
HAL Id: hal-01492780
https://inria.hal.science/hal-01492780

Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Building a Customizable Business-Process-as-a-Service
Application with Current State-of-Practice

Fatih Gey, Stefan Walraven, Dimitri Van Landuyt, Wouter Joosen

To cite this version:
Fatih Gey, Stefan Walraven, Dimitri Van Landuyt, Wouter Joosen. Building a Customizable Business-
Process-as-a-Service Application with Current State-of-Practice. 12th International Conference on
Software Composition (SC), Jun 2013, Budapest, Hungary. pp.113-127, �10.1007/978-3-642-39614-
4_8�. �hal-01492780�

https://inria.hal.science/hal-01492780
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Building a Customizable
Business-Process-as-a-Service Application with

current State-of-Practice

Fatih Gey, Stefan Walraven, Dimitri Van Landuyt and Wouter Joosen

iMinds-DistriNet, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
{fatih.gey,stefan.walraven,dimitri.vanlanduyt,

wouter.joosen}@cs.kuleuven.be

Abstract. Application-level multi-tenancy is an increasingly prominent
architectural pattern in Software-as-a-Service (SaaS) applications that
enables multiple tenants (customers) to share common application func-
tionality and resources among each other. This has the disadvantage
that multi-tenant applications are often limited in terms of customiz-
ability: one application should fit the needs of all customers.
In this paper, we present our experiences with developing a multi-tenant
SaaS document processing system using current state-of-practice work-
flow technologies from the JBoss family. We specifically focus on the
customizability w.r.t. the different tenant-specific requirements, and the
manageability of the tenant-specific customizations.
Our main experiences are threefold: (i) we were insufficiently able to
modularize the activities and compositions that constitute the document
processing workflow, (ii) we lacked support for describing tenant-level
variations independently, and (iii) the workflow engine we employed is
too centralized in terms of control, which limits resilience and thereby
endangers scalability of the document processing application.

Key words: Software-as-a-Service, Business Process, jBPM, Multi-tenancy,
Customization, Document Processing

1 Introduction

Application-level multi-tenancy is an increasingly prominent architectural pat-
tern in Software-as-a-Service (SaaS) applications. Different tenants are served
simultaneously from the same run-time instance of the application while fea-
tures of the application remain logically separated on a per-tenant basis. This
suits best for applications where all potential tenants have highly similar (non-
)functional requirements for the application. In case the tenant requirements
differ slightly (or even profoundly), customization is required as an architectural
feature to the SaaS application to facilitate efficient incorporation and manage-
ment of tenant-specific requirements.

In the context of an ongoing project [1], we analysed a multi-tenant SaaS ap-
plication for document processing of an industrial partner that currently serves a



large amount of companies. Although their tenants differ in terms of specific re-
quirements, they do share the common requirement of processing large volumes
of documents and data through a multi-step processing scheme, e.g. after doc-
ument generation additional processing steps such as signing may be required.
In summary, the document processing represents a system for workflow-centric
processing of batch jobs.

The application that is currently in use follows an ad-hoc software manage-
ment approach: application functionality for document processing is available as
reusable library functions. For each tenant, an individual application is created
and executed. This approach suffers from being error-prone and not efficiently
manageable (e.g. in case of changes to the document processing system).

In this paper, we present our experiences with the development of a cus-
tomizable multi-tenant SaaS application that is configured by the tenant, whose
workflow is run on top of JBoss’ jBPM [2] and whose document processing fa-
cilities are modelled as Web services on top of JBoss AS7 [3]. As variability
modelling and service variability is out of scope of this paper, we focus on the
business process modelling (BPM) and execution aspects of our document pro-
cessing system.

