
HAL Id: hal-01492777
https://inria.hal.science/hal-01492777

Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Separating Obligations of Subjects and Handlers for
More Flexible Event Type Verification

José Sánchez, Gary T. Leavens

To cite this version:
José Sánchez, Gary T. Leavens. Separating Obligations of Subjects and Handlers for More Flexible
Event Type Verification. 12th International Conference on Software Composition (SC), Jun 2013,
Budapest, Hungary. pp.65-80, �10.1007/978-3-642-39614-4_5�. �hal-01492777�

https://inria.hal.science/hal-01492777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Separating Obligations of Subjects and Handlers for
More Flexible Event Type Verification

José Sánchez and Gary T. Leavens

University of Central Florida, Dept. of EECS, Orlando, FL 32816, USA
{sanchez,leavens}@eecs.ucf.edu

Abstract. Implicit invocation languages, like aspect-oriented languages, auto-
mate the Observer pattern, which decouples subjects (base code) from handlers
(advice), and then compound them together in the final system. For such lan-
guages, event types have been proposed as a way of further decoupling subjects
from handlers. In Ptolemy, subjects explicitly announce events at certain program
points, and pass the announced piece of code to the handlers for its eventual ex-
ecution. This implies a mutual dependency between subjectsand handlers that
should be considered in verification; i.e., verification of subject code should con-
sider the handlers and vice versa.
However, in Ptolemy the event type defines only one obligation that both the han-
dlers and the announced piece of code must satisfy. This limits the flexibility and
completeness of verification in Ptolemy. That is, some correct programs cannot
be verified due to specification mismatches between the announced code and the
handlers’ code. For example, when the announced code does not satisfy the speci-
fication of the entire event and handlers must make up the difference, or when the
announced code has no effect, imposing a monotonic behavioron the handlers.
In this paper we propose an extension to the specification features of Ptolemy that
explicitly separates the specification of the handlers fromthe specification of the
announced code. This makes verification in our new language PtolemyRely more
flexible and more complete, while preserving modularity.

Keywords: Event type, specification, verification, Ptolemy language

1 Introduction

Event types [12], and other similar approaches like XPIs [16], AAI [10], Open Mod-
ules[1, 11], IIIA with Join Point Types [15] and Joint Point Interfaces (JPI) [8, 5, 4],
have been proposed as a way to further decouple subjects fromhandlers in implicit
invocation and aspect-oriented languages. The verification systems for such languages
should, as usual, strive to be as complete as possible while staying sound. In this work
we propose some enhancements to the Ptolemy language and itsspecification and veri-
fication system for making it more complete while keeping it sound.

1.1 Completeness as a Measure of Usefulness

We work in the framework of a partial-correctness Hoare logic [7]. A judgement of the
form Γ ⊢ {P}S{Q} means that the Hoare-triple{P}S{Q} is provable using the type

2 Sánchez and Leavens

environmentΓ . The judgementΓ ⊢ {P}S{Q} is valid iff for every stateσ that agrees
with the type environmentΓ , if P is true inσ (writtenσ |= P) and if the execution of
S terminates in a stateσ′, thenσ′ |= Q. Such a logic issoundif whenever a judgment
Γ ⊢ {P}S{Q} is provable, then it is valid. Conversely, such a logic iscompleteif
whenever such a judgment is valid, then it is provable in the logic.

To compare two logics, one can ask if both are sound, and if so one can compare
how complete they are. LogicA is strictly more complete thanlogicB if there is some
valid judgment that is provable inA but not inB, but every judgment that is provable
in B is provable inA. Given that both logics are sound, then a more complete logicis
potentially more useful for users, as they will be able to prove more programs correct.

1.2 A Brief on Ptolemy Language

Ptolemy’s [12] event type concept decouples subjects (base code), which explicitly an-
nounceevents, from thehandlersthat process these events. The event type establishes
the contract every handler must satisfy. In this way the base(or announcing) code can
be modularly reasoned about using the contract, instead of using each handler’s code.
The contract not only defines the precondition and postcondition every handler method
should satisfy, but also the abstract algorithm they must refine, called atranslucidcon-
tract [3]. In the body of a translucid contract,specification expressionscan abstract
away details of particular implementation expressions, byonly specifying their effects.
Invoke expressionsin the contract’s body show where a handler triggers the execution
of the next handler in theexecution chain(until eventually reaching the originally an-
nounced code that stands at the end). In the base code,announce expressionsare used
to explicitly announce occurrences of events, starting theexecution chainand passing
theannounced codeto it. All this is schematized in Figure 1.

