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Abstract. We introduce a new algorithm for ellipse recognition. The
approach uses Mahalanobis distance and statistical and analytical prop-
erties of circular and elliptical objects. At first stage of the algorithm the
starting configuration of initial ellipse is defined. Next we apply a condi-
tion which describes how much the shape is ellipse-like on the boundary
points.
The algorithm can be easily applied to detection of elliptical objects also
on grayscale images. Moreover, we discuss the improvement in iris image
preprocessing.
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1 Introduction

Efficient ellipse and circle detection is one of the key tasks in image processing
which is widely applied in various computer vision problems, in particular in
the computation of the position of 3-D objects in robotic applications [1, 2], in
the eye tracking in human-computer interfaces [3], in face detection in biometric
identification [4], in character recognition [5]. Consequently the extraction of
elliptic shapes form images has captured the interest of researchers for a long time
[6]. The methods used for this task can be categorized into several groups. The
most widely used is based on Hough transform [7] which takes edge map of image
as an input. Other group is based on the least square methods which mostly cast
the ellipse fitting problem into a constrained matrix equation problem [8, 9]. Next
category uses neural networks to find fast and approximately sufficient solutions
[10]. The last group is focused on hybrid approach which makes it more flexible
and efficient in many cases [11–15].

In this paper we introduce a new algorithm based on ellipse-growing idea
which may help in iris preprocessing, and consequently in iris pattern recogni-
tion. A basic limitation of the current iris recognition methods [16] is that they
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(a) (b)

Fig. 1: Iris image reconstruction. Fig. 1a – original eye image with extracted iris
and pupil. After the reconstruction (Fig. 1b) the shape of the iris was changed
and it looks like a circle.

require an “on-axis” image of the eye. Clearly in most “real-life” pictures we
have only a side-view of the eye, see Fig. 1a, which consequently yields that
the eye resembles an ellipse instead of a circle. There are same approaches to
deal with this problems which are based on the change in the representation, see
[17–19].

We use slightly different approach which allows to use original Daugman’s
recognition process – namely we modify the picture by respective affine trans-
formation so that the iris becomes circle-shaped. To do so we fit an optimal
ellipse to the pupil of an eye, and apply to the picture the affine operation which
transformes this ellipse into a circle, see Fig. 1b, which consequently transforms
the iris almost into a circle.

To apply the above mentioned procedure we construct a new ellipse extrac-
tion method which is based on the Mahalanobis distance and uses the statistical
and analytical properties of circular and elliptical objects. In the first step we
use thresholding for finding the starting configuration of cluster - initial ellipse
shape3. Next we use the specified condition to decide whether to add or not
the points from the cluster boundary. Since during the calculation we examine
just the boundary points of our cluster the calculation proceeds relatively fast.
This condition verifies whether the current boundary element fits (with possible
error δ) into the optimal ellipse fitted to the data with the use of Mahalanobis
distance. More precisely, we add the boundary point x to the data-cluster C if

‖x− µC‖ΣC
=

√
(x− µC)TΣ−1C (x− µC) ≤ 2 + δ,

where µC and ΣC denote the mean and covariance of C. The procedure is re-
peated until no boundary point belonging to the set satisfies the condition. The
main advantage of the proposed method is that no complicated mathematical
computation is involved in the implementation. Moreover, it is suitable for el-
lipse growing and ellipse extraction even on grayscale digital images and can be
used for higher dimensional data.

3 This step can be omitted or replaced by other procedure which ends with proper
initial configuration of the cluster.
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The remainder of the paper is organized as follows: in the next section we
present basics of the Mahalanobis distance. Moreover we provide a natural and
intrinsic characterization of elliptical shapes, which is proper even in higher
dimensions. In the third section we look more closely at the outcome information
from the growing cluster. We use its characterization to correct the image. In
section 4 we provide the results of experiments to illustrate the performance
of our method. Finally, the last section contains some concluding remarks and
possible directions of future investigations.

2 Theoretical background

In this section for the convenience of the reader we present a brief exposition
of the Mahalanobis distance and indicate how these information can be used to
construct ellipse growing algorithm.