By showing that batch-oriented business processes with custom requirements
(of a particular application domain) can be run as a SaaS application with man-
ageable efforts on state-of-practice tools, we encourage companies with similar
settings to migrate their workflow-driven application to a cloud platform. Re-
search has already been performed in adjacent fields, such as feature-oriented do-
main analysis [4] (variability analysis) and multi-tenant customization [5] (mid-
dleware to enable variability in services), but has not been focussing on (practi-
cal) studies enlightening the business process aspect of customizable SaaS appli-
cations. We believe that this is one reason for low usage of the Cloud paradigm for
companies of aforementioned types. Our concept envisions a set of pre-designed
workflows provided by the SaaS application developer from which a tenant can
simply select and configure the most suitable one and use the business processes
execution on-demand as a Service (BPaaS). Simultaneously, by tackling the effi-
cient manageability aspect of a workflow-driven, customizable multi-tenant SaaS
application, we also motivate to operate the provider-side of such an application.

This paper is organized as follows: Section 2 introduces the document process-
ing application and motivates the requirements of interest. Section 3 discusses
our implementation while Section 4 provides an in-depth discussion of our key
decisions and experiences from which we distil challenges and drawbacks that
are relevant beyond the scope of this single implementation project. Section 5
discusses related work, and we conclude this paper in Section 6.

2 Problem Illustration and Motivation

In this section we first describe the document processing system that is currently
in use by our industrial partner. Then, we highlight the drawbacks in terms



of manageability and summerize requirements for our implementation of the
document processing system as a customizable multi-tenant SaaS application.

2.1 Document Processing System

The system of interest in this paper is that of a Belgian SaaS provider. This com-
pany, hereafter referred-to as Document Processor (DP), provides a platform for
generating, signing, printing, delivering, storing, and archiving documents, and
they offer these B2B facilities as a Software-as-a-Service (SaaS) application to
their customers (tenants). As a result of adhering to multi-tenancy at the SaaS
paradigm, the document processing system is difficult to customize: the benefits
of scale inherent to SaaS rely on the fact that the same application can be reused
by many different tenants. Nonetheless, as the processing facilities are of rele-
vance to a wide range of companies in very different application domains, several
tenant-level variabilities and customizations exist. To illustrate, we present two
such tenant companies and their document processing requirements.

TenantA is a temporary employment agency which requires printed payslips
to be delivered to its employees. It provides the raw data to DP, with meta-
data attached to each document. TenantB is in the financial business and uses
the document processing facilities for generating invoices and distributing them
to their customers (end users). TenantB provides only raw data as input and
requires its custom layout to be applied to the documents generated (for brand-
ing purposes) and the distribution of documents depending on the end-user’s
preference (email and printed paper).

2.2 Challenges

In their current document processing offering, the document processing provider
uses a set of functional libraries to realize the superset of document processing
activities. As each document is processed by a sequence of these activities, the
processing logic is realized in the form of Java code in which these libraries are
called sequentially. To realize a tenant-specific customization of the application,
a variation of this processing logic is created manually – by copy-pasting the
existing Java code and making the tenant variations manually.

This approach has several obvious drawbacks: (1) There is no systematic
reuse of customization knowledge, and techniques such as copy-paste are error-
prone. Moreover, the management complexity of these different variants grows
exponentially with the number of supported tenant variations. (2) Because the
workflow logic is currently written in a programming language (Java), appli-
cation administrators are required to be developers skilled in that language in
order to set-up new tenants. (3) Whenever the libraries change, these changes
ripple through to the different workflow definitions: they needs to be changed
manually which does not scale for large number of tenants.

In this paper, we report on our experiences of migrating the existing docu-
ment processing application to state-of-practice workflow processing techniques
(from the JBoss family), and this obviously in the context of multi-tenant SaaS



applications. Specifically, we focused on addressing the key requirements listed
below:

– Manageability of Variations. In order to remain competitive, the time-to-
market of a specific tenant variant is of crucial importance. Therefore, adding
new tenants (tenant acquisition), changing tenant configurations, extending
tenant variabilities, or modifying the interfaces to the document processing
activities have to be more efficient, and the configuration process itself less
error-prone.
Furthermore, the tooling should be suitable to be used by business analysts
and domain experts, rather than by developers and programmers. As doc-
ument processing workflows consist of a set of pre-existing activities out of
which a particular sequence is defined, the tool is not required to nor should
provide the expressiveness of a general-purpose programming language.