Fig. 1. Event, handlers and announced code

Separating Obligations of Subjects and Handlers 3

The invoke expressionsin the contract make visible the control effects of the han-
dlers. Active handlers are registered as such usingregister expressionsand handlers are
bound to the corresponding event bywhen expressions.

In Ptolemy, every handler method must be verified to satisfy the contract’s pre- and
postconditions and also to structurally refine (see section 2) the translucid contract’s
body, providing conforming implementations for every specification expression.1 The
announced code is also verified to satisfy the same contract’s pre- and postconditions.

1.3 The Billing Example

The billing system example in Figure 2 illustrates the basic concepts ofPtolemy and
motivates our proposed extension. In this system, each billincludes the amount (a) to
be paid and the extra charges (c) like taxes. When the base code totals a bill, adding the
charges to the principal amount (line 7), the correspondingevent is announced (lines 6-
8). This gives registered handlers (maybePaymentHandler or ShippingHandler)
the chance to do some adjustments, like adding some extra charges. In this case we
register just one handler at random (line 5) to emphasize thefact that the reasoning is
based on the event definition, instead of the particular implementation of any specific
handler. TheTotalingEventdefinition specifies the behavior and abstract algorithm of
every admissible handler. Therequires (line 14) andensures (line 21)2 clauses
specifies the behavior: every handler requires (line 14) that the existing charges are not
negative and ensures (line 21) that the resulting amount of the bill is greater than or
equal to the sum of the original amount plus the original charges. The excess, if any,
is due to the extra charges added by the handlers. Thetranslucid contract(lines 16-19,
insideassumes{. . .}) forces the handlers to make the charges greater than or equal
to their current value, but allows charges to be added by eachhandler in any consistent
way. The specification expression (lines 17-18) must be refined by each conforming
handler, with code that satisfies the stated pre-post conditions. Also anyinvoke ex-
pression must be made explicit in the translucid contract (as on line 19). This allows
modular verification of control effects, using the specification of the announced event.

This example is verified by Ptolemy’s proof system. Both handlers refine the event’s
translucid contract. The specification expression in this contract (lines 17-18) is re-
fined byPaymentHandler by increasing the charges (c′ = c + 1, line 27), and by
ShippingHandler by leaving the charges the same (c′ = c+ 0, line 38). Considering
the above and the effect of theinvoke expression, it can be seen that both handlers
satisfy the event specification (a′ ≥ a+ c, line 21), and so both are proven valid. The
announced code (a′ = a+ c, line 7) also satisfies the event specification (a′ ≥ a+ c,
line 21), as required by Ptolemy’s proof system, so the completeannounce expression
(lines 6-8) is proven valid. With the handlers and theannounce expressions proven
valid, the entire program is proven valid in Ptolemy.

1 Ptolemy is an expression language.
2 When summarizing assertions, we adopt the Z [14] conventionof denoting the new value of a

variable with a prime (likea′), and use unprimed variables to stand for their pre-state values.

4 Sánchez and Leavens

1 public class Base {
2 public void run(){
3 Bill bill=new Bill(100,8);
4 Bill old=new Bill(bill.a(),bill.c());
5 registerHandler();// Randomly register one handler
6 announce TotalingEvent(bill) { // event Qe : a′ ≥ a+ c
7 bill.setA(bill.a()+bill.c());// code Qs : a′ = a+ c
8 }
9 //assert bill.a()>old.a()+old.c(); //a′ > a+ c ??

10 } }
11

12 public void event TotalingEvent { // handlers: a′ ≥ a+ c
13 Bill bill;
14 requires (bill.c()>=0) // Pe: c ≥ 0
15 assumes{
16 // specification expr.: requires c ≥ 0 ensures c′ ≥ c
17 requires (next.bill().c()>=0)
18 ensures (next.bill().c()>=old(next.bill().c()));
19 next.invoke(); // control flow: proceed with next handler
20 }
21 ensures (bill.a()>=old(bill.a())+old(bill.c())) //Qe: a′ ≥ a+ c
22 }
23 public class PaymentHandler { // Payment Processing Fee Handler
24 public void handleTotaling(TotalingEvent next)throws Throwable{
25 refining requires (next.bill().c()>=0)
26 ensures (next.bill().c()>=old(next.bill().c())){
27 next.bill().setC(next.bill().c()+1); // c′ = c+ 1
28 }
29 next.invoke();
30 }
31 when TotalingEvent do handleTotaling;
32 public PaymentHandler(){ register(this); }
33 }
34 public class ShippingHandler { // Shipping Fee Handler
35 public void handleTotaling(TotalingEvent next)throws Throwable{
36 refining requires (next.bill().c()>=0)
37 ensures (next.bill().c()>=old(next.bill().c())){
38 next.bill().setC(next.bill().c()+0); //c′ = c+ 0 NO FEE NOW
39 }
40 next.invoke();
41 }
42 when TotalingEvent do handleTotaling;
43 public ShippingHandler(){ register(this); }
44 }

