
HAL Id: hal-01506797
https://inria.hal.science/hal-01506797

Submitted on 12 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MetaExtractor: A System for Metadata Extraction from
Structured Data Sources

Alexandra Pomares-Quimbaya, Miguel Eduardo Torres-Moreno, Fabián
Roldán

To cite this version:
Alexandra Pomares-Quimbaya, Miguel Eduardo Torres-Moreno, Fabián Roldán. MetaExtractor: A
System for Metadata Extraction from Structured Data Sources. 1st Cross-Domain Conference and
Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013,
Regensburg, Germany. pp.84-99. �hal-01506797�

https://inria.hal.science/hal-01506797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MetaExtractor: A System for Metadata
Extraction from Structured Data Sources

Alexandra Pomares-Quimbaya, Miguel Eduardo Torres-Moreno, and Fabián
Roldán

Pontificia Universidad Javeriana, Bogotá, Colombia

Abstract. The extraction of metadata used during the planning phase
in mediation systems assumes the existence of a metadata repository
that in most cases must be created with high human involvement. This
dependency rises complexity of maintenance of the system and therefore
the reliability of the metadata itself. This article presents MetaExtrac-
tor, a system which extracts structure, quality, capability and content
metadata of structured data sources available on a mediation system.
MetaExtractor is designed as a Multi-Agent System(MAS) where each
agent specializes in the extraction of a particular type of metadata. The
MAS cooperation capability allows the creation and maintenance of the
metadata repository. MetaExtractor is useful to reduce the number of
data sources selected during query planning in large scale mediation sys-
tems due to its ability to prioritize data sources that better contribute
to answer a query. The work reported in this paper presents the general
architecture of MetaExtractor and emphasizes on the extraction logic of
content metadata and the strategy used to prioritize data sources ac-
cordingly to a given query.

Key words: Large Scale Data Mediation, Metadata Extraction, Source
Selection, Multi-Agent System, Mediation Systems

1 Introduction

The processing of queries in mediation systems involves processes of logic and
physical planning taking into account the characteristics of the data sources
available in the system. This information is typically stored in metadata reposi-
tories that are accessed whenever a query is evaluated. Unfortunately, mediation
systems assume the existence of previously constructed metadata repositories [1]
or focuses only on the structure of data sources, and basic statistics such as the
number of records, the number of null data, etc.[2] Although advanced mediation
strategies contemplate the existence of more comprehensive metadata such as
the number of objects contained in a source [3], the way in which this metadata
is obtained has not been well defined. Parallel to mediation systems of struc-
tured sources, several proposals have been made to summarize the contents of
available sources in the Web: using trees [4] to describe the dependency rela-
tionships between sources [5]. These alternatives are useful for increasing the



2 Alexandra Pomares et al.

richness of metadata. However, their generation requires high human interaction
or includes only general aspects that do not allow a real differentiation among
sources, especially when the sources are dependent and data fragmentation is not
disjoint. Faced with these limitations of mediation systems this article proposes
MetaExtractor a system designed for the automatic extraction of metadata from
structured distributed data sources that are registered in a mediation system.
MetaExtractor’s goal is to increase the quality of metadata repositories through
methods that do not require intensive human involvement. MetaExtractor de-
sign is based on multi-agent systems that uses data sources as resources to meet
its goal of extracting a particular type of metadata. MetaExtractor considers the
extraction of structure, capability, quality and content metadata. The structure
of this article presents in Section 2 the analysis of related works on the area of
mediation systems that allow to put into context the contribution of MetaEx-
tractor. Subsequently, Section 3 presents an overview of MetaExtractor that is
detailed in Section 4. Section 5 reports evaluation results on priorization of data
sources using the extracted metadata. Finally, Section 6 presents the conclusions
and future work.

2 Related Work

Different approaches to support data queries in the context of heterogeneous
and distributed sources have been studied for over 15 years. Most of them are
based on mediation systems [6] that aims to provide an integrated view of het-
erogeneous and distributed data sources respecting their own autonomy [7]. The
architecture of mediation systems [7,8,9,10] consists of four levels of abstraction:
i) the data sources level, ii) the adaptation (wrappers) level, iii) the mediation
level and iv) the application level. Query processing in this type of systems is
coordinated at the mediation level and takes place in two stages: planning and
execution. In the planning stage, sources that can fully or partially answer the
query are selected and then the query is rewritten into subqueries, using the
external model of each source. To select appropriate sources, the mediator uses
a metadata catalogue that includes the external model and other information
sources, whose level of detail and accuracy varies according to the type of me-
diator. In the execution stage, the mediator sends the subqueries to each source
and is responsible for coordinating the execution of the queries, and receiving
and processing responses in order to integrate them.