– Resilience of Workflow Execution. It is especially important for SaaS
applications in a distributed setup, such as for our document processing
system, that the workflow execution is resilient against failures of remote
services, as failure of nodes is likely, and Service Level Agreements (SLAs)
in SaaS contexts tend to approach maximum utilization of resources so that
such failures may have severe impact on the fulfilment of SLAs.

Section 3 discusses the relevant implementation decisions. Subsequently, Sec-
tion 4 provides an in-depth discussion of our main experiences and findings.

3 Implementation

In this section, we describe the implementation of a customizable multi-tenant
SaaS application for document processing that we have built to address the
challenges discussed in Section 2.1. In line with the scope of this paper, we focus
on the business process modelling aspect that we have implemented using the
business modelling language Business Process Modelling and Notation (BPMN)
and its state-of-practice execution engine and modelling tool jBPM.

First we define – for the sake of clarity – the common terminology that is
used in the context of jBPM and that we use to describe our experience with
the implementation. We then give a short overview of the end-to-end application
before discussing its business processing modelling aspects.

3.1 Terminology

A workflow is a sequence of (business) activities. The persistent artifact in which
a workflow is defined, e.g. using BPMN, is a process definition. For each execution
of a workflow a run-time instance of the process definition, a so called process
instance is created. The implementation of an activity is called a task. Each
process instance can have process instance variables that may have been set at
process instance’s creation time and are accessible from within the tasks.



3.2 Overview of the End-to-End Application

The application we illustrate in this section processes document (processing) jobs
which are uploaded to the system. Such a job contains a set of input files (either
ready-to-distribute documents or raw data for document generation), meta-data
for each input-file, and a tenant-ID.

Fig. 1. High-level architecture of the end-to-end application

Figure 1 shows the overall architecture of the document processing SaaS
application. A document job is received at the pre-processing component and
passed on to the workflow engine. The workflow engine uses the tenant-ID of
that job to fetch the corresponding workflow-related tenant-specific configura-
tion from the central configuration repository. For example, tenant A’s workflow
is configured such that no document generation is executed, but that the input
documents should be printed and distributed via postal mail. For each activity
of the on-going workflow, e.g. document distribution for tenant A, the corre-
sponding service is called.

Each service fetches its configuration using the tenant-ID, e.g. the template
to use for printing tenant A’s documents.

3.3 Business Process Modelling

The main business logic of the document processing case is modelled in two
different workflows: the outer workflow is represented in Figure 2 and embeds



the inner workflow represented in Figure 3. The outer workflow iterates over the
input files of the uploaded document job and invokes the inner workflow for each
individual document.

Starting with the Start Event (circle labelled with “S” at the left-top side
of Figure 3), the graph depicts the sequence of workflow activities that is run.
Activities that are optional have a parallel edge connecting their predecessor
with the successors of that activity. Alternative activities are placed as parallel
paths to the actual activity. For both variations, XOR-typed gateways are used
which will proceed the workflow by selecting one of the available outgoing edges
depending on dynamically-evaluated code, which we call switch code. A switch
code may be written in Java code or Drools Rules (a domain-specific language
of JBoss for workflows). In addition, gateways of type AND are used which result
in executing all out-going paths.

As mentioned in Section 3.2, each of the activities of this process defini-
tion, when triggered, executes a service call to the document processing services
passing the document that is currently being processed and its related data.

Fig. 2. Process Definition for Document Processing: Outer Workflow

Fig. 3. Process Definition for Document Processing: Inner Workflow



Variability Modelling. As mentioned earlier, XOR gateways are used to express
optional or alternative activities in the document processing workflow. More
specifically, we use them to express tenant-specific variability in the sense that
the inner workflow, as shown in Figure 3, depicts the workflow with all tenant-
specific variants included. Hence, we call this type of artifact a multi-tenant
process definition.