Fig. 2. Billing example in Ptolemy

Separating Obligations of Subjects and Handlers 5

1.4 Completeness Issues: Enforcing the Billing “Increasing” Property

Now we consider a variation on thebilling system. A new “business rule” requires us to
enforce the “increasing” property: that all the handlers for TotalingEventmust strictly
increase the total amount, by adding to the charges. Currently PaymentHandler sat-
isfies this condition (line 27) butShippingHandler does not (line 38). If this property
were met,the assertion on line 9 could be proven true, since no matter which handler
were registered (line 5) the charges would have been incremented.

We have to guarantee that any handlerH bound to the eventTotalingEvent, satisfies
the required property, while keeping the program valid.3 For doing that we can adjust
the event specification and the handlers.

Definition 1. An implementation of thebilling programsatisfies the “increasing” prop-
erty if for each binding clause of the formwhen TotalingEvent dom appearing in a
classC: if H = bodyOf (C ,m) thenΓ ′ |= {c ≥ 0}H{a′ > a+ c}.

The currentTotalingEventspecification does not guarantee the above property, as
its postcondition(a′ ≥ a + c) does not imply(a′ > a + c). The way for thebilling
system to satisfy this property is by having an event postconditionQe such thatQe ⇒
(a′ > a+c). However in Ptolemy thisQe must be such that(a′ = a+c) ⇒ Qe, to meet
the requirement of Ptolemy’s proof system that the announced code (line 7) satisfies the
event specification. The fact that these two implications result in a contradiction shows
that the above property cannot be proved in Ptolemy. This shows the incompleteness of
Ptolemy’s proof system, that is incapable ofmodularlyproving the assertion in line 9.

In section 3 we propose an extension to Ptolemy that makes verification more flexi-
ble and complete, and in particular able to enforce the “increasing” property and verify
the aforementioned assertion. First, we explain Ptolemy verification in more detail.

2 Verification in Ptolemy

In Ptolemy, event types state the obligations that handlersshould satisfy. In the gen-
eral case that was presented in Figure 1, the eventEvt’s declaration specifies the pre-
condition (Pe) and postcondition (Qe) that handlers should conform to, and also the
translucid contract (assumes clause) that they should refine.

Verification in Ptolemy is straightforward [3]. Every handler bodyH for an event
and every piece of announced codeS for that event must satisfy the same pre-post obli-
gations [3, Figure 11], declared in the event’srequires andensures clauses. Be-
sides that, the handlers must also refine the event’s translucid contract. This is expressed
in the requirement that a program is conformal, meaning thateach handler conforms to
the corresponding event declaration’s specification.

Definition 2. A Ptolemy program Progis conformalif and only if for each declaration
of an event type,Evt, in Prog, and for each binding clause of the formwhenEvt dom
appearing in a classC of Prog: if (Pe, A,Qe) = ptolemySpec(Evt) and
H = bodyOf (C ,m), then there is some type environmentΓ ′ such that
Γ ′(next) = closure Evt, Γ ′ ⊢ A ⊑ H andΓ ′ |= {Pe}H{Qe}.

3 The auxiliary functionbodyOf (C ,m) returns the body of methodm in classC.

6 Sánchez and Leavens

In the above, the formulaPe is the event’s precondition,Qe is its postcondition,
andA is the body of theassumes clause (the “translucid contract” [3]), which in
our notation is written(Pe, A,Qe) = ptolemySpec(Evt). Similarly, bodyOf (C ,m)
returns the code that is the body of methodm in classC.4 The structural refinement
relation⊑ is explained below. Furthermore, we say that a Hoare-triple{P}S{Q} is
valid, written Γ |= {P}S{Q}, if in every state (typable byΓ) such thatP holds,
wheneverS terminates normally, thenQ holds in the resulting state.

In Ptolemy, the verification of handlers is done modularly and separately from the
announcements. The body of each handler must structurally refine the translucid con-
tract from the event specification. A handler body,H , structurally refinesa translucid
contractA, writtenA ⊑ H , if one can match each expression inH to an expression in
A [13]. The matching of most expressions are exact (only the same expression matches)
with the exception of specification expressions of the formrequires P ensures
Q, which can occur inA and must each be matched by expressions inH of the form
refining requires P ensures Q { S }, whereS is the code implementing
the specification expression. In Ptolemy structural refinement is checked by the type
checking phase of the compiler [3].