One factor that affects the accuracy and efficiency of a mediation system is
its planning strategy, which is directly related to the quantity and quality of
available metadata. In the first generation of mediation systems, such as: Infor-
mation Manifold [11], TSIMMIS [9], DISCO [8] and Minicon [12], the planning
process uses as metadata information the processing capabilities of sources (e.g.
the number of required conditions, or the attributes that could be defined in
the predicate). Another group of strategies such as: iDrips and Streamer [1],
navigation paths [3] perform the planning process by means of metadata that
describes the content of the sources. Other proposals such as QPIAD [13] and



MetaExtractor 3

the quality-oriented presented in [14] use detailed statistics on the quality of the
data contained in the sources to reduce the number of plans. Meanwhile, propos-
als for large-scale mediation: PIER [15], PinS [16], Piazza [17], PeerDB [18], and
SomeWhere [19] use location of metadata, content summary and description of
reputation sources, among others.

The metadata used in these systems are an essential input for the perfor-
mance of the mediation process. However, obtaining such metadata from struc-
tured data sources is limited to the manual (human) description of the structure
of the sources and some quality statistics obtained during the operation of the
system. Even if the owners or managers of each source of information can define
some metadata manually, to ensure maintainability, efficiency, consistency and
cost of the mediation system, it is necessary to generate strategies for automat-
ically obtain metadata from the mediation repositories.

The existing methods for generating metadata can be classified into three
groups: i) extraction, ii) collection and iii) hybrid generation [20]. In the first
case the aim is to obtain the metadata based on the execution of techniques
for analyzing, mining, evaluating, etc. In the case of metadata collection the
goal is to gather pre-built metadata. Finally, hybrid generation obtains existing
metadata, and from its analysis generates new metadata [21]. The aim of the
MetaExtractor project is focused on metadata extraction from structured data
sources that may contain narrative text in some of their attributes.

Literature reviews show that most research efforts suggests strategies to ex-
tract metadata from unstructured information available on the web, the vast
majority of available methods use processing algorithms that analyze natural
language texts in order to generate structured descriptions [22]. These algorithms
are part of strategies for information retrieval that assess text in a semantic and
syntactic way to get a list of descriptors for the content of the sources [23].
Although there are methods of metadata generation from structured sources its
extraction and / or collection is focused on basic attributes such as size or scheme
that cannot act as a true differentiator of data sources.

This article presents MetaExtractor a system that modifies and extends these
existing methods and techniques to enhance the extraction of metadata from
structured sources. MetaExtractor obtains metadata using different techniques
according to the type of metadata that must be extracted. In addition, given a
query, MetaExtractor prioritizes data sources that better contribute to answer
it. The proposed MetaExtractor architecture includes the use of data mining
techniques to identify the type of content from a source. The intention is to
explore a sample of each data source to establish whether there is a tendency to
have some type of instances of a business object (e.g. client, patient).

3 MetaExtractor Overview

As Section 2 illustrates, current mediation system strategies for source selection
assume the existence of the required metadata for query planning, extracts only
basic metadata, or require an important manual effort to feed metadata repos-



4 Alexandra Pomares et al.

Fig. 1. MetaExtractor in a Mediation System

itories. In order to fulfill this gap this paper proposes MetaExtractor a system
that allows to extract structure, quality, capability and content metadata from
structured data sources. MetaExtractor architecture is based on the interaction
of software agents in charge of extracting different types of metadata from dis-
tributed and heterogeneous structured data sources. The main idea behind the
agent architecture is for MetaExtractor to have agents located in the same lo-
cation as the data source and watching over the sources’ logs to identify any
important or relevant changes on the structure or data contained in each source.
This section presents an overview of MetaExtractor functionality and architec-
ture. The following section emphasizes on key aspects of the agents in charge of
metadata extraction.

3.1 MetaExtractor Preliminaries

The goal of MetaExtractor is to provide the metadata required for query plan-
ning in a mediation system. Figure 1 illustrates the relationship between MetaEx-
tractor and a mediation system, the goal is to act as the knowledge base during
the planning phase of a query.