At the instantiation of a workflow execution (process instance), the tenant-
specific parameters required to customize the workflow’s multi-tenant process
definition at run time are fetched. For tenant A, these parameters are no docu-
ment generation and delivery method is postal, and for tenant B the parameters
are document generation method using custom templates and delivery method is
postal (or delivery method is e-mail, respectively). Those parameters are set as
process instance variables which are accessible to all gateways and tasks within
the multi-tenant process definition. The aforementioned XOR gateways read these
parameters and select the tenant-specific options accordingly. For example, for
tenant A, the gateway selecting between the delivery methods will read instance
variable for tenant A and will select the postal option. As a result, workflow ex-
ecutions for each tenant follow only one path from start to finish of a workflow.
After a workflow for tenant A has been initialized, no other delivery method
than postal delivery is available for the duration of that process instance.

Passing Variables between Tasks and into an Iteration Activity. The BPMN
language provides two options for a task to retrieve data: (1) Process instance
variables which are variables in the scope of a process instance, i.e. each task can
access those, and (2) parameter mapping, a mechanism that can map process
instance variables to input parameters of a task or output data from a task to a
process instance variable.

Using option 1, all processes would be able to read and write to a scoped
global variable space which would limit modularity. In the current version of
BPMN, option 2 is limited to map a variable’s content to another variable or vice
versa, without providing the ability to map a member of a variable (assuming it
is an object) to another variable. As a result, using options 2, tasks are expected
to know which data are required their successor tasks in order to provide those
in separate variables. That is, in case the set of tasks changes, programmatic
changes on the tasks are becoming necessary in order to reflect on the changed
set of output variables that this task has to fill in.

Option 2 also causes another issue when considering a workflow with itera-
tions. As described earlier (cf. Section 3.3), the outer workflow of the document
processing system is triggered with a set of input documents (and per-document
meta-data) over which it iterates, calling the inner workflow for each document.
A consequence of that architecture is that the document processing system re-
quires the iteration activity of the outer workflow to pass multiple variables
(document and meta-data) to the inner workflow, which is not supported by the
current version of BPMN. Using option 2, the members of that single variable
that is passed into each iteration cannot be mapped to the according parameters
within the inner workflow.



As a workaround, we decided to introduce a composite data structure that
provides (i) members to store the input document and meta-data, and (ii) read-
and write-access for additional information. The composite data structure is
stored as process instance variable and is accessible by each task (as in option
1). It is used to pass partial results, e.g. the document in question in its (poten-
tially intermediate) current state after each activity, among other book-keeping
information, such as a list of so-far completed activities, between tasks. For iter-
ations, it is used to reduce the amount of variables that are required within the
inner workflow to one.

4 Discussion

This section discusses our experience and main findings with our implementation
(presented in the previous sections) with regard to the requirements we set up
for our document processing application (cf. Section 2.2).

4.1 Manageability of Variations

Our findings related to manageability are twofold: (1) Using BPMN to model
the document processing workflows, we were forced to create a custom data-
structure per multi-tenant process definition and introduce a structural depen-
dency between that data structure and the tasks which decreases reusability of
said tasks across process definitions. (2) The Lack of explicit support for multi-
tenant customization in BPMN (a) increases the need to add or modify a tenant
configuration redundantly at multiple places, limiting the modularity of that
configuration, and (b) limits potential future tool support for tenant-specific
configuration management. Next, we will elaborate on these findings in detail.

Structural Dependency of Tasks. As discussed in Section 3.3, we have created
a composite data structure as a workaround, that is used to pass input docu-
ment and its meta-data between tasks, because we experienced that BPMN’s
techniques for passing parameters were not sufficient to realize the requirements
set by our document processing application. In order to enable all tenants to
read from and write to this data structure, additional structural dependen-
cies between all tasks in our document processing workflow and the common
data structure were introduced, i.e. all tasks use (the same) implied knowledge
about the common data structure. This workaround is the result of a trade-off
in reusability. On the one hand, by introducing this composite data structure
and the dependency to the tasks of the multi-tenant process definition, we en-
sure that the process definition can be efficiently and easily (re-)assembled using
existing tasks and graphical tools. On the other hand, in case an additional pro-
cess definition becomes necessary, tasks of the one process definition cannot be
used in the other, as they may rely on different composite data structures for
their inter-task communications. For example in the document processing sys-
tem, tenants with relatively similar requirements are clustered together (tenant



A and tenant B belonging to the same cluster). If however, new tenants show
up with very different requirements (thus, belonging to a different cluster), the
overall management effort is effectively lower when separating the two clusters
in separate process definitions.

