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Abstract. Information dissemination is an important application in VANETs 
for traffic safety and efficiency. In urban area, roadside infrastructure nodes can 
be deployed for information dissemination. However, it is inefficient and 
uneconomical to cover the whole urban area. How to find the optimal locations 
to place DPs is a research problem. Some works on this issue have to collect 
accurate trajectories of all the vehicles, which is not practical in the real 
environment. In this paper, we propose a novel approach for DPs placement in 
grid road networks without knowing trajectories. Based on the analysis of path 
number between two intersections, a probabilistic model is proposed to get the 
trajectories estimation of vehicles. The theoretical optimal algorithm (OA) and 
two heuristic algorithms (called KP-G and GA) are developed for the problem. 
Simulation results reveal that GA is scalable and has the highest coverage ratio 
on average. 

1   Introduction 

Information dissemination based on Vehicular Ad hoc Networks (VANETs) is 
intended to the support traffic safety and efficiency, as well as services for drivers [1–
3]. In this paper, we deal with information dissemination from roadside infrastructure 
to passing vehicles, tackling the specific issue of deploying an intelligent transport 
system infrastructure that efficiently achieves the dissemination goal. For example, 
transport department can disseminate some traffic news to vehicles. We refer to the 
vehicles who have received the disseminated information as informed vehicles. Our 
goal is to maximize the number of informed vehicles. In other words, we aim at 
maximizing the coverage ratio of information dissemination. 

In principle, an information dissemination system could leverage both vehicle-to-
vehicle (V2V) and vehicles-to-infrastructure (V2I) communications. When only a few 
of roadside units (RSUs) are deployed, V2V communications could enable data 
sharing thus increasing the coverage ratio of information dissemination. However, the 
gain achieved through V2V communication strictly depends on the network topology 
and the particular cooperation paradigm, and it is difficult to evaluate in the general 



case. In this paper, we analyze the problem of optimally placing infrastructure nodes 
(e.g. IEEE 802.11 access points or RSUs) only considering V2I communications. 

We refer to the infrastructure nodes as Dissemination Points (DPs). A DP serves 
for the vehicles that pass through the dissemination range of the DP. In other words, 
the vehicles who pass through a DP could be served (i.e., covered). However, it is 
difficult, in terms of infrastructure cost, to cover all roads with a large number of DPs, 
especially during the rollout of ITS. In our approach, DPs are placed at intersections 
which prove to be much better locations than road segments for DPs deployment in [4]. 
We could describe this problem as follows: in a given urban area which has N 
intersections with a limited number of k DPs ( k N≤ ), what is the best deployment 
strategy to maximize the coverage ratio of information dissemination. 

We could model the problem as a Maximum Coverage Problem (MCP). However, 
traditional approaches of MCP may not be suitable for this problem for three reasons. 
First, the DPs deployed in the area neither have to necessarily form a connected 
network, nor provide a continuous coverage of the road topology. Second, vehicles 
move among these different DPs rather than be stationary. Third, vehicles may cross 
more than one intersection, thus they may be served by more than one DPs. The 
problem presented in this paper differs from traditional problems. 

This problem could be solved through heuristic algorithms if we could get the 
accurate trajectory of every vehicle as in [4]. However, the drivers may not be willing 
to share their trajectories for privacy concerns. As a consequence, it is not practical to 
collect every vehicle’s accurate trajectory for decision-making. Moreover, because the 
trajectories of all vehicles and the traffic pattern may change from time to time, the 
placement based on trajectories may not be stable. It means that the optimal placement 
based on a certain set of trajectories may not be optimal in another set of trajectories. 
Meanwhile, in real communication environments, it could not assure that a vehicle 
could receive the information from a DP when it passes the DP. We introduce a 
parameter ps to represent the probability that a vehicle could successfully receive 
information from a DP. The probability ps is a feature of a wireless link and may affect 
the deployment of DPs. Our scheme deploys DPs at the most appropriated locations 
based on ps rather than improving ps. 