To summarize, according to the work on translucid contractsfor Ptolemy [3], the
way that one proves that a program is conformal is by proving,for each handler body
H for an eventEvt such that(Pe, A,Qe) = ptolemySpec(Evt): Γ ′ ⊢ A ⊑ H and
Γ ′ ⊢ {Pe}H{Qe}. In order to guarantee soundness, the body of eachrefining
expression must satisfy the given specification, as in the (REFINING) rule of Figure 3.

(SPECIFICATION-EXPR)

Γ ⊢ {P}requires P ensures Q{Q}

(REFINING)
Γ ⊢ {P}S{Q}

Γ ⊢ {P}(refining requires P ensures Q { S }){Q}

(ANNOUNCE)
(Pe, A,Qe) = ptolemySpec(Evt),x : T = formals(Evt),

Γ ⊢ {Pe[y/x]}S{Qe[y/x]}

Γ ⊢ {Pe[y/x]} announceEvt(y) S {Qe[y/x]}

(INVOKE)
closure Evt = Γ (next), (Pe, A,Qe) = ptolemySpec(Evt)

Γ ⊢ {Pe} next.invoke() {Qe}

Fig. 3. Hoare Logic axioms and inference rules for the interesting constructs of Ptolemy.

4 These auxiliary functions query the program, which is treated as a fixed context.

Separating Obligations of Subjects and Handlers 7

For everyannounce expression in a valid program, the announced codeS should
satisfy the event specification (Pe, Qe). Then, if the base code guaranteesPe before the
announce expression it can assumeQe holds afterwards. This constitutes Ptolemy’s
(ANNOUNCE) rule in Figure 3. In that rulePe[y/x] meansPe with the actual parameter
variablesyi5 simultaneously substituted for the free occurrences of thexi, which are the
event’s formal parameters. Note that the body of the announcement,S, cannot use the
event’s formal parameters, but only has access to the original type environment,Γ . In
the (ANNOUNCE) rule, there is no distinction made regarding the presence or absence
of any registered handlers, because the same reasoning applies in either case.

An invoke expression in a handler is reasoned about in the same way. That is, the
code executing the invoke expression must establishPe and can assumeQe afterwards.
This is (INVOKE) rule in Figure 3. In this rule, the event’s name is obtained from the
type ofnext, and this gives access to the specification(Pe, A,Qe) of that event.

A Hoare logic issoundif wheneverΓ ⊢ {P}S{Q} is provable then every termi-
nating execution ofS starting from a state in whichP holds ends in a state in whichQ
holds. Soundness for Ptolemy depends on the program being conformal.

Theorem 1. Suppose that the Hoare logic for Ptolemy, without using the rules in Fig-
ure 3, is sound. Then for conformal programs, the whole logic, including the rules in
Figure 3, is sound.

We omit the proof (which goes by induction on the structure ofthe proof in the entire
Hoare logic). However, the key argument is the same as that for greybox specifications,
that structural refinement implies refinement [13].

Ptolemy’s design makes both handlers and the announced codehave the same pre-
post specifications (Pe, Qe).6 This design is convenient in some cases, but it limits
Ptolemy’s flexibility and completeness. For example, it is not possible to use Ptolemy’s
event type pre and postconditions to specify and verify the “increasing” property of our
billing system (section 1.4), because the announced code achieves the postcondition
a′ = a+ c and not the event’s postconditiona′ > a+ c. However, this property could
be considered correct with respect to a more flexible specification that gives different
postconditions to the announced code and handlers, which iswhat we do below. This
example shows that verification in Ptolemy is incomplete.

We have other similar examples that show incompleteness of Ptolemy’s verification
rules. The common theme, like in thebilling example, is that the effect of the announced
code does not match the effect of the handlers.

Another situation that shows Ptolemy’s incompleteness occurs when the announced
code has no effect (e.g.,skip). As Ptolemy imposes the event pre-post obligations on
the announced code, it requires that the triple{Pe}skip{Qe} holds, or, by Hoare logic,
thatPe ⇒ Qe. Since these same obligations are imposed on the handlers, thus they are
limited to monotonic behaviors; i.e. ones that preserve thepreconditionPe. This is
a symptom of incompleteness, because in a program where there must be registered

5 We use variables in these rules to avoid problems with side effects in expressions, although
Ptolemy allows general expressions to be passed as actual arguments to announcements.

6 We use the convention of denoting by(P,Q) the pre- and postconditions of some code.

8 Sánchez and Leavens

handlers, one would not be able to verify an event announcement in which the handlers
achieve a postconditionQe that is not implied by the event’s precondition (Pe).