Ideally, this problem is addressed at the level of the BPMN language. By
supporting the operator to access member variables (in Java, that is the dot
operator), the parameter mapping feature, which is configurable using jBPM’s
graphical tools, could be used to pass parameters betweens tasks without the
need of additional data structures. Hence, the dependency between tasks in a
process definition could be easily managed using graphical tools (to configure
the parameter mapping feature) rather than changing the program code of task
to comply to the additional data structures.

Explicit Support in BPMN for Tenant-specific Variations. We have observed
that BPMN does not explicitly support tenant-specific variations. For the im-
plementation of the document processing application, we therefore borrowed
other features of that language to realize the desired level of variability, namely
gateways with Java as switch code.

This workaround has two drawbacks: (1) the knowledge about tenant-specific
variations for each activity in the document processing workflow is defined within
the tenant-specific configuration. As with our implementation, the same knowl-
edge is used when creating the multi-tenant process definition which is a man-
ual process. Thus, our current workaround limits modularity and requires an
error-prone manual process. (2) We use the BPMN language item gateway to
express tenant-specific rather than business-process-driven variability for which
it is meant to be used. Therefore, these two semantics become harder to distin-
guish. As a result, potential tool support for tenant-specific management may
be limited.

Note, however, that the lack of explicit support for tenant-specific variations
does not affect the manageability of workflow definitions. Placing all tenant-
specific variants into a single multi-tenant process definition, i.e. using branches,
increases its overall size, and may seem as a bottleneck for (change-)management
at first. But, as BPMN supports the partition of workflows into sub-workflows,
the size of process definition has no big impact on its practicality in management
per-se.

In order to tackle the aforementioned two issues, we envision an extension to
BPMN that provides explicit support for tenant-specific variations by introduc-
ing two elements. One, an activity that is subject to tenant-specific alternatives
should be modelled as variation point1. Two, the workflow engine should pro-
vide mechanisms to import knowledge about variation points, such as a feature
model, and variants from an external source. In our document processing sys-
tem, this would be the configuration repository. Similar suggestions have been
made for the BPEL language but have not been shown in a proof-of-concept
implementation, yet [7].

1 We use the terms Variation Point and Variant as it is defined in [6].



4.2 Resilience of jBPM’s Workflow Execution

The workflow engine jBPM, which we used for our implementation, executes
workflows employing dedicated control over the process instance. That is, at
the time an execution is triggered, the process definition is loaded into memory.
Thereafter, programmatical access to a specific process instance from outside
the process instance is very limited, and especially an update of the process
definition is not possible.

In addition, for our case, no state during the entire workflow execution is
persisted2. Technical failures are not considered in the modelling concepts of
BPMN. Although jBPM offers technical exception handling3, it is intended to
only run additional procedures in case of exceptions and has no effect on the
execution sequence.

Potential Types of Failures. The described properties above lead to following
three potential failures of the workflow execution which we will discuss sub-
sequently: (1) A process instance may continue processing on the basis of an
out-dated process definition that may lead to task failures or, even worse, to in-
correct results of the process. (2) In case a task fails, the entire workflow has to
be executed all over. (3) In case the workflow engine crashes, the entire workflow
has to be re-run.

The first type of failure can occur when workflow tasks change their scope of
activity and, as a result, also the sequence in which the workflow requires to be
executed. Example: Assume that a task that was supposed to create and send an
e-mail is split into two tasks, one for creating an e-mail, i.e. HTML formatting,
BASE64 encoding, etc., and the other for sending the e-mail (talking SMTP
with a server). Obviously, process definitions that included this task need to
be updated accordingly. Without the ability to update process instances during
their execution, all process instances that include that task but have not executed
it yet will fail or produce incorrect results.