MetaExtractor extracts and stores metadata based on the assumption that
data sources contain pieces of information of the relevant objects in a specific
domain (e.g. patient, client, campaign) from now on called VDO (see Definition
1). The VDO illustrated in Figure 2 represents a Patient composed by four
concepts (Person, Medical Act, Medical History, Affiliation). This VDO pertains
to the medical domain, which is going to be used from now on to describe
MetaExtractor’s functionality.

Definition 1 Virtual Data Object (VDO). A VDO is a logical set of related
concepts relevant to a group of users. Figure 2 illustrates a VDO joining four
concepts. Each concept has data type properties whose values are data literals.
Concepts are related through object type properties whose values are instances.
VDOs are virtual because their instances are partitioned and distributed on sev-
eral data sources.



MetaExtractor 5

Fig. 2. VDO Patient.

MetaExtractor considers queries with selection conditions on the properties
of the concepts composing the VDO. For example, the query hereafter uses the
VDO Patient and selects the id of patients with a ”Buphtalmos” diagnosis.

Query 1 Q(V DOPatient, properties(id), conditions(diagnosis = Buphtalmos))

In the following sections we will work with queries which include several
conditions, such as follows:

Q(V DOname, properties(id), conditions(condition1, condition2, ..., conditionn))

When a mediator receives a query it can issue a request to MetaExtractor
asking about the facts related to the VDO involved in the query; these facts
may be given directly to the mediator or they can be used by MetaExtractor to
prioritize the data sources that better contribute to answer the query.

3.2 MetaExtractor Processes

Figure 3 illustrates the agents and processes involved in the execution of MetaEx-
tractor. The GUI process, the Server process and the Source process include a
set of sub-processes (agents), which corresponds to activities of an agent with a
defined behaviour. The GUI agents represent the interactions of the users, the
Server agents manage persistence of metadata and users, and include the logic to
prioritize data sources given a particular query. To accomplish their tasks they
use the metadata extracted by the Source agents that are in charge of the actual
extraction of metadata and are the ones watching over the source itself.

The metadata extraction starts with a communicative act between the Meta-
data Manager Agent, who proactively and periodically activates the metadata
extraction. The activation event triggers the activation of the Source Manager



6 Alexandra Pomares et al.

Fig. 3. MetaExtractor Agents Interaction

Agent and this, in turn, sends an event to the related Data Source Agents. Fi-
nally, each Data Source Agent communicates with the Extraction Coordination
Agent that is in charge of coordinating the extraction of each type of metadata.
Currently, MetaExtractor provides four agents in charge of extracting diferent
metadata types: structure, quality, content and capability metadata. The follow-
ing subsection describes each one of metadata types and Section 4 the internal
logic of each metadata extractor agent. It is important to notice that accord-
ing to the requirements of the mediation system, different kinds of metadata
extractor agents can be added later on to the system.

Extraction functions Once a data source is registered MetaExtractor is able
to extract and/or obtain from them the following metadata (by means of the
Source Agent):

1. Structure Metadata: This type of metadata describes the relationship be-
tween the objects of a data source with the domain VDOs. For instance, a
data source in the medical domain may have a table called Attention that
contains all the attentions of a patient in a medical institution, this table
may be the equivalent of Medical Act in the description of the VDO patient.
In this case the metadata structure contains the equivalent relationship be-
tween the table Attention and the concept Medical Act. Structure metadata
includes the name of the tables, attributes and relationships, and their re-
lationship with the domain VDOs by using the operators Equivalence and
Inclusion.

2. Quality Metadata: MetaExtractor provides information about the quality
state of a data source. This type of metadata is very important to distinguish
which data source is more promising to answer a query when two or more
data sources have similar structural and content characteristics. The quality
state is described using the following attributes:
– Null percentage: It serves to identify the level of deterioration of an

attribute according to the frequency of nulls related to the size of a



MetaExtractor 7

sample. An attribute with a value 65% in Null Percentage can mean
that the quality is too low.

– Null density: It calculates the density of null values in a table, its goal
is to differentiate tables that have few attributes with high frequency of
null values and tables that have a larger number of attributes with low
frequency of null values.

– Maximum null frequency: Identify the attribute with the highest fre-
quency of nulls.