In the next section we detail our proposed modification to solve these incomplete-
ness issues and analyse its impact regarding modular reasoning.

3 Explicit Separate Specification

A solution to the incompleteness problems can be found by recognizing that there is a
mutual dependency between base code, handlers and announced code, in the execution
chain. The base code depends on the behavior of the activatedhandlers that are triggered
by anannounce expression. The handlers depend on the other activated handlers, and
on the behavior of the announced code at the end of the chain (Figure 4).

The first change from Ptolemy in ourPtolemyRelylanguage consists in separat-
ing the specification for the handlers (Pe,Qe) from the specification for the announced
code (Ps,Qs). As before, every handlerH is reasoned about using the event requires-
ensures specification (Pe,Qe). But the announced codeS is reasoned about using its
own specification (Ps,Qs). (Both cases are depicted in Figure 5). This new approach
allows different specifications for the handlers and for theannounced code, as in our
billing example. This also allows announced code that has no effect to be verified with-
out limiting, in any way, the handlers’ specification.

Fig. 4. Mutual dependencies between base
code, handlers and announced code

Fig. 5. Reasoning about the base code

In PtolemyRely, the second change is that the verification ofbothannounce and
invoke expressions is slightly modified. Forannounce expressions there are two
situations, as shown in Figure 5. If there are registered handlers then the base code in-
teracts with the first of them, which guarantees the event postcondition (Qe). If there are
no handlers then the announced code is executed, ensuring its postcondition (Qs). This
two cases are formalized by the rules (RANNOUNCEHAS) and (RANNOUNCENONE)
in Figure 8.

invoke expressions are only valid inside the body of a handler, and thus should
be analyzed in a context where there are registered handlers. Their effect, instead, de-
pend on the nondeterministic position of the containing handler in the execution chain.

Separating Obligations of Subjects and Handlers 9

If there are other handlers left in the execution chain, the event specification (Pe, Qe)
is used, as all handlers satisfy it. If only the announced code is left, its specification
(Ps, Qs) should be used. However, for modular verification, the problem is that the
event declaration, and consequently the handlers, do not know the announced code
and thus do not know(Ps, Qs). To avoid whole-program reasoning, we make a third
change, in this case to Ptolemy’s event type declarations. Now users also specify, in the
event declaration, the pre-post obligations(Pr, Qr) for any announced code. Putting
this specification in the event type declaration in a newrelies clause (see Figure 6)
allows the handlers to be verified based on that specification, instead of the actual an-
nounced code’s specification. It also allows one to avoid doing the verification that each
handler satisfies the event pre-post specification one handler at time. Instead, that can
be done in two separate steps: first, once and for all, verifying that the event’s translucid
contract satisfies the event’s pre-post specification, and then verifying that each han-
dler refines this translucid contract, which in turn guarantees every handler satisfies the
event’s specification.

To summarize, with our changes in PtolemyRely, the event type declares specifica-
tions for the handlers,(Pe, Qe), and for the announced code,(Pr, Qr). In the rest of
this section, we give the formal details of our approach.

3.1 Syntax

For PtolemyRely, we change the syntax of Ptolemy event declarations by introducing
a relies clause that establishes the specification for the announcedcode(Pr , Qr).
This is shown in the event syntax schema, Figure 6.

t event Evt {
t1 f1;. . .; tn fn;
relies requires Pr ensures Qr

requires Pe

assumes { . . . next.invoke(); . . .}
ensures Qe

}

Fig. 6. Event syntax schema.

sp::= . . . | handlers (c)
contract::= . . . |
relies requires spensures sp
requires sp
assumes { se}
ensures sp

Fig. 7. Formal syntax changes.

We make two changes to the formal syntax of Ptolemy [3]. The first adds a predi-
catehandlers that returns the number of handlers currently registered for its event
argument. The second changes contract definitions, as shownin Figure 7. The nonter-
minalc stands for event names,spstands for specification predicates, andsestands for
specification expressions (the contract’s body in this case).

10 Sánchez and Leavens

3.2 Semantics

In PtolemyRely, as stated in the definition of conformance, we check for structural
refinement of each handler to the translucid contract, and also check each handler to
satisfy the eventrequires-ensuresspecification.

Definition 3. A PtolemyRely program Progis conformalif and only if for each declara-
tion of an event type,Evt, in Prog, and for each binding clause of the formwhenEvt dom
appearing in a classC of Prog: if (Pr, Qr, Pe, A,Qe) = eventSpec(Evt) and
H = bodyOf (C ,m), then there is some type environmentΓ ′ such that
Γ ′(next) = closure Evt, Γ ′ ⊢ A ⊑ H , andΓ ′ |= {Pe}H{Qe}.