The second and the third behaviour basically refer to the same issue: In
case a task fails, the enclosing workflow is restarted from the beginning. As
a result, documents are reprocessed not because of a business process reason,
e.g. the document at hand is an exceptional case or contains errors, but purely
because of a technical reason. Because we modelled the workflow to process an

2 The jBPM workflow engine persists workflow state only at so called safe-points.
These are phases in which the workflow engine has no further immediate tasks to
execute and is waiting for workflow events to continue. For non-interactive work-
flows that contains only a sequence of subsequent activities, such as the document
processing application, no persistence of workflow state is applied during the entire
execution.

3 jBPM distinguishes between two kinds of exceptions: logic and technical exceptions.
While logical exceptions refer to exceptional cases in the business logic, e.g. when
escalation to the next business hierarchy level is required, technical exceptions can
be mapped the exception handling concept found in Java and other programming
languages.



entire document processing job (multiple documents) at once, the overhead of a
service failure is even higher as already successfully processed documents would
be processed again.

This shortcoming is related to jBPM’s focus of failure-recovery. It is best
suited for situations in which the workflow-engine (or the underlying infrastruc-
ture) fails especially when waiting for a particular event to resume the according
process instance. This can be a long period when interactive tasks are involved.
These phases in which the workflow engine is waiting are called safe-points. For
our non-interactive and not event-driven workflow, the safe-points are located
before the workflow execution has started and after its completion. Thus, our
implementation using jBPM makes failures of single tasks expensive4, as the
entire workflow needs to be repeated.

Task Failures in the Context of Distributed SaaS Applications. In the presence
of failures with expensive consequences, attention should be paid to the fact that
a distributed multi-tenant SaaS application risks multiple natural error sources
that may lead activities to fail: First, every distributed system inherently lacks
control over the remote machine’s state and suffers from occasional data omis-
sions due to network failures. Second, the fact that the benefit from economies-
of-scale is a dominant motivation to operate an application on a cloud platform
implies that the application is intended to be operated under continuous load.
In our case, load refers to document processing jobs that have a SLA-committed
completion dates. Thus, large delays in workflow execution are not tolerable from
a business perspective.

Conclusion. Therefore, we identify the gap in our document processing SaaS ap-
plication that it lacks of support for inexpensive failures of tasks. In future work,
we plan to elaborate further on safe points that occur between each workflow-
step (activity) rendering a process definition to be executed as a set of tasks.
Moreover, by removing the centralized control that spans the entire workflow
execution and supporting the execution of individual tasks of a workflow from in-
dependent workflow engine instances, concurrent execution of semantically par-
allelizable tasks within a workflow could be enabled. Furthermore, in case a task
execution fails, the aforementioned safe points can depict process instance states
to resume at when restarting the process instance. In addition, updating the pro-
cess definition of a running process instance would become simpler, as after each
activity the process instance would be in a (persisted) quiescence [8] state and
before each activity the process definition is re-read.

Building up on these features, task failures would be less expensive (resume
instead of start over) and could therefore be accepted as a planned behaviour
of the system and incorporated into the SLA-targeting scheduling strategies.
As a result, changes to and failures of the system would be less harmful, and

4 Cost can have multiple dimensions: operational costs, duration (endangering SLA
fulfillment) or damage of brand (sending invoices twice and thereby communicating
technical error to customers)



the scalability in performance and management overhead (i.e. for re-allocating
performance schedules) would benefit significantly.

5 Related Work

Manageability for Business Processes. Modularity is a key concept to support
manageability through reuse. Research has been executed to increase the modu-
larity in business process definitions. Geebelen et. al [9] proposed a pre-processing
layer for the BPEL standard, that uses a set of concrete parameters to trans-
form a parameterized process definition template into an actual BPEL process
definition that can be executed on ordinary BPEL engines. Charfi et. al [10] use
aspect orientation to modularize the definition of activities within and across
business processes, e.g. an activity that always has to precede another activity
can be defined in modularized way. Isotan et. al [11] propose to add composi-
tion operators to BPMN in order to facilitate the composition of smaller and
reusable definition units into full process definitions. In their work, they are
formally modelling operators based on Petri Nets.

In contrast, our document processing application is designed to be operated
as SaaS application and, thereby, has a different set of requirements for man-
ageability: We address one application domain at a time by creating a single
process definition including all anticipated variabilities. Not dealing with a large
amount of separate process definitions, our context benefits less from the kind
of modularity that is presented in the related work. We rather lack of reusability
of tasks across process definitions, as elaborated in Section 4.