3. Content Metadata Extraction: Most of the queries over mediation systems
involve a condition over a set of attributes of the VDO; for instance in the
medical domain, a query over the patient VDO may have a condition over
the diagnosis (e.g. diagnosis = cancer). These conditions include a restriction
of value over an attribute. The content metadata allows to identify the data
sources that better could answer a query according to the role it can play
as a contributor of instances of a VDO in the domain where the restriction
is true. Roles reflect the ability of data sources to resolve query predicates.
Section 4 describes the roles and the strategy used by MetaExtractor to
describe the content of a data source.

4. Capability Metadata Extraction: This type of metadata is extracted to iden-
tify data sources that have restrictions over the type of queries that they can
answer. This metadata is specially important in data sources that can only
be accessed through a set of services or an interface that limits the attributes
that may be acquired. It is also relevant when data sources demand a specific
number of query conditions to answer a query. In the medical domain for
instance, a data source may restrict the access of the patient’s name or may
demand the inclusion of at least one condition in the query.

MetaExtractor provides three functions for querying the metadata required
for planning purposes. These functions are:

– Query data source metadata: Allows to query the values of metadata of a
specific data source.

– Prioritize data sources: According to the properties and conditions related
to a VDO query it delivers the list of prioritized data sources to answer it.
In order to prioritize MetaExtractor uses the logic proposed in [24]. This
strategy is based on combinatorial optimization techniques.

– Metadata subscription: Allows to obtain changes on the metadata of a data
source or a set of data sources automatically.

4 Extractor Agents

This section presents the logic within content, quality and capability metadata
extractor agents.



8 Alexandra Pomares et al.

4.1 Content Metadata Extractor Agent

The goal of this agent is to identify the role that a data source may play during
the execution of a query taking into account its content. This task is not straight-
forward in structured data sources, because they may contain different records,
each one of them containing different content. As a consequence, the Content
Metadata Extractor Agent must identify the better way to describe a data source
given the content of its records. Lets look an example. Consider three hospital
databases DS1, DS2 and DS3. According to the kind of hospital these databases
may be specialized on a specific type of patients. For example DS1 is specialized
on information about patients with cancer. DS2 is specialized on pediatrics and,
as a consequence, it contains only child patients. And DS3 contains both, pa-
tients with cancer, child patients, as well as other type of patients because is the
database of a general hospital. In this domain the agent must describe the role
according to the attribute “diagnosis” and “age” differentiating the specialization
of DS1 (i.e. diagnosis = Cancer) and DS2 (age < 18), and indicating that even
if DS3 is not a specialist it may contain records with this content.

Roles reflect the ability of sources to solve conditions. Given the analysis of
the roles played by a database in a mediation system, we propose the following
roles: specialist and container. The definition of each source role is described
in Definition 2 and 3. In these definitions all the instances of VDOj stored in
data source DSi are noted ext(DSi, V DOj) 1. U designates all the data sources
participating in the system. All the instances of VDOj available in the system
are denoted ext(U, V DOj). The subset of ext(DSk, V DOj) corresponding to
the instance that verifies a condition p is denoted ext(DSk, V DOj)p and card()
is the cardinality function.

Definition 2 Specialist Role. A data source DSi plays a specialist role w.r.t. a con-
dition p in a query on VDOj iff most instances of VDOj stored in DSi match p.
IsSpecialist(DSi, V DOj, p) =⇒ card(ext(DSi, V DOj)p) ≥ card(ext(DSi, V DOj)¬p)

Definition 3 Container Role. A data source DSi plays a container role w.r.t. a
condition p in a query on VDOj iff DSi contains at least one instance of VDOj that
matches p. IsContainer(DSi, V DOj, p) =⇒ ext(U, V DOj)p ∩ ext(DSi, V DOj)p 6= ∅

The process of content metadata extraction is divided into two phases, the
Domain Training phase and the Content Description. The following subsections
describe both of them.

Domain Training The content of a data source must be described in terms
of its domain. For instance, a data source containing electronic health records
(EHR) must be described in terms of diagnosis, treatments, medicines, or in
terms of the properties of patients like age and gender. Typically, a data source
of EHR contains attributes that store all this information; however, some of
them, and frequently the most important, are narrative text attributes that
contain these terms hidden in lots of text.
1 This extension contains the VDO identifiers.