In this paper, we propose a novel approach to solve the problem without using 
vehicles’ accurate trajectories. Instead of vehicles’ accurate trajectories, we only need 
the road network topology, and vehicles’ origin points and destination points. Note 
that in a certain observation time, most vehicles except taxis have specific origin 
points and destination points in one journey. Based on the analysis on the statistical or 
historical data, we could get the distributions of the numbers of vehicles at origin 
points and destination points. Then the trajectories estimation of vehicles could be 
derived. Then, we propose a theoretical optimal algorithm (OA) and two heuristic 
algorithms (called KP-G and GA) for the problem. 

The remainder of this paper is organized as follows. Section 2 reviews the previous 
work. Section 3 presents a probabilistic model, and proposes an optimal algorithm as 
well as two heuristic algorithms. Performance evaluations are presented in Section 4. 
Section 5 concludes this paper. 



2   Related Work 

Wireless access point or base station placement is a well known research topic. In the 
context of sensor networks, several studies have considered the optimal node 
placement schemes which are always NP-hard. To tackle such complexity, several 
heuristics have been proposed to find sub-optimal solutions [5, 6] in presence of 
stationary nodes.  

In VANETs and mesh networks, there are several studies on roadside units (RSUs) 
placement problem. Lochert et al. [7] have tackled the problem of sparse roadside 
units placement for data aggregation but not information dissemination. Sun et al. [8] 
propose cost-efficient RSUs deployment scheme for short-time certificate updating. 
In this scheme, OnBoard Units (OBUs) in any place could communicate with RSUs 
in certain driving time, and the extra overhead time used for adjusting routes to update 
short-time certificates is small. Pan et al. [9] address the problem of optimally placing 
one or multiple gateways in both 1-D and 2-D vehicular networks to minimize the 
average number of hops from APs. They also give some analytical results for finding 
the optimal placement of multiple gateways in 2-D vehicular grid networks and 
discuss how to minimize the total power consumption. Abdrabou et al. [10] present an 
analytical framework to statistically estimate the maximum packet delivery delay 
from a vehicle to an RSU for a low density VANET via vehicle-to-vehicle 
communications. Aoun et al. [11] propose a polynomial time near-optimal algorithm 
which recursively computes minimum weighted Dominating Sets (DS), while 
consistently preserving QoS requirements across iterations. Trullols et al. [4] have 
done the closest work to ours. They propose three heuristic deployment algorithms 
MCP-g, MCP-sz and KP-P for information dissemination in intelligent transportation 
systems. However, their heuristic algorithms need the accurate trajectory of every 
vehicle. The difference between our work and [4] is that we could make approximate 
optimal DPs placement only based on road network topology and vehicles’ origin 
points and destination points. We also consider the probability of vehicles served. 

3   Probabilistic Model and Placing Algorithms 

3.1   Problem Statement 

We consider an urban grid road network. As in many Chinese cities, the road 
networks are very regular which could be mapped into grid road networks. Literature 
[4] reveals that intersections prove to be much better locations than road segments for 
DPs deployment. Thus, we also place DPs at intersections. We assume that each DP 
cover only one intersection, which means that only vehicles cross it could be served 
(i.e., covered). Our goal is to place the k DPs for maximizing the number of informed 
vehicles. However, we would not need vehicle’s accurate trajectories for two reasons. 
As first important, vehicles may not share their trajectories for privacy concerns, and 
it is also impossible and unpractical to collect those sensitive individual data. On the 



other hand, the placements based on trajectories are not stable due to trajectories may 
change time to time. It is not flexible to deploy DPs in real world. 

We propose a probabilistic model based on the distributions of the origin points 
and destination points of vehicles in an urban environment. As we know, most 
vehicles except taxis have specific origin points and destination points in one journey. 
For example, during 7:00am and 8:00am, they drive from their home to offices. Then 
they park their vehicles near their offices. The residence is the origin point, and the 
parks near offices are the destination points. While the path from origin point to 
destination point is uncertain for different reasons. For example, they could choose 
the path according to the real time traffic, or according to their favor, or by GPS-
based navigation systems, and so on. We study the probability of vehicles crossing 
each intersection by random path selection. 