Multi-Tenancy for Business Processes. Pathirage et. al [12] address multi-
tenancy mostly at the infrastructure level. They provide a platform on top of
which a BPEL engine can be run and that maintains a tenant context during
the entire workflow execution.

However, it does not take customization of workflows into account, i.e. all
tenants operate on the same workflow, while we focus on workflow customization
as well as multi-tenancy.

Variability for Business Processes. The work of Mietzner et. al [13] focus mainly
on modelling variability and providing deployment support in that it will choose
the set of required components optimizing for the lowest operational costs.

While they present rather generic concepts for modelling workflow variabil-
ity, our work is based on a practical experience with a concrete state-of-practice
framework from which we extract further challenges. We also focus on the busi-
ness process modelling aspect that is not enlightened in their work.

Geebelen et. al present in a later work [14] a framework for run-time adapta-
tion of workflow processes. They use an application-domain-dependent workflow
template at which concrete service calls are weaved in at run-time depending
on an external policy engine. Also rollbacks to previous workflow activities are
provided.



Even though, they provide manageable flexibility, their scope of workflow
customization differs from ours. While they provide a fixed sequence of activities
and flexibility in choosing the service to execute an activity, we offer alternative
sequences based on tenant-specific requirements.

VxBPEL [7] is an extension to BPEL that explicitly adds alternative task
implementations to an activity in the process definition. It is motivated that the
knowledge about variations (1) should be obtained from an external source and
(2) should be injectable into on-going workflow executions. The implementation
of that work does not show those motivated proposals.

In their proposals, the authors argue similarly to us. Yet, we differ in the
fact that we use business process modelling for non-interactive batch-processing
and variability in the context of multi-tenancy, while they argue on basis of
interactive application and introduce variability to achieve higher Quality-of-
Service. Furthermore, we use the state-of-practice technology jBPM without
modifications in order to comply with cloud providers as well as with existing
applications and tools.

Resilience of Workflow Execution. In Section 4.2, we described the kind of re-
silience for workflow executions that is required for the document processing
application, i.e. a task execution failure should not cause the enclosing workflow
to be reset to the beginning.

Leymann et. al [15] describe a workflow management system that is based
on multiple message queues. They claim that their system, persisting state in-
formation about each invoked task, is ”forward recoverable”. While their system
is situated in a local environment with (remote) interactive clients, our context
is a non-interactive workflow as distributed SaaS application.

The work of Yu et. al [16] proposes to process BPEL workflows without a
central execution engine. One of its key goals is to enable dynamically composed
workflows which also addresses changes in the task execution sequence in the
presence of service failures. They make use of continuations which are persisted
after each task execution of the workflow and that can be picked-up by differ-
ent workflow engines for continuing execution, and extend the BPEL execution
engine. We, the other hand, use state-of-practice tools to model and execute
workflows.

6 Conclusion

We presented our experiences with the implementation of a customizable multi-
tenant SaaS application for document processing. We discussed the key require-
ments for this application: multi-tenancy and Software-as-a-Service on the one
hand, and customizability to tenant-specific requirements on the other hand. To
guarantee the practical relevance of our findings, we addressed these require-
ments in the context of state-of-practice technologies from the JBoss family.
Specifically, we employed Business Process Modelling and Notation (BPMN)
language to model tenant-specific customizable business processes of the docu-
ment processing system and jBPM for their execution.



Our findings can be summarized as follows. First, because of the parameter-
passing mechanism that is currently provided in BPMN, it is hard to design
individual tasks in a modular manner so that they can be reused across busi-
ness process definitions. Our second finding is a consequence of the fact that
BPMN lacks explicit support for multi-tenancy and variability. We introduce
workflow branches to express tenant-specific instead of business-case variabilities
as a workaround. Ideally, the workflow modelling language should offer support
to describe these tenant-level variabilities explicitly. In our third finding, we have
argued that using a centralized run-time instance to control the entire workflow
may not provide the necessary resilience in execution, because of the high costs
related to recover from task failure. It may therefore only be partially suited for
SaaS environments where different kinds of faults are likely to occur regularly.
Their occurrence may endanger SLA commitments and thereby limit scalability
of the application.