MetaExtractor 9

The goal of this phase is to record and train the system to recognize what
kind of VDOs are contained in a data source. In order to do that MetaExtractor
must be trained to identify when the content of a data source is related to a VDO
with a specific value in one or more properties. For instance, when a data source
contains patients with a specific diagnosis. This identification is straightforward
when data sources contain mostly well coded attributes; however, as mentioned,
in some domains (e.g. medical) this information may be within texts.

This phase works as follows, for each one of the VDO properties that are usu-
ally used as query conditions (e.g. diagnosis) and their possible values according
to well known thesaurus or terminology dictionaries (e.g. SNOMED CT [?]),
MetaExtractor searches on the internet (using an API created for this purpose)
in order to identify what are the common words used when talking about the
condition with a specific term (e.g. diagnosis and diabetes). The search involves
the property and its possible terms (e.g. disease, diabetes). According to the
domain of the mediation system, the properties, as well as their possible terms,
must be parametrized in the system. At the end of this training phase each one
of the terms related to selected properties has associated a dictionary of related
words used in conjunction with the term. The outputs are called training dic-
tionaries, and are used later to identify the terms that better describe a data
source.

Content Description This phase identifies the role played by a data source
within the system. The algorithm proposed to identify the role is illustrated in
Algorithm 1. The principle of this algorithm is to use narrative text attributes
and a subset of structured attributes from the data source to identify its main
content. For example, the narrative text attributes of an EHR that contain
the evolution and the treatment of the patient are very important to describe
the type of patients the data source has. Additionally, some of the structured
attributes (i.e. attribute that contains a limited number of possible values) may
provide hints on the content of the data source.

In case the size of a data source exceeds a threshold, the first part of the algo-
rithm reduces its size applying a stratified sample technique [I]. This technique
uses a structured attribute to identify the strata.

Then, for each one of the records in the data source sample [II], and using
text mining techniques, it annotates the narrative texts taking into account the
training dictionaries created in the Domain Training phase [III]. As an example
we can obtain for a record the annotation (diagnosis = heart failure, sign =
pulmonary edema).

Next, analyzing the structured attributes it identifies its value and adds it
to the annotations [IV]; After this step the annotation may include (diagnosis
= heart failure, sign = pulmonary edema, gender = F).

Once MetaExtractor analyzes all the records it applies a neighborhood based
clustering algorithm [25] to identify if there is a specific group of similar records
[V] in the data source. The annotations that better describe each cluster are used
to specify the role of the data source. In case a cluster contains more than 50%



10 Alexandra Pomares et al.

Algorithm 1 Role Identification
Input: DS //DataSource
Cat(cat1{v1,...,vn},...,catm{v1,...,vn})
sizeThreshold
Output: QRoles(role(catj),...,role(catk))
Begin

QRoles={}, annotations={}, clusters={}
[I] If (size(DS) > sizeThreshold)

s = getSample(DS)
Else

s = DS
[II] ForAll (reg in s)

ForAll (att in reg)
If (narrativeAtt(att))

[III] annotations[reg] = annotations[reg] + annotate(att)
Else

[IV] annotations[reg] = annotations[reg] + idValue(att)
[V] clusters = Cluster(annotations)

ForAll (c in clusters)
[VI] If (size(c) > size(s)/2)
QRoles = QRoles(specialist(c.cat))

Else
QRoles = QRoles(container(c.cat))

Return(QRoles)
End

of the records of the data source, the data source will be stored as a specialist
with respect to the property with the value that better describes the cluster (e.g.
diagnosis:heart failure) [VI]; otherwise, it will be stored as a container.

4.2 Quality Metadata Extractor Agent

This agent evaluates the quality state of a data source based on the analysis
of nullity of its attributes. To obtain this state MetaExtractor evaluates the
frequency of null values in each one of the attributes and the general density of
nullity of the data source. The density is very important because some attributes
may have high frequency of nullity not because of the quality, but because of
the domain. For instance, an attribute middle name may have a lot of nulls
because is an optional value in the domain, its null frequency does not reveal
a quality problem, but a business rule. In order to assure the performance of
MetaExtractor when data sources contain high number of records, it provides
the possibility of obtaining quality metadata over a sample from the original
data source. This sample follows a systematic approach using as sample size a
parameter that can be configured in the system.



