
HAL Id: hal-01513752
https://inria.hal.science/hal-01513752

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Accelerating Parallel Frequent Itemset Mining on
Graphics Processors with Sorting

Yuan-Shao Huang, Kun-Ming Yu, Li-Wei Zhou, Ching-Hsien Hsu, Sheng-Hui
Liu

To cite this version:
Yuan-Shao Huang, Kun-Ming Yu, Li-Wei Zhou, Ching-Hsien Hsu, Sheng-Hui Liu. Accelerating Par-
allel Frequent Itemset Mining on Graphics Processors with Sorting. 10th International Conference on
Network and Parallel Computing (NPC), Sep 2013, Guiyang, China. pp.245-256, �10.1007/978-3-642-
40820-5_21�. �hal-01513752�

https://inria.hal.science/hal-01513752
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Accelerating Parallel Frequent Itemset Mining on

Graphics Processors with Sorting

Yuan-Shao Huang
1
, Kun-Ming Yu

1
, Li-Wei Zhou

2
, Ching-Hsien Hsu

1
, Sheng-Hui

Liu
2

1
Department of Computer Science and Information Engineering, Chung Hua

University

Hsinchu, Taiwan
2
School of Software, Harbin University of Science and Technology

Heilongjiang, China

m10002044@chu.edu.tw, yu@chu.edu.tw, 172851711@qq.com, chh@chu.edu.tw,

hrbust.lsh@126.com

Abstract. Frequent Itemset Mining (FIM) is one of the most investigated fields

of data mining. The goal of Frequent Itemset Mining (FIM) is to find the most

frequently-occurring subsets from the transactions within a database. Many

methods have been proposed to solve this problem, and the Apriori algorithm is

one of the best known methods for frequent Itemset mining (FIM) in a

transactional database. In this paper, a parallel Frequent Itemset Mining

Algorithm, called Accelerating Parallel Frequent Itemset Mining on Graphic

Processors with Sorting (APFMS), is presented. This algorithm utilizes new-

generation graphic processing units (GPUs) to accelerate the mining process. In

it, massive processing units of GPU were used to speed up the frequent item

verification procedure on the OpenCL platform. The experimental results

demonstrated that the proposed algorithm had dramatically reduced

computation time compared with previous methods.

Keywords: Parallel Data Mining, Apriori, Graphic Processing Unit (GPU).

Acknowledgment

This paper is partial supported by the National Science Council of Taiwan,

under grant number NSC 100-2632-E-216-001-MY3.

1 Introduction

With the development of information technology, all sectors of society have to

handle massive explosions in their digital databases. The size of datasets has been

increased exponentially in recent years in all fields as speed ups in processing and

communication have greatly improved the capability for data generation and

collection. Therefore the extraction of interesting and meaningful information has

become a highly popular field of study. Data mining, known as Knowledge Discovery

in Databases (KDD), is the process of automatically extracting useful hidden

information from very large databases.

Frequent Itemset Mining (FIM) is one of the main tasks in data mining field which

aims at finding interesting patterns from databases. The data in the database contains

a set of items that are called transactions, each of which is labeled by a unique ID.

The goal of FIM algorithms is to generate all possible itemsets and find the most

frequently-occurring subsets that are bought together in not less than a given, user-

specified threshold. The number of itemsets occurrences is called support, and the

threshold is minimum support.

In recent years, parallel data mining algorithms has been attracted more and more

attention. Modern Graphics Processing Units (GPU) have evolved into powerful

processors that not only support typical computer graphics tasks but are also flexible

enough to perform general purpose computations [6] [7] [10] [13]. Recently, there has

been a trend to accelerate computational data mining algorithm on a GPU + CPU

heterogeneous system which the GPU acts as the computation accelerator. Nowadays,

high level languages have emerged to support easy programming on GPUs. OpenCL

[11] seems to be emerging as an open and cross-vendor standard for exploiting

computational power of both CPUs and GPUs. However, many classical algorithms

have been proposed for single CPU architectures [4] [5]. If CPU-GPU hybrid

architectures are used to speed up the mining purpose, it will improve performance.

In order to best utilize the power computing resources offered by GPUs and extend

traditional, CPU-based data mining algorithms for mapping to CPU-GPU hybrid

architecture, scalable GPU-based parallel evaluation model for speeding up the

computing process was implemented in this study. A solution is proposed that would

have all frequent itemsets sorted after constructing the TID table which will then

greatly reduce the candidate itemsets when using CPU architecture. Suitable GPU

threads were allocated after sorting the itemset in decreasing order. Therefore, the

times of the checking process were reduced, and support counting was time efficient.