3.2   Number of Paths 

In a given grid road network, the number of paths between two intersections is needed 
to be calculated. We assume that vehicles always select the shortest paths. Traditional 
approaches search the shortest paths using graph theory such as Dijkstra algorithm. 
However, it is not sufficient for grid networks due to so many paths with the same 
shortest distance. As shown in Fig.1, we assume the length of each segment is the 
same. 

Let 1 1 2 2FP(( , )( , ))i j i j  denote the number of paths between 1 1( , )i j  and 2 2( , )i j . 
To reduce the dimension of FP, we use a integer x  to represent the intersection 
( , )i j  in m n×  grid road network, where ( 1)x i n j= − ⋅ + . Therefore, 

1 1 1 1FP(( , )( , ))i j i j  could be denoted as 1 2( , )fp x x . 

(1,1)

(3,4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16  
Figure 1. 4 4×  Grid Road Network 

1 2( , )fp x x  could be calculated as Eq.(1). 

1 2 1 1 2 2
( )( , ) (( , )( , )) ( , )

! !
i jfp x x FP i j i j F i j
i j

Δ + Δ
= = Δ Δ =

Δ Δ
           (1) 

In Eq.(1), 1 2| |i i iΔ = − ,and 1 2| |j j jΔ = − .For example, 
(1,12) FP((1,1)(3, 4)) F(2,3) 10fp = = = . 



3.3   Origin Points and Destination Points 

The origin points and destination points will be any places on the road segment; 
however, we could map these points into the intersections. For example, as shown in 
Fig. 2, a vehicle named A starts from point a where located at north of the road 
segment. The circle line figures out the dissemination range of each DP. The origin 
point of vehicle A is out range of any DPs. According to the traffic rule, vehicles 
should run on the right side, therefore, we regard the origin point of vehicle A as 
intersection (2,2). It is the similar for destination points. If a vehicle’s destination 
point is out range of any DP, we regard the last intersection which it has crossed as its 
destination point. We use matrices G and D to denote the distributions of the numbers 
of vehicles at origin points and destination points. 

North
A

(2,2) (2,3)a

 
Figure 2. Mapping Origin Point into Intersection 

3.4   Probabilistic Model and Algorithms  

In the m n×  grid network, let ( , )k ki j  denote the original address of intersection 

kx . Here, 1 ki m≤ ≤ , 1 kj n≤ ≤  and ( 1)k k kx i n j= − ⋅ + . We introduce several 
probabilities as listed Table 1. 

We use Coverage Ratio (CR) to evaluate the final performance of the algorithms. 
CR means the proportion of the number of vehicles served by DPs to the number of 
total vehicles during the observation time. We could use Eq.(2) to compute CR. 
Table 1.   Probability Symbols 

Symbol Description 
xps  The probability that a vehicle is served when it crosses x

xpa  The probability that a vehicle has once appeared at x

xpg  The probability that a vehicle starts from x

xpd  The probability that a vehicle disappears at x

o dx xpod  The probability that a vehicle is start from ox and disappears at dx  

xpp  The probability that a vehicle passes through the intersection x  but 
neither starts from nor disappears at x  

1( ,..., )
c cpf x x

 
The probability that a vehicle passes through these c intersections, 

1c >  

1

1

| |
i i

i i

i k i kx xi
x x

i

V ps
CR pa ps

NVT

= =
=

=

⋅
= < ⋅∑∪

                    (2) 



In Eq.(2), 
ixV  means the set of vehicles that cross ix , and NVT means the total 

number of vehicles during the observation time. Therefore, 1| |
i i

i k
x xi V ps=

=
⋅∪ means 

the total number of vehicles that have been served by one or more of DPs which are 
placed at these k intersections. However, it is quite difficult to compute the accurate 
CR. It is obvious that CR is fewer than 1 i i

i k
x xi pa ps=

= ⋅∑  which could be used as 
approximate value and obtained with less computation. According to the above 
analysis, we propose an optimal algorithm OA, and two heuristic algorithms KP-G and 
GA. The optimal algorithm OA could only be used in small scale situations due to its 
high computational complexity. 