It is well-known that the Euclidean distance between two points x and y in
real space is given by

‖x− y‖ =
√

(x− y)T I(x− y), for x, y ∈ IRN .

where T denotes the transpose operation and I is an identity matrix.
It follows immediately that all points with the same distance from the origin

‖x − 0‖ = c satisfy x21 + . . . + x2n = c2, which means that all components of an
observation x contribute equally to the Euclidean distance of x from the center.
But this situation in same cases is not optimal as we often prefer a distance
such that components with high variability should have different weight than
components with low variability. This can be obtained by using the Mahalanobis
distance [20] defined for a positive definite matrix Σ by

‖x− y‖Σ =
√

(x− y)TΣ−1(x− y). (1)

In this case the set of all points with the same distance c from a given point x0

{x ∈ IRN |(x− x0)TΣ(x− x0) = c2}, (2)

describes and ellipsoid with center at x0. If x0 = 0 then (2) is the general
equation of ellipsoid centered at the origin.

One can easily see that instead of calculating the Mahalanobis distance ‖x−
y‖Σ we can equivalently transform the points by the matrix Σ−1/2 and compute
the Euclidean distance of transformed points:

‖x− y‖Σ = ‖Σ−1/2x−Σ−1/2y‖,

see Fig. 2.
Let C denote the given subset of IRN . By µC we denote the mean value of C,

and by ΣC we mean covariance matrix of C. If we want to fit the Mahalanobis
distance to our data set C, as Σ we take the covariance matrix ΣC of C.
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Fig. 2: Mahalanobis distance vs. Euclidean distance. Fig. (a) – Mahalanobis dis-
tance in the original space on the data C, Fig. (b) – Euclidean distance in space

transformed by the operation x→ Σ
−1/2
C (x− µC).

Remark 1. It is worth noting that Mahalanobis distance can be treated as a
Euclidean distance in a transformed space, where the mean of the data C is
transformed into zero:

C 3 x→ Σ
−1/2
C (x− µC) ∈ IRN .

Fig. 2 presents the modification of origin given by this operation.

We are going to present some important observations crucial in the construc-
tion of our algorithm with the use of Mahalanobis distance. Consider the data
uniformly distributed over the circle 4 B(0, R) := {x ∈ IR2 : ‖x‖ ≤ R} of radius
R ≥ 0.

Remark 2. Consider the circle B(x0, R) with radius R on the plane. Then the
covariance matrix Σ of the uniform probability distribution on B(x0, R) is given
by

Σ =
R2

4
I. (3)

Proof of this remark is quite simple and based on the change into polar coordi-
nates (the N -dimensional version can be obtained by spherical representation of
N -ball [21, Chap. 8, Thm. 4]).

Next theorem is essential for algorithm construction.

Theorem 3. Consider the uniform probability density on the ellipse E ⊂ IR2

with covariance ΣE. Then
E = BΣE

(µE , 2). (4)

4 We consider Euclidean norm in this paper.
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Proof. By applying the transformation described in Remark 1 we can reduce our
reasoning to the case when E = B(0, R). Then by (3)

BΣE
(0, 2) = {x : ‖x‖ΣE

≤ 2}
= {x : ‖x‖2ΣE

≤ 4} = {x : xT (R
2

4 I)
−1x ≤ 4}

= {x : xTx ≤ R2} = B(0, R) = E.

Fig. 3 presents the the given data-sets C (or more precisely the uniform
density on the data) with fitted ellipses given by formula (4) in the presented
objects.

(a) (b)

Fig. 3: Different data-sets with ellipse constructed by equation (4).

Observe that on the true ellipse E, by Theorem 3 the set E will coincide
with BΣE

(µE , 2). Thus two allow the increase, or more precisely, the grow, of
the ellipse we allow error level δ > 0. In other words we allow to add a point to
our data-cluster C if it satisfies the condition

x ∈ BΣC
(µC , 2 + δ).

With different values of δ we will control how close to an ellipse we want to
remain. Consequently, the complete version of the authors’ algorithm can be
described as follows:

initial conditions
choose δ > 0
choose initial configuration of initial ellipse C
compute mean value µC and covariance matrix ΣC of C

repeat
added← False

for each x in ∂C do
if x ∈ BΣC

(µC , 2 + δ) then
C := C ∪ {x}
compute mean value µC and covariance matrix ΣC of C
added← True

end if
end for

until added
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The algorithm finds the maximal “almost” ellipse (with given error δ) fitting in
the input image by growing set C (Fig. 4).

(a) initial config-
uration

(b) 9th iteration (c) 25th iteration (d) 54th iteration

Fig. 4: Fitting ellipse – authors’ algorithm iterations.