The functioneventSpec(Evt) returns the specification information from the event
type’s declaration. The returned 5-tuple consists of the relies clause contract (Pr, Qr),
and the translucid contract: pre and post-conditions (Pe, Qe) and assumes bodyA.

Theannounce andinvoke expressions are verified using the rules in Figure 8.
Forannounce expressions there are two rules, depending on whether one can prove
that there are registered handlers for the event. (RANNOUNCEHAS) applies when there
are registered handlers. In this case theannounce expression is reasoned about using
the event’s specification(Pe, Qe). For this rule to be valid, the announced code,S,
must satisfy the specification(Pr , Qr) given in the event’s type. (RANNOUNCENONE)
applies when there are no registered handlers. In this case only the announced code is
executed, and thus the relied on specification(Pr, Qr) is used.

(RANNOUNCEHAS)
(Pr, Qr, Pe, A,Qe) = eventSpec(Evt),

x : T = formals(Evt), Γ ⊢ {Pr[y/x] ∧ handlers(Evt) > 0}S{Qr [y/x]}

Γ ⊢ {Pe[y/x]} (announceEvt(y) S) {Qe[y/x]}

(RANNOUNCENONE)
(Pr, Qr, Pe, A,Qe) = eventSpec(Evt),

x : T = formals(Evt), Γ ⊢ {Pr[y/x] ∧ handlers(Evt) = 0}S{Qr [y/x]}

Γ ⊢ {Pr[y/x]} (announceEvt(y) S) {Qr[y/x]}

(RINVOKE)
closure Evt = Γ (next), (Pr, Qr, Pe, A,Qe) = eventSpec(Evt)

Γ ⊢ {Pe ∧ Pr}next.invoke(){Qe ∨Qr}

Fig. 8.Hoare Logic inference rules for those constructs of PtolemyRely that differ from Ptolemy.

The soundness theorem for PtolemyRely states that if a program is conformal, then
all provable Hoare triples are valid.

Theorem 2 (Soundness).Suppose that the Hoare logic for Ptolemy, without using the
rules for invoke and announce, is sound. Then for conformal PtolemyRely pro-
grams, the whole logic, including the rules for those constructs in Figure 8, is sound.

Separating Obligations of Subjects and Handlers 11

Proof: LetΓ ,P ,S andQ be given such thatΓ ⊢ {P}S{Q} is provable using Ptole-
myRely’s Hoare logic, including the rules in Figure 8. We prove thatΓ |= {P}S{Q}
(i.e., that this Hoare triple is valid) by induction on the structure of the proof of that
triple. In the base case, there are no uses of the rules in Figure 8, so validity follows by
the hypothesis. For the inductive case, suppose that the proof has as its last step one of
the rules in Figure 8. We assume inductively that all subsidiary proofs are valid. There
are three cases. If the last step uses the (RANNOUNCENONE) rule, then the hypothesis
that the announced code satisfies the specification(Pr , Qr) makes the conclusion valid.
If the last step uses the (RANNOUNCEHAS) rule, then the hypothesis that the program
is conformal means that, by definition 3,Γ ′ |= {Pe}H{Qe} where (Pe, Qe) is the spec-
ification of the handler’s from the event type. This again makes the conclusion valid.
If the last step uses the (RINVOKE) rule, then there are two sub-cases, and the proof is
similar to that given for the previous cases, using the definition of “conformal.”

We note that proving that a program is conformal can be done ina simple way, by
provingΓ ′ ⊢ {Pe}A{Qe}, where(Pe, Qe) is the event’s pre/post specification, andA
is the translucid contract for the event, and then checking that each handler’s body,H
structurally refines the translucid contract (Γ ′ ⊢ A ⊑ H). After that, it follows that
Γ ′ |= {Pe}H{Qe} using techniques from the work of Shaneret al. [13].

3.3 Billing Example Revisited (PtolemyRely)

In Figure 9 we show how ourbilling example could be written in PtolemyRely. Here we
show how it can be verified using PtolemyRely’s rules, how the“increasing” property
can be specified and verified and how the assertion in line 9 is now proved.

Contrary to Ptolemy, PtolemyRely allows us to have different specifications for
the handlers(Pe, Qe) and for the announced code(Ps, Qs). As mentioned before, the
specification for the handlers,(Pe, Qe), goes in therequires-ensures clauses of
the event declaration, meanwhile the minimum specificationfor any announced code,
(Pr, Qr), goes in the newrelies clause. The specification of the announced codeS
(line 7) is (Ps, Qs), that corresponds to(c ≥ 0, a′ = a + c). We take the expected
behavior for the announced code(Pr, Qr) (lines 13-14) to be the same as the actual
behavior for the announced-code(Ps, Qs). The specification for the handlers(Pe, Qe)
is declared in line 15 and line 22 as(c ≥ 0, a′ > a+ c).

