VMs to eva-
luate the maximum distance and the stability of the algorithm. From figure 5 we can
see that the maximum distance computed by MCNVMA algorithm is much lower
than random algorithm and greedy algorithm. And the stability of MCNVMA is simi-
lar to the other two algorithms (Fig. 6).

Fig. 3. Communication Cost for 100 VMs

Fig. 4. the number of selected datacenters for

Fig. 5. Maximum distance for 50 DCs

Fig. 6. Algorithm Stability for 50 DCs

6 Conclusions and Future Work

In this work we provide a allocation algorithm (MCNVMA) for VMs in cloud data-
center. Each VM can has its own configuration requirements in MCNVMA. The
communication cost among VMs, which can be collected, are also defined as re-
quirements as well. This algorithm try to find solutions with short communication path
among VMs while user’s requirements can be satisfied. From experimental results, the
MNCRA algorithm reduces the communication cost between the VMs especially in
large scale datacenters.

In this paper, only network factors are considered. However, energy saving, load
balancing and other factors should also be considered in real applications. We are going
to explore other market models, such as spot market model as well.

Acknowledgements

This work is partially supported by China National Science Foundation (Granted
Number 61073021, 61272438), Research Funds of Science and Technology Commis-
sion of Shanghai Municipality (Granted Number 11511500102, 12511502704), Cross
Research Fund of Biomedical Engineering of Shanghai Jiaotong University
(YG2011MS38). The work described in this paper was supported by Morgan Stanley.
Morgan Stanley and Shanghai Jiao Tong University Innovation Center of Compu-
ting in Financial Services have entered into Collaboration Agreement No.
CIP-A20110324-2.

References

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-
son, A. Rabkin, I. Stoica, and M. Zahari.:A View of Cloud Computin.Communications of
the ACM, Vol. 53, No. 4, pp. 50-58, 2010.

2. Bhardwaj S, Jain L, Jain S.: Cloud computing: A study of infrastructure as a service
(IAAS)[J]. International Journal of engineering and information Technology, 2010, 2(1):
60-63.

3. C. Waldspurger.:Memory resource management in VMware ESX server. ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, p. 194, 2002.

4. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield.:Xen and the art of virtualization. in Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003, p. 177.

5. A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.: kvm: the Linux virtual machine
monitor. inProceedings of the Linux Symposium, vol. 1, 2007, pp. 225–230.

6. “Openvz: Server virtualization open source project,” http://openvz.org, 2010.
7. Ye K, Huang D, Jiang X, et al. Virtual machine based energy-efficient data center archi-

tecture for cloud computing: a performance perspective[C]//Proceedings of the 2010
IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference
on Cyber, Physical and Social Computing. IEEE Computer Society, 2010: 171-178.

8. Cao J, Wu Y, Li M. Energy efficient allocation of virtual machines in cloud computing
environments based on demand forecast[M]. Advances in Grid and Pervasive Computing.
Springer Berlin Heidelberg, 2012: 137-151.

9. Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for effi-
cient management of data centers for cloud computing[J]. Future Generation Computer
Systems, 2012, 28(5): 755-768.

10. R. Buyya, A. Beloglazov, J. Abawajy, Energy-efficient management of data center re-
sources for cloud computing: a vision, architectural elements, and open challenges, in:
Proceedings of the 2010 International Conference on Parallel andDistributed Processing
Techniques and Applications, PDPTA 2010, Las Vegas, USA, 2010.

11. Beloglazov, Anton, and Rajkumar Buyya. "Energy efficient resource management in vir-
tualized cloud data centers." Proceedings of the 2010 10th IEEE/ACM International Con-
ference on Cluster, Cloud and Grid Computing. IEEE Computer Society, 2010.

12. Meng X, Pappas V, Zhang L.: Improving the scalability of data center networks with traf-
fic-aware virtual machine placement[C]. INFOCOM, 2010 Proceedings IEEE. IEEE, 2010:
1-9.

13. Wang M, Meng X, Zhang L.: Consolidating virtual machines with dynamic bandwidth
demand in data centers[C]. INFOCOM, 2011 Proceedings IEEE. IEEE, 2011: 71-75.

14. Biran O, Corradi A, Fanelli M, et al.: A stable network-aware vm placement for cloud
systems[C]. Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012). IEEE Computer Society, 2012: 498-506.

15. Alicherry, Mansoor, and T. V. Lakshman. "Network aware resource allocation in distributed
clouds." INFOCOM, 2012 Proceedings IEEE. IEEE, 2012.

16. Liu, Liang, et al. "GreenCloud: a new architecture for green data center." Proceedings of the
6th international conference industry session on Autonomic computing and communications
industry session. ACM, 2009.

17. S. Shang, Y. Wu, J. Jiang and W. Zheng, “An Intelligent Capacity Planning Model for Cloud
Market”, Journal of Internet Services and Information Security, 1:1, 37-45.

18. F. Machida, M. Kawato and Y. Maeno, “Redundant Virtual Machine Placement for Fault
tolerant Consolidated Server Clusters”, Proceedings of the 12th IEEE/IFIP Network Oper-
ations and Management Symposium, Osaka, Japan, 2010, 32-39.

19. S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubrahmanian, K. Talwar, L. Uyeda and U.
Wieder, “Validating Heuristics for Virtual Machine Consolidation”, Microsoft Research,
MSR-TR-2011-9, January 2011.