As we know the role of δ is how close to an ellipse we want to stay. However,
to start the algorithm we need an explicit construction of the initial configuration
of C – we usually select sufficiently large ellipse which fits into our data. To do
so we apply the thresholding and some morphological operations (see Fig. 8).

Another important thing is the meaning of the boundary of the cluster ∂C
– we understand by this the nearest point which are not the members of the
cluster C. In case of digital image we have natural discretization of our space, so
we can easily determine the boundary using von Neumann neighborhoods (see
Fig. 5).

Fig. 5: The boundary points of the black pixel used in our algorithm.

Finally, we can optimize the calculation of the mean value and covariance
matrix of cluster C. Following well-known remark shows the formula for on-line
calculation of the mean and covariance of the modified data.

Remark 4. Let U, V be subsets of IR2, U ∩ V = ∅. We put

wU∪V = wU + wV , pU =
wU
wU∪V

, pV =
wV
wU∪V

.

where wU and wV denote the weights (cardinalities) of the sets U and V respec-
tively. Then mean value and covariance matrix of set U ∪ V are given by

µU∪V = pUµU + pV µV ,
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ΣU∪V = pUΣU + pVΣV + pUpV (µU − µV )(µU − µV )T .

The algorithm presented above has the ability to fit the maximal elliptical
object in the image. It uses calculated value of Mahalanobis distance with the
given error-level δ. Clearly, the error level can change the performance of the
algorithm. Fig. 6 presents the output of the algorithm for different values of δ.

(a) input image (b) initial configuration (set
C)

(c) δ = 0.01 (d) δ = 0.02 (e) δ = 0.03 (f) δ = 0.1

Fig. 6: Different level of δ for the same image may give different results. Fig. 6a –
input image. Fig. 6b initial configuration. Points added to cluster at the earlier
stage of the algorithm change the result.

Let now look at the starting configuration of the cluster. Fig. 7 presents the
output of the algorithm for different initial configuration of cluster (the initial
choice of set C). In most cases we obtain almost the same results. However there
is a possibility to damage the algorithm effect as is presented at Fig. 7d and
7h, where we start with initial set C given by an interval. Then the algorithm
changes just the horizontal size of the cluster while the vertical stay unchanged.

3 Experimental results

In this section we present the two connected examples of the algorithm outcome
for binary and grayscale iris image formats.

Binary image. In this case we apply our algorithm for thresholded image5 –
see first row at Fig. 8. The fitted ellipse contain the foreground of the image
(marked on black with weight equals 1), since we use just the information ob-
tained after thresholding. Fig. 8a and Fig. 8b presents the initial and outcome

5 We use same morphological operations for remove out-layers and reduce noise.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: Different initial configuration of the algorithm may give different out-
come. The first row present the initial configuration, while the second row – the
algorithm outcome.

ellipse respectively. Fig. 8 shows the outcome of the algorithm (boundary of the
fitted ellipse) at the original image.

Grayscale image. In this case we also use the thresholded image for finding
the initial ellipse. However in the next steps of the algorithm we use information
about the color in each pixel added to the ellipse. This approach is better because
we use full information we have and obtained result is more natural.

More advanced example is presented at Fig. 1. As a outcome of the authors’
algorithm we obtain the fitted ellipse, which statistical description can be used to
define the transformation operation (compare Remark 1). Thus we can transform
the iris image to make it more convenient for further processing by iris pattern
recognition algorithms.

4 Conclusions

We presented a new method for ellipse growing based on properties of Maha-
lanobis distance, which can be used in detection of ellipses in: both binary and
grayscale images. The numerical experiments have demonstrated that the algo-
rithm works sufficiently well in both cases. We can apply the algorithm for iris
preprocessing in real-life pictures where eyes are photographed sideways. More-
over, we can easily adapt the approach to higher dimensional data (for example
in 3D medical images).

In the future work we plan to focus on the automation of the algorithm, in
particular in the automatic detection of the necessary parameters (e.g. δ level)
and image preprocessing methods (e.g. morphological operations). Furthermore
we plan a more complete analysis of the behavior of the algorithm performance.



Ellipse growing algorithm 9

(a) (b) (c)

(d) (e) (f)

Fig. 8: Application of the authors’ algorithm for detection of the pupil and iris
at the grayscale images [22] for binary images (first row) and grayscale images:
(a), (d) – initial configuration of a cluster, (b), (e) – final size of the cluster, (c),
(f) – fitted ellipse at original image.
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