In PtolemyRely we can prove our “increasing” property: thatall handlers should
strictly increase the total amount of the bill. If a handlerH is verified, it means that it
satisfies the(Pe, Qe) specification. In this case:Γ ⊢ {c ≥ 0}H{a′ > a+ c}, which is
exactly what the “increasing” property demands.

Since there are registered handlers (line 5) the (RANNOUNCEHAS) rule applies.
It requires{Pr}S{Qr}, which holds in theannounce expression in lines 6-8. The
postcondition in the consequent of this rule,Qe, corresponds in this case toa′ > a+ c,
this immediately proves the assertion in line 9. To reason aboutinvoke expressions
one should use the (RINVOKE) rule, that considers(Pe, Qe) and(Pr, Qr). In this case
it corresponds to the following:

Γ ⊢ {(c ≥ 0) ∧ (c ≥ 0)}next.invoke(){(a′ > a+ c) ∨ (a′ = a+ c)}

and this is equivalent toΓ ⊢ {c ≥ 0}next.invoke(){a′ ≥ a+ c}

12 Sánchez and Leavens

1 public class Base {
2 public void run(){
3 Bill bill=new Bill(100,8);
4 Bill old=new Bill(bill.a(),bill.c());
5 registerHandler();// Randomly register one handler
6 announce TotalingEvent(bill) { // event Qe : a′ ≥ a+ c
7 bill.setA(bill.a()+bill.c());// code Qs : a′ = a+ c
8 }
9 assert bill.a()>old.a()+old.c(); //a′ > a+ c

10 } }
11 public void event TotalingEvent { // handlers: a′ > a+ c
12 Bill bill;
13 relies requires bill.c()>=0 // announced code: Pr: c ≥ 0
14 ensures bill.a()==old(bill.a())+old(bill.c()) //Qr:a

′ = a+ c
15 requires (bill.c()>=0) // //handlers: Pe: c ≥ 0
16 assumes{
17 // specification expr.: requires c ≥ 0 ensures c′ ≥ c
18 requires (next.bill().c()>=0)
19 ensures (next.bill().c()>=old(next.bill().c()));
20 next.invoke(); // control flow: proceed with next handler
21 }
22 ensures (bill.a()>old(bill.a())+old(bill.c())) //Qe: a′ > a+ c
23 }
24 public class PaymentHandler { // Payment Processing Fee Handler
25 public void handleTotaling(TotalingEvent next)throws Throwable{
26 refining requires (next.bill().c()>=0)
27 ensures (next.bill().c()>=old(next.bill().c())){
28 next.bill().setC(next.bill().c()+1); // c′ = c+ 1
29 }
30 next.invoke();
31 }
32 when TotalingEvent do handleTotaling;
33 public PaymentHandler(){ register(this); } }
34 public class ShippingHandler { // Shipping Fee Handler
35 public void handleTotaling(TotalingEvent next)throws Throwable{
36 refining requires (next.bill().c()>=0)
37 ensures (next.bill().c()>=old(next.bill().c())){
38 next.bill().setC(next.bill().c()+5); //c′ = c+ 5
39 }
40 next.invoke();
41 }
42 when TotalingEvent do handleTotaling;
43 public ShippingHandler(){ register(this); } }

Fig. 9. Billing example revisited (PtolemyRely)

In this revisited version we adjustedShippingHandlerto meet the “increasing”
property (line 38). Both handlers refine the translucid contract, providing code (line 28

Separating Obligations of Subjects and Handlers 13

and 38) that correctly refines the specification expression in the contract (lines 18-19).
Also both,PaymentHandlerand ShippingHandler, satisfy the handlers specification
(c ≥ 0, a′ > a+ c). This can be shown as follows. Both increment the charges,c′ > c,
(line 28 and line 38) and then invoke the next handler. Considering this increment, and
the indicated postcondition of theinvoke expression, we have(c′ > c)∧(a′ ≥ a+c′),
and from that we get(a′ > a+c), that shows that both handlers satisfy the specification.

We have showed that the whole program is verified (announce expression and han-
dlers), that the “increasing” property can also be verified and that the assertion in line 9
can be proved in PtolemyRely.

3.4 Extension of Ptolemy

Our new approach extends Ptolemy’s, as stated in the following lemma.