MetaExtractor 11

4.3 Capability Metadata Extractor Agent

Capability metadata extractor goal is to identify the restrictions of data sources
according to the following characteristics:

1. Attributes that can be specified in the query
2. Attributes that can be included in the predicate of the query
3. Attributes that cannot be specified in the query
4. Attributes that cannot be included in the query predicate.
5. Minimum number of attributes that must be in the query predicate
6. Maximum number of attributes that must be in the query predicate

The strategy to obtain this information is based on the execution of prove-
queries. These queries are light queries that belong to a defined set of queries
each one of them intended to validate one or more of the restrictions. An ex-
ample of a prove-query ask for a specific attribute without any predicate, this
query contributes to the validation of restriction characteristics 1,3 and 5. For
evaluating restriction number 2, MetaExtractor tries to execute a query with
one condition in the predicate including the attribute compared to a valid value
according to the type of the attribute (e.g. numeric, string). If the query does
not return an error, the attribute is included in the set of safe attributes in the
predicate. The last restriction is evaluated through the incremental of the num-
ber of conditions in the predicate. The attributes used in this case are only the
ones that passed the restriction 2. Once a data source is registered the defined
set of prove-queries is executed over it.

5 Prototype and Functionality Evaluation

In order to evaluate the behavior of MetaExtractor a prototype has been con-
structed and used to evaluate its extractors and query capabilities. This section
presents the main results obtained during this evaluation. Section 5.1 presents
the characteristics of the prototype. Section 5.2 details the experimental results.

5.1 Prototype

In order to evaluate the behavior of MetaExtractor we developed the components
presented in Figure 4. Components were written in Java. the Global schema and
metadata repository are stored in Virtuoso [26]. The communication and interac-
tion of agents uses the multiagent framework BESA[27]. Queries are accepted in
SPARQL [28]. The content metadata extractor agent uses the natural language
processing API provided by LingPipe [29] and the Weka environment.

Structural Metadata and Global Schema One of the main issues in me-
diation systems is how to control the heterogeneity of data sources that con-
tribute to the system. Approaches that allow each data source to manage its



12 Alexandra Pomares et al.

Fig. 4. MetaExtractor Prototype Components.

own schema have demonstrated to scale well, but have important drawbacks in
the expressiveness of domain concepts [30]. Because of this, MetaExtractor fol-
lows a global schema approach that allows to relate the structure of each one of
the data sources to the schema of the domain that allows to create VDOs. This
decision was made considering that mediation systems are used to create virtual
environments of data sharing around a domain. The global schema defines this
domain, the relationship between a data source and the VDOs global schema
represents the contribution of this data source to the domain.

The Global Schema in MetaExtractor is created as an ontology in OWL [31].
It can be created by importing it using a .owl extension or automatically based
on a seminal data source. In the latter case, the tables of the data source are
interpreted as Classes, its attributes as Data Type Properties and the foreign
keys as Object Type Properties. Although the extraction from a structured data
source does not allow to include all the elements of a OWL ontology, they can
be added manually after its creation.

In order to create the relationship between data sources and global schema,
MetaExtractor provides a method that identifies synonyms between the names
of tables and attributes with the names of classes and properties of the global



MetaExtractor 13

Fig. 5. Metadata Ontology

schema. The execution of this method is not mandatory, but it facilitates the
process of data source registration in MetaExtractor.

Metadata Repository Representation Similarly to the Global Schema,
Metadata elements in MetaExtractor are described using the syntax and se-
mantics of an ontology. This ontology includes three main classes: Data Source,
Metadata, Structural Component. The class Data Source has two specializations:
Strucured and Non-Structured, the former one includes a restriction that speci-
fies that an individual of this class must have at least one structural component
related. Metadata class has four specializations, Structure, Quality, Capacity and
Content. Each one of them has specializations and related properties. Finally,
The Structural Component class and its subclasses define the specialization and
elements of structured data sources like tables, attributes, etc. Figure 5 illus-
trates an excerpt of this ontology.

Metadata pieces are stored as triples (Subject, Predicate, Object), respecting
the semantics and syntaxis of metadata ontology and global schema ontology. In
these triples Subject is an individual of the classes defined in the ontology, Pred-
icate is a property and Object is the value associated to the Subject-Predicate.