The compared results showed that efficiency had been significantly improved.

The remainder of this paper is organized as follows. Section 2 provides an

overview of data mining, describes the Apriori algorithm [2] [12], the Multi-core

Apriori Transaction Identifiers algorithm (MATI) [14] and the Candidate Slicing

Frequent Pattern Mining (CSFPM) [9] algorithm. The proposed algorithm

Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting

(APFMS) is introduced in Section 3. Section 4 presents the experimental results. In

section 5, the conclusion of the paper is given.

2 Related Works

Data mining is a technology used to determine special relationships hidden in large

amounts of data, and efficiency is especially crucial for an algorithm finding frequent

item sets from a large database. Many methods have been proposed to solve this

problem. Among them, parallel computing has become a popular trend, such as grid,

cloud, multi-core or GPU computing platforms.

In this section, the most relevant studies, including Apriori algorithms, the Multi-

core Apriori Transaction Identifiers (MATI) algorithm and the Candidate Slicing

Frequent Pattern Mining (CSFPM) algorithm, are briefly reviewed.

2.1 Apriori algorithm

The Apriori Algorithm was proposed by R. Agrawal and R. Srikant in 1994 [2].

It’s a classic algorithm for frequent itemset mining and association rule learning over

transactional databases. It uses a level-wise behavior, which involves a number of

dataset scans equal to the size of the largest frequent itemset. Apriori iteratively

generates K+1 frequent itemsets by joining frequent K-itemsets. This step is candidate

generation. First, the set of frequent 1-item sets is found by scanning the database to

assess the count for each item, and then collecting the items that satisfy minimum

support, denoted L1. L1 is used to find L2, and L2 to find L3, and this continues, until

all frequent itemsets are found. After generating each new set of candidates, the

algorithm scans the database to count the number of occurrences of each itemsets.

This step is called support counting. The Apriori Algorithm stops when all the

frequent item sets have been generated. However, the algorithm scans datasets many

times and may generate redundant candidate itemsets. When there are many frequent

1-item sets and the frequent patterns are very long, the number of generated candidate

itemsets increases significantly. Therefore, the efficiency of the algorithm deteriorates

significantly.

2.2 Multi-core Apriori Transaction Identifiers

Lately, novel algorithms on frequent pattern mining have been proposed. Yu et al.

propose the MATI algorithm [14] to speed up the computation time of data mining by

enhancing the efficiency of Apriori on multi-core architecture. The algorithm utilizes

the AprioriTID algorithm [1] [8] at the first pass to shorten the database scanning

process by creating the Transaction Identification (TID) tables. In MATI algorithm,

two strategies are proposed, Item set Block and Task Dispatches. In the process of

generating candidate in MATI, frequent itemsets are divided into multiple blocks, all

frequent itemsets with the same prefix are put into the same block, and candidates are

generated in the same block only. The frequent itemsets in the same itemset block will

be generated on the same core avoiding data distributed on different cores.

2.3 Candidate Slicing Frequent Pattern Mining

Candidate Slicing Frequent Pattern Mining (CSFPM) [9] is proposed by Lin et al.

This algorithm uses the Transaction Identification (TID) table to store the itemsets

which shorten the database scanning process, as shown in Table 1. Corresponding to

the TID table, two elements, the TID value table and the TID index table are created

with GPU-FPM [15]. In Fig.1, TID value table stores the itemsets associated with

their transaction numbers in GPU threads, TID index table stores the location

numbers in GPU threads corresponded to its itemset. As numbers in the table starts

from 0, the first itemset A contains 1, 2 in the TID value table, then in the TID index

table the number is 0 to 1, and the itemset B contains 1, 2, 3, so the index number

range 2 to 4, this process continues until all the itemsets have been dispatched.

The CSFPM algorithm divides candidate into smaller units with parallel computing

on each GPU thread. Each GPU thread is only responsible checking for its own one

candidate itemset in the TID value table. The GPU thread only checks and compares

the numbers whether are equal or not. If the values are equal, then returns result 1,

else result 0 is returned instead. The checking process is shown in Fig. 2. Item A and

Item B has the common transaction value 1 and 2, then the output returns double 1.