Lemma 1. Let Prog be a program in Ptolemy andS be an expression of Prog. LetΓ be
a type environment that typesS. SupposeΓ ⊢ {P}S{Q} is provable in Ptolemy. Then
there is a PtolemyRely program Prog′ in whichΓ ⊢ {P}S{Q} is provable by the rules
for PtolemyRely.

Proof: The new programProg′ in PtolemyRely is constructed by taking each event
declarationE declared inProg, and producing a new event declarationE′ which is just
like E, except that arelies clause is inserted of the form

relies requires Pe ensuresQe

where(Pe, A,Qe) = ptolemySpec(E). Then the rest of the proof proceeds by induc-
tion on the structure ofS.

If S is not aninvoke or announce expression, then the proof rules for Ptole-
myRely are the same as for Ptolemy, so there are only two interesting cases.

WhenS is aninvoke expression of the formnext.invoke() then, by hypoth-
esis, we have in Ptolemy’s proof systemΓ ⊢ {P}next.invoke(){Q}. Thus by
the Ptolemy (INVOKE) rule, we must haveΓ (next) = closure Evt, for some event
nameEvt, where(P,A,Q) = ptolemySpec(Evt). By construction ofProg′, we have
(P,Q, P,A,Q) = eventSpec(Evt), soP plays the role of bothPe andPr in Ptole-
myRely’s (RINVOKE) rule, andQ plays the role of bothQe andQr in that rule. So
we haveΓ ⊢ {P ∧ P}next.invoke(){Q ∨Q}. To do this we use the rule of con-
sequence in Hoare logic, since(P ∧ P) ≡ P and(Q ∨ Q) ≡ Q, to get the desired
conclusion in the proof system for PtolemyRely.

WhenS is anannounce expression of the formannounce Evt(y) {S0}, then
using Ptolemy’s (ANNOUNCE) rule we have:Γ ⊢ {PEvt[y/x]}S{QEvt[y/x]}, and so
we also haveΓ ⊢ {PEvt[y/x]}S0{QEvt[y/x]}, whereΓ is the type environment for
expressionS, (PEvt, A,QEvt) = ptolemySpec(Evt) andx : T = formals(Evt). Us-
ing PtolemyRely’s (RANNOUNCEHAS) or (RANNOUNCENONE) rules, we must prove
that:Γ ⊢ {PEvt[y/x]}S{QEvt[y/x]}. Since by construction ofProg′ we have that
(PEvt, QEvt, PEvt, A,QEvt) = eventSpec(Evt), thenPEvt plays the role ofPe and
Pr, andQEvt plays the role ofQe andQr, and so both rules allows us to immediately
prove the desired conclusion. One can apply whichever rule is appropriate, or a derived
rule with preconditionPEvt[y/x]∧Pr[y/x] and postconditionQEvt[y/x]∨Qr[y/x],
and then use the rule of consequence.

14 Sánchez and Leavens

4 Related Work

The original work on Ptolemy [12] addressed the problem of modular reasoning of
implicit invocation systems, like AO systems. Many other solutions have also been pro-
posed: XPIs [16], AAI [10], Open Modules [1, 11], Join Point Types (JPT) [15] and
Joint Point Interfaces (JPI) [8, 5, 4]. In this work we call attention to the mutual depen-
dency that exists between the base code (subject) and the advising code (handlers). We
enhanced Ptolemy’s event type specifications by clearly separating the obligations im-
posed on the handlers from the obligations of the announced code, in such a way that
both can be reasoned about modularly. Here we review how, if at all, this problem is
addressed in the other approaches and if our strategy can be applied to them.

Previous work [2] has shown how the translucid contract concept of Ptolemy can
be adapted to other approaches like XPIs, AAI and Open Modules; adding specifica-
tion and verification capability to them. All these approaches would benefit from our
enhancement to the translucid contract concept, in case they adopted it, as they would
become more complete and more flexible.

Steimannet al. [15] proposed an approach for dealing with Implicit Invocation and
Implicit Announcement (IIIA) based on Join Point Types and polymorphic pointcuts.
Ptolemy’s approach [3], which we extended in this work, is similar to the work of
Steimann et al. One important difference, though, is that Ptolemy does not support
implicit announcement. On the other hand, Steimann et al. donot treat the issue of
specification and verification, suggesting that one can “resort to an informal description
of the nature of the join points” [15, p. 9]. Nevertheless, since the IIIA joinpointtype
concept is very close to theeventconcept of Ptolemy, the translucid contract approach,
including our contribution, could be partially applied to join point types.

Joint Point Interfaces (JPI) [8, 5] and Closure