The optimal algorithm OA and heuristic algorithm KP-G are listed as following, 
respectively. 

Algorithm 1 OA 
1: Initialize, {1,..., }U N= . 
2: for every subset 1{ ,..., }kx x U⊆  do 
3:     calculate the accurate CR as Eq.(2). 
4:     compare the CR, find the largest CR and 1{ ,..., }kx x . 
5: end for 
 

Algorithm 2 KP-G 
1: Initialize, {0}v = . 
2: for every intersection ix  do 
3:     

i ii x xv pa ps= ⋅ . 
4: end for 
5: sort v in descending order, select the first k intersections 
Obviously, 1 2...k kpf pf pf pa−< < < < , 2pf  plays a more important role in Eq.(2) 

than other cpf  with 2c > . In large grid road networks, cpf  are relatively small. 
Therefore, in GA, we use 2pf  to approach the accurate CR. It will lose some 
performance comparing with OA, but it has quite low computational complexity. 

We use 3k =  to explain how to compute CR with 2pf  as Eq.(3). 

1 1

2 2

3 3

1 2

1

1

2 1 2 2 1 3
2 1 2 2 2 3
2 1 3 2 2 3

2 1 2
2 1 3

| |

( ( , ) ( , ))
( ( , ) ( , ))
( ( , ) ( , ))

( , ) (1 (1 ) (1 ))
( , ) (1 (1 ) (1

i i

i k
x xi

x x
x x
x x

x x
x
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NVT
pa pf x x pf x x ps
pa pf x x pf x x ps
pa pf x x pf x x ps

pf x x ps ps
pf x x ps

=
=

⋅
=

  ≈  − − ⋅
   + − − ⋅
   + − − ⋅
   + ⋅ − − ⋅ −
   + ⋅ − − ⋅

∪

3

2 32 2 3

))
( , ) (1 (1 ) (1 ))

x
x x

ps
pf x x ps ps

−
   + ⋅ − − ⋅ −

                (3) 

The heuristic algorithm GA is listed as following. 
Algorithm 3 GA 
1: Initialize, S φ= , 0c = , {1,..., }U N= . 



2: while c k<  do 
3:     1c c= + . 
4:     for every ix U∈  do 
5:         ( ) iS c x= . 
6:         compute the CR of S as Eq.(3). 
7:     end for 
8:     select ix  that maximizes CR, ( ) iS c x= . 
9:     iU U x= − . 

10:end while

4   Performance Evaluation 

In this section, we conduct simulations to evaluate the performance of the proposed 
algorithms. Note that, we do not concern ourselves with low-level issues in wireless 
communications.  

In [4], a heuristic algorithm KP-P is proposed based on the knowledge of the 
number of vehicles crossing each intersection. KP-P sorts the intersections in 
descending order by their crossing vehicles, and selects the first k intersections to place 
DPs. Using the trajectories generated by our simulator, we could implement KP-P. 
Therefore, the results of KP-P could be regarded as the simulation results of our KP-G. 
The CR of GA, KP-G, OA, and KP-P are evaluated in this section. Therefore, we 
compare the four algorithms in the following subsections. 

4.1   Small Scale Scenarios 

In this subsection, we use small m, n, k, and we compare the four algorithms. Due to 
computational complexity, OA is computationally feasible only for small values of k 
in very small scale scenarios. We use 4 4×  grid road network as shown in Fig. 1. 
When 4k > , the computational complexity is too high to obtain the optimal solution. 
We give the CR of OA with 2,3,4k = . We use the same xps  for every intersection.  