After the first computation finished, the result was returned with an array of 1110100,

and then the number of 1 was calculated; all the numbers of 1 were summed to

compare with the minimum support checking whether the candidate itemset was

frequent or not, as shown in Fig.2 and Table 2.

The CSFPM algorithm is an implementation on CPU-GPU architecture based on

the Apriori algorithm, and reducing the counting time of the GPU support to speed up

the total computing time. In order to achieve better load balancing performance, the

algorithm parallelizes the candidate itemsets and divides them into the GPU threads,

assign one thread only checking to its own one transaction in a candidate item. This

strategy can reduce the processor waiting time since the load between processing

units is more balanced.

Table 1. TID table

Items TID Value

A 1 2

B 1 2 3

C 1 4

Fig. 1. TID value and TID index tables

Fig. 2. Candidate items of GPU computing

Table 2. Computing the candidate number of repetitions per item

Item Time

AB 2

AC 1

BC 1

3 Proposed Algorithm

Since the information in a data stream is large, the implementing of an efficient

algorithm based on the Apriori algorithms has been the focus of many researchers.

Due to the great advantages of GPUs, they have evolved become highly parallel,

multithreaded with tremendous computational horsepower and very high memory

bandwidth. In this paper, an Accelerating Parallel Frequent Itemset Mining on

Graphics Processors with Sorting (APFMS) algorithm is presented. It is based on the

advantages of CSFPM and MATI utilizing the sorting of the 1-frequent item sets from

the dataset after constructing the TID table in order to cut down on computing time

for better performance.

The APFMS algorithm was optimized by using the dividing method of CSFPM

and the merging method of MATI. The MATI algorithm uses the follow technique.

Unlike the original Apriori algorithm, the (k+1)-itemset is generated only by the k-

itemset with the same k-1 prefix itemset. Fig. 3 illustrates the procedure for MATI, in

the example, k=2 and itemset AB and AC are the 2-itemsets which were frequent,

when the 3-itemset was be generated, the 2-itemset merged with each other to satisfy

the (2-1=1) prefix, as AB and AC had the same prefix. A, thus AB and AC merged

with each other to generate candidate 3-itemset, ABC. However, the AC and BC did

not merge with each other as they did not have the same prefix. Therefore, it was not

necessary to generate all possible itemsets as in the original Apriori algorithm; the

MATI algorithm filtered the redundant itemsets which were not frequent and only

merge the useful frequent itemsets.

Fig. 3. Generating itemsets in MATI

GPU threads were allocated by the number of TID values in the Candidate Slicing

Frequent Pattern Mining (CSFPM) algorithm. Therefore, the higher the TID value,

the more GPU threads were allocated. Fig. 4 shows the processing of CSFMP in

comparing the TID value. Owing to the varying TID values, the GPU threads did not

compute efficiently. As a result, the APFMS algorithm proposed a strategy sorting all

1-frequent itemsets after constructing the TID table with the support of 1-frequent

itemset each and in the decreasing order, and then the GPU threads were allocated

according the new TID value after sorting. Therefore, the time complexity was

reduced when the GPU checked the itemsets; whether they had the same prefix in

order to merge so that the next rank candidate itemsets could be generated. The

processing of the APFMS algorithm when comparing the TID values is presented in

fig. 5.

Fig. 4. CSFMP method

Fig. 5. APFMS method

As in fig. 5, when compared with the CSFMP algorithm in fig. 4, the APFMS

algorithm sorted all frequent itemsets in descending order after constructing the TID

table in CPU cores, and the results were transferred to the TID value tables in the

GPU threads in the same order; Then, the larger itemsets were mapped in the front in

the TID value tables. Due to this, the numbers of checking process support counting

steps were reduced. Therefore, the support counting time will reduce as well.

Following, are several basic steps for applying the APFMS algorithm.

Procedure

1. First, Scan the database, transform the transaction items to a TID table and

build the corresponded TID value table and TID index table.

2. Calculate the Tidset and count the support number of each 1-candidate

itemset, prune the non-valid itemsets and generate the 1-frequent itemset.

3. Sort the 1-frequent itemset in decreasing order.

4. Use the MATI merge function in CPU cores, that all K+1 itemsets are

generated from K itemsets with the same K-1 prefix

5. Let the GPU cores calculate the support counting step, all datasets are

transfer from CPU cores to GPU cores, dynamic GPU threads are allocated

to calculate the item in the TID value table and its corresponding TID index

table.

6. Return the 0-1 arrays from GPU cores to CPU cores, use CPU cores to

calculate the number of 1 and compare with the threshold.