When a data source is registered in MetaExtractor the first performed action
is to create a triple that specifies that the name of the data source is a Data
Source. Then, MetaExtractor proceeds creating the triple that describes the data
source. The following expression is an example on how to create a triple:

Triple triple = new Triple(
Node.createURI(systemOntologyBaseName + ‘‘\#’’ + tableName),
Node.createURI(systemOntologyBaseName + ‘‘\#hasAttribute’’),
Node.createLiteral(systemOntologyBaseName + ‘‘\#’’ + attribute))

5.2 Experimental Results

Eventhough MetaExtractor was created for being used in any context, the moti-
vational context was the integration of medical data sources containing electronic



14 Alexandra Pomares et al.

Fig. 6. Precision Quality and Content
Metadata with Samples.

Fig. 7. True Positives and True Negatives
Specialists and Containers.

health records in a country. Tests with MetaExtractor were executed in this
context. The environment involves 100 simulated data sources containing EHRs.
Data sources were created in three different DBMS: PostgreSQL, MySQL and
SQL Server 2012. The records contained in each data source were extracted from
a database from a general hospital; however, for testing purposes, the database
was divided into subsets in order to have different types of specializations (e.g.
data sources specialized on obstetrics and gynecology) or general data sources.
Categories were trained based on the SNOMED terms.

Tests involve the extraction of structure, content, quality and capability
metadata as well as the prioritization using the extracted metadata. Due to
space limitations we are going to focus in content metadata extraction tests.
Figure 6 shows the results comparing the precision of metadata when the ex-
traction of content and quality metadata used samples instead of the complete
databases. Although the extraction of samples reduces the precision of the ex-
tracted metadata, the tests allows us to conclude that the precision of metadata
is stable and can be used to extrapolate the quality and content of the complete
data source.

Figure 7 illustrates the differences on True Positives (TP) and False Positives
(FP) taking into account the Container and Specialist roles. The main conclusion
of these tests is that the rate of TP and FP confirms the reliability of the system.

6 Conclusions and Future Work

This paper presents MetaExtractor a system that extracts, stores and main-
tains metadata. MetaExtractor is able to extract content, quality, capability
and structure metadata from structured data sources that contain high volume
of narrative texts. To the best of our knowledge, this is the first attempt to
support formally the extraction of this type of metadata in mediation systems.

MetaExtractor architecture is based on the interaction of software agents in
charge of extracting different types of metadata from distributed data sources.
It stores metadata in a repository that follows the semantics and syntax of an



MetaExtractor 15

ontology that allows to obtain precise metadata given a user query. MetaExtrac-
tor was designed to be used in architectures where the proportion of distribution
with respect to the structure of an object (VDO) is higher than the distribution
of its instances, making the metadata useful to reduce the number of sources re-
quired for a query. It improves the evaluation of queries that involve predicates
with high selectivity and guarantees the dynamic adaptability of the system.

MetaExtractor is being implemented as part of a large scale mediation sys-
tem. The current prototype is a proof-of-concept. Performance evaluation will be
tested in the next stage of development. Short term work involves the analysis
of redundancy between data sources to avoid the use of data sources that may
provide the same set of instances.

Acknowledgements

This work was supported by the project “Extracción semi-automática de metadatos
de fuentes de datos estructuradas: Una aproximación basada en agentes y min-
ería de datos” funded by Banco Santander S.A. and Pontificia Universidad Jave-
riana.

References

1. Doan, A., Halevy, A.Y.: Efficiently ordering query plans for data integration. In:
ICDE ’02, Washington, DC, USA, IEEE Computer Society (2002) 393

2. Akbarinia, R., Martins, V.: Data management in the appa system. Journal of Grid
Computing (2007)

3. Bleiholder, J., Khuller, S., Naumann, F., Raschid, L., Wu, Y.: Query planning in
the presence of overlapping sources. In: EDBT. (2006) 811–828

4. Hayek, R., Raschia, G., Valduriez, P., Mouaddib, N.: Summary management in
p2p systems. In: EDBT. (2008) 16–25

5. Sarma, A.D., Dong, X.L., Halevy, A.: Data integration with dependent sources.
In: Proceedings of the 14th International Conference on Extending Database Tech-
nology. EDBT/ICDT ’11, New York, NY, USA, ACM (2011) 401–412

6. Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter 25 (1992) 38–49

7. Roth, M., Schwarz, P.: A wrapper architecture for legacy data sources. In:
VLDB’97, Morgan Kaufman (1997) 266–275

8. Tomasic, A., Raschid, L., Valduriez, P.: Scaling access to heterogeneous data
sources with DISCO. Knowledge and Data Engineering 10 (1998) 808–823

9. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,
Ullman, J.D., Vassalos, V., Widom, J.: The tsimmis approach to mediation: Data
models and languages. Journal of Intelligent Information Systems 8 (1997) 117–132

10. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32 (2000) 422–469

11. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information
sources using source descriptions. In: VLDB. (1996) 251–262

12. Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries
using views. VLDB Journal. 10 (2001) 182–198



16 Alexandra Pomares et al.

13. Khatri, H., Fan, J., Chen, Y., Kambhampati, S.: Qpiad: Query processing over
incomplete autonomous databases. In: ICDE. (2007) 1430–1432

14. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information
sources. Inf. Syst. 29 (2004) 583–615

15. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:
Querying the internet with pier. In: VLDB. (2003) 321–332

16. Villamil, M.D.P., Roncancio, C., Labbe, C.: Pins: Peer-to-peer interrogation and
indexing system. In: IDEAS ’04: Proceedings of the International Database En-
gineering and Applications Symposium, Washington, DC, USA, IEEE Computer
Society (2004) 236–245

17. Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.L.,
Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project.
SIGMOD Rec. 32 (2003) 47–52

18. Ooi, B.C., Tan, K.L., Zhou, A., Goh, C.H., Li, Y., Liau, C.Y., Ling, B., Ng, W.S.,
Shu, Y., Wang, X., Zhang, M.: Peerdb: peering into personal databases. In:
Proceedings of the 2003 ACM SIGMOD international conference on Management
of data. SIGMOD ’03, New York, NY, USA, ACM (2003) 659–659

19. Rousset, M.C., Adjiman, P., Chatalic, P., Goasdoué, F., Simon, L.: Somewhere: A
scalable peer-to-peer infrastructure for querying distributed ontologies. In: OTM
Conferences (1). (2006) 698–703

20. Greenberg, J.: Metadata extraction and harvesting: A comparison of two automatic
metadata generation applications. Journal of Internet Cataloging 6 (2004) 59–82

21. Margaritopoulos, M., Margaritopoulos, T., Kotini, I., Manitsaris, A.: Automatic
metadata generation by utilising pre-existing metadata of related resources. Int.
J. Metadata Semant. Ontologies 3 (2008) 292–304

22. Hripcsak, G., Knirsch, C., Zhou, L., Wilcox, A., Melton, G.B.: Using discordance to
improve classification in narrative clinical databases: An application to community-
acquired pneumonia. Comput. Biol. Med. 37 (2007) 296–304

23. Kowalski, G.: Information Retrieval Systems: Theory and Implementation. 1st
edn. Kluwer Academic Publishers, Norwell, MA, USA (1997)

24. Pomares-Quimbaya, A., Roncancio, C., Cung, V.D., Villamil, M.D.P.: Improving
source selection in large scale mediation systems through combinatorial optimiza-
tion techniques. T. Large-Scale Data- and Knowledge-Centered Systems 3 (2011)
138–166

25. Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster Analysis. 5 edn. John
Wiley and Sons (2011)

26. Software, O.: Openlink software virtuoso open-source (vos) versión 1.7.2.1 (2011)
27. González, E., Bustacara, C.J., Avila, J.A.: Besa: Arquitectura para construcción

de sistemas multiagentes. In: CLEI - Conferencia Latinoamericana de Estudios en
Informática Ponencia. (2003)

28. Eric Prud, A.S.: Sparql query language for rdf, http://www.w3.org/tr/rdf-sparql-
query/ (2007)

29. Carpenter, B., Baldwin, B.: Text Analysis with Ling Pipe 4. Ling Pipe Publishing
(2011)

30. Ooi, B.C., Tan, K.L., Zhou, A., Goh, C.H., Li, Y., Liau, C.Y., Ling, B., Ng, W.S.,
Shu, Y., Wang, X., Zhang, M.: Peerdb: Peering into personal databases. In:
SIGMOD Conference. (2003) 659

31. OWL Working Group, W.: OWL 2 Web Ontology Language: Docu-
ment Overview. W3C Recommendation (27 October 2009) Available at
http://www.w3.org/TR/owl2-overview/.