Customization will gain importance in multi-tenant Software-as-a-Service ap-
plications as it enables the SaaS provider to fine-tune his offerings to specific
tenants without losing the benefits of scale inherent to SaaS. Not only appli-
cations and services, but also the composition of those, i.e. a workflow-driven
application, need to support customization to facilitate the migration of legacy
applications to the cloud.

Acknowledgments

This research is partially funded by the Research Fund KU Leuven and by
the iMinds project CUSTOMSS. The iMinds CUSTOMSS is a project co-
funded by iMinds (Interdisciplinary institute for Technology) a research institute
founded by the Flemish Government. Companies and organizations involved in
the project are AGFA Healthcare, IBCN/INTEC-UGent, Televic Healthcare,
and UnifiedPost.

References

1. iMinds CUSTOMSS Project Consortium: iMinds CUSTOMSS Project,
http://distrinet.cs.kuleuven.be/research/projects/showProject.do?

projectID=CUSTOMSS (2013)
2. The jBPM Team of the JBoss Community: jBPM, http://www.jboss.org/jbpm

(2013)
3. The JBoss Community: JBoss AS7, http://www.jboss.org/as7 (2013)
4. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain

analysis (foda) feasibility study. Technical report, DTIC Document (1990)
5. Walraven, S., Truyen, E., Joosen, W.: A Middleware Layer for Flexible and Cost-

Efficient Multi-tenant Applications. In Kon, F., Kermarrec, A.M., eds.: Middleware
2011. Volume 7049. Springer Berlin / Heidelberg (2011) 370–389 10.1007/978-3-
642-25821-3 19.

6. Chang, S.H., Kim, S.D.: A Variability Modeling Method for Adaptable Services in
Service-Oriented Computing. In: Software Product Line Conference, 2007. SPLC
2007. 11th International. (2007) 261 – 268



7. Koning, M., ai Sun, C., Sinnema, M., Avgeriou, P.: Vxbpel: Supporting variability
for web services in bpel. Information and Software Technology 51 (2009) 258 –
269

8. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. Software Engineering, IEEE Transactions on 16 (1990) 1293 –1306

9. Geebelen, K., Michiels, S., Joosen, W.: Dynamic reconfiguration using template
based web service composition. In: Proceedings of the 3rd workshop on Middleware
for service oriented computing. MW4SOC ’08, New York, NY, USA, ACM (2008)
49–54

10. Charfi, A., Mezini, M.: Aspect-oriented web service composition with ao4bpel.
In Zhang, L.J., Jeckle, M., eds.: Web Services. Volume 3250 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg (2004) 168–182 10.1007/978-3-
540-30209-4 13.

11. Istoan, P.: Defining composition operators for bpmn. In Gschwind, T., Paoli, F.,
Gruhn, V., Book, M., eds.: Software Composition. Volume 7306 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2012) 17–34

12. Pathirage, M., Perera, S., Kumara, I., Weerawarana, S.: A multi-tenant archi-
tecture for business process executions. In: Web Services (ICWS), 2011 IEEE
International Conference on. (2011) 121 –128

13. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: Variability modeling to support
customization and deployment of multi-tenant-aware software as a service appli-
cations. In: Proceedings of the 2009 ICSE Workshop on Principles of Engineering
Service Oriented Systems. PESOS ’09, Washington, DC, USA, IEEE Computer
Society (2009) 18–25

14. Geebelen, K., Kulikowski, E., Truyen, E., Joosen, W.: A mvc framework for policy-
based adaptation of workflow processes: A case study on confidentiality. In: Web
Services (ICWS), 2010 IEEE International Conference on. (2010) 401 –408

15. Leymnn, F., Roller, D.: Building a robust workflow management system with
persistent queues and stored procedures. In: Data Engineering, 1998. Proceedings.,
14th International Conference on. (1998) 254 –258

16. Yu, W.: Running BPEL Processes without Central Engines. 1 (2007) 224