7. Generate the next rank candidate itemsets, repeat the step above until all the

frequent itemsets are found.

The pseudo code of APFMS is shown in fig. 6.

CPU: Main Function (C++)

Database is D, merge round is N, candidate itemsets in N round is Cn, Frequent

pattern is Fn.

Cnis candidate patterns and more than 1.

Fn is frequent pattern and more than 1.

GPU thread is GT.

Input a threshold

Compile the .CL and build GPU device

Scan and structure a TID table

if (the number of orders in any item <Threshold){

Delete the item

}

QuickSort(frequent itemsets, left, right) //from largest to smallest

Transform the TID table into a TID Value and TID Index

Allocate memory space in GPU for TID Value and TID Index

Stores arrays TID Value and TID Index into GPU memory

For (K = 2 ; ; K++){
Using MATI to generate Cn

Do {
If (size of Cn>GT)

Portion the Cn= PCn

Allocate memory space in GPU for PCn

Store PCn in GPU

Allocate memory space in GPU to save the results

Wait until GPU finishes its program execution.

Calculate the number of nonzero entries of each PCn comparison.

If (this number ≧ the threshold)

The pattern is frequent and save into Fn

} while(size of Cn ≠ 0)

If(candidate cannot be combined)

Break;

Else
Fn Combine the candidate to next level (N+1).

}

GPU: Kernel Function (.CL)

Receive the candidate

Intidx = get_glonal_id(0) // idx = GPU Thread id number

Intgpu_thread_value = identify the corresponding TID Value

if (gpu_thread_value == TID Value of Other candidate pattern)

result = 1;

Else if (gpu_thread_value>TID Value of Other candidate pattern)

result = 0;

Fig. 6. The pseudo code of APFMS

4 Experimental Results

In this section, the experiments are conducted to verify the performance of the

APFMS method and the comparison with CSFPM on GPU are presented. In the

experiments, the same hardware and software configurations were used and the Input

data was from the IBM data generator [3] shown in Table 3.

Table 3. Hardware and software configurations

Items Description

CPU Intel Core i7-3960X 3.3GHz

Memory 16G DDR3 memory

GPU NVidia GTX 580 1536MB GDDR5

OS Microsoft Windows 7

Compiler Microsoft Visual C++ 2010

SDK OpenCL 1.1

In the experiment, the computation time shown in Fig. 7 indicates that with the

dataset (T10I4D100KN100K) and the threshold 0.1%, the APFMS algorithm needed

less time than the CSFPM algorithm, and hence resulted in higher efficiency with

300% speedup when the GPU was set at 65536 threads.

This experiment compared the computation time of APFMS with that of CSFPM

with the same threshold of 0.1%, but with different methods, number of transactions

and number of threads (153837). As in Fig. 8, APFMS performed better than CSFPM

on the same platform.

Fig. 9 shows the execution time of CSFPM and APFMS with different GPU

threads when the dataset was T10I4D1000KN100K, and the threshold 0.1%. In this

experiment, with the transaction numbers increasing, the execution time of the

APFMS increased as well. However, with the number of GPU threads getting higher

than 153837, the checking times and the time complex of CSFPM were increasing.

The CSFPM did not even finish computing when the number of GPU threads was set

as more than 153837.

Using the same dataset as the CSFPM algorithm, the APFMS algorithm had a

better speedup performance. Further, with the number of GPU threads increasing, the

computing time increased as well, causing the CPU cores having to finish

computation with more space and bandwidth. However, when the computing time

delay exceeded the GPU thread limit time, the CSFPM algorithm stopped and jumped

out of the GPU computing. By contrast, the APFMS went on go accelerating

computation until finished. Therefore, the APFMS was proven to be more suitable

with better performance.

0

20

40

60

80

16384 32768 65536

T
im

e
 (

se
c.

)

GPU Thread

T10I4D100KN100K, T0.1%

APFM
S

Fig. 7. Runtime with different number of GPU threads

0

50

100

150

200

250

300

D200K D300K D400K D500K D600K D700K D800K

Ti
m

e
 (

se
c.

)

Number of transactions

T10I4DXKN100K, T0.1%, Thread 153837

APFMS

CSFPM

Fig. 8. Runtime with same number of GPU threads

260

270

280

290

300

310

320

330

340

121070 153837 242140

Ti
m

e
 (

se
c.