As shown in Fig. 3, we could get the following conclusions. First, both simulation 
results of OA and KP-G are excellently agree with the analytical results. It 
demonstrates the accuracy of our model. Second, GA is much better than KP-G and 
KP-P, and even has the same performance as OA. For a given CR, GA needs fewer 
DPs, and for a certain number of DPs, GA could achieve higher CR. However, with the 
decline of ps, the performance benefit of GA becomes more unremarkable, and the 
overall CRs of all algorithms become smaller. In real environment, we always attend to 
increase the probability ps, therefore GA is much more useful than other algorithms. 

We then study the detailed placements of the four algorithms. For example, Table 2 
shows the placements with 1ps = . The integers represent the intersection sequence 
numbers as shown in Fig. 1. When 2k = , the placements of the four algorithms are 
respectively {11,6} , {11,10} , {10,7} , {6,11} . When 4k = , the placements are 
respectively {11,6,8,9} , {11,10,7,6} , {11,7,10,6} ,{4,7,10,13} . With the increment 



of k, we only need to add additional points into the original sets for GA, KP-G, KP-P, 
whereas we have to change all the points of OA. In other words, GA, KP-G, KP-P 
could yield incremental placements, whereas OA has to compute the results for 
different k. The difference between the placements of KP-G and KP-P is not 
remarkable. Note that, CR of GA reaches 1 for 6k = , whereas KP-G and KP-P both 
need 8 DPs for 1CR = . For GA, the placements listed in Table 2 is not unique for 

8k = . The last two intersections could be replaced by any other intersections. 
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          (a) 1ps =                                   (b) 0.8ps =  

Figure 3. CR versus the number of DPs deployed, for 4 4×  grid road network 
Table 2.   Placement of Every Algorithm 

Algorithm Placement
GA  {11, 6, 8, 9, 3, 14, 16, 1}
KP-G {11, 10, 7, 6, 15, 2, 14, 8}
KP-P {11, 7, 10, 6, 14, 15, 2, 3}
OA {6, 11}, {6, 11, 16}, {4, 7, 10, 13}

4.2   Large Scale Scenarios 

For a large grid network of 6 9× , there are 54N =  intersections. We study more 
DPs as 27k =  which is half of N. Because OA could not be solved within acceptable 
time even when 2k =  in this large network, we only compare GA with KP-G and 
KP-P. We generate a pair of random 6 9×  matrices of G and D which are referred to 
as 2G  and 2D , and generate another symmetrical pair of matrices as 3G  and 3D . 
In 3G  and 3D , all vehicles start from and also disappear at the borders of the grid. It 
is an extreme special case. 

There are similar conclusions with that in small scale scenarios. Furthermore, from 
Fig. 4, we could find that different G and D cause different performances. However, 
GA is still better than KP-G and KP-P. In Fig. 4(b), CRs of KP-G and KP-P have 
remarkable difference for some k due to its extreme special 3G  and 3D . Whatever 
the different G and D are, the benefit of GA is very remarkable, especially with 
3 13k< < . 
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Figure 4. CR versus the number of DPs deployed, for 6 9×  grid road network, 1ps =  

5   Conclusion 

In this paper, we proposed a novel maximum coverage approach for disseminating 
information to vehicles in intelligent system in urban area without using vehicles’ 
trajectories. We proposed a probabilistic model based on the distributions of the 
numbers of vehicles at origin points and destination points to get the trajectories 
estimation of the vehicles. We applied this model to compute the coverage ratio. Next, 
an optimal algorithm OA and two heuristic algorithms KP-G and GA were proposed. It 
was not practical to adopt OA due to high computational complexity. Our results 
proved that GA had better performance than the other algorithms in most of scenarios. 
However, we still remarked that in different scenarios with different parameters and 
conditions, it was better to compare the algorithms and choose the best one. 

In fact, the road networks of many cities are not regular grid. We could still map 
the road networks into grids through some mechanisms which will be our future work. 
Drivers may choose paths with the different probabilities, thus other path selection 
models will also be considered in our future work. 
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