)

GPU Thread

T10I4D1000KN100K, T0.1%

APFMS

CSFPM

Fig. 9. Runtime with different number of GPU threads using APFMS and CSFPM with dataset

T10I4D1000KN100K

5 Conclusions

Recently, with GPU providing extremely high parallelism and high bandwidth in

memory transfer, its hybrid architectures are starting to be used for data mining.

However, it is not easy to parallelize existing algorithms to achieve good performance

on these hybrid architectures. Therefore, it is necessary to examine to what extent

traditionally CPU-based data mining problems can be mapped to the GPU

architecture.

In this paper, the Accelerating Parallel Frequent Itemset Mining on Graphics

Processors with Sorting (APFMS) algorithm is proposed in order to improve the

performance of a CSFPM.APFMS algorithm based on the advantages of CSFPM and

MATI. The sorting of the 1-frequent item sets from the dataset after constructing the

TID table is used in order to cut down computing time and the time complexity of

GPU computing. The experiment results indicated that when the dataset was

T10I4D100KN100K, with a threshold of 0.1%, the implementation had a 300% speed

up compared the CSFPM, and a better load balancing performance was achieved with

the increase of transaction numbers.

Future work on the research includes utilizing different types of GPU for better

performance. As a result, in order to achieve heterogeneity in the GPU architecture,

the different performance allocation will be considered with different candidate

itemsets with different types of GPU.

References

[1] R.Agawal, Imilinski, T., and Swami, A. “Mining Association Rules between

Sets of Items in Large Database,” Proceeding of the 1993 ACM SIGMOD

International Conference on Management of Data, Vol. 22, Issue 2, pp. 207-216

(June 1993)

[2] R. Agrawal, and R. Srikant, “Fast algorithms for mining association rules,” in

International Conference on Very Large Data Bases, pp. 487-499 (1994)

[3] R. Agrawal, and R. Srikant, “Quest Synthetic Data Generator. IBM Almaden

Research Center, San Jose, California,” (2009)

[4] FerencBodon, “A trie-based APRIORI implementation for mining frequent item

sequences,” OSDM '05 Proceedings of the 1st international workshop on open

source data mining: frequent pattern mining implementations, 2005, pp.56-65.

[5] Christian Borgelt, “Frequent Item Set Mining,” Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery,” Vol. 2, Issue 6, pp.437-456 (1-2 Dec.

2012)

[6] Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He, QiongLuo, “Frequent

itemset mining on graphics processors,” DaMoN '09 Proceedings of the Fifth

International Workshop on Data Management on New Hardware, pp. 34-42

(2009)

[7] Ana Gainaru, Emil Slusanschi, Stefan Trausan-Matu, “Mapping data mining

algorithms on a GPU architecture: a study,” ISMIS'11 Proceedings of the 19th

international conference on Foundations of intelligent systems, pp. 102-112

(2011)

[8] Zhi-Chao Li, Pi-Lian He and Ming Lei “A high efficient AprioriTid algorithm

for mining association rule,” Machine Learning and Cybernetics, vol. 3, no. 3,

pp. 1812-1815 (2005)

[9] Che-Yu Lin, Kun-Ming Yu, Wen Ouyang, Jiayi Zhou, “An OpenCL Candidate

Slicing Frequent Pattern Mining algorithm on graphic processing units,” In

proceeding of: Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, pp. 2344-2349 (2011)

[10] Wenjing Ma, GaganAgrawal, “A translation system for enabling data mining

applications on GPUs” ICS '09 Proceedings of the 23rd international conference

on Supercomputing, pp. 400-409 (2009)

[11] OpenCL.“OpenCL,”http://www.khronos.org/opencl/

[12] J. Park, M. Chen, and P. Yu, “An effective hash-based algorithm for mining

association rules,” ACM SIGMOD Record, vol. 24, no. 2, pp. 175-186 (1995)

[13] Silvestri, Claudio, “gpuDCI: Exploiting GPUs in Frequent Itemset Mining,”

2012 20th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP), 15-17, pp. 416-425 (Feb. 2012)

[14] Kun-Ming Yu and Shu-Hao Wu. “An Efficient Load Balancing Multi-core

Frequent Patterns Mining Algorithm,” 2011 IEEE 10th International

Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), pp.1408-1412 (2011)

[15] J. Zhou, K.-M. Yu, and B.-C. Wu, “Parallel frequent patterns mining algorithm

on GPU,” IEEE International Conference on Systems Man and Cybernetics, pp.

435-440 (2010)

http://www.khronos.org/opencl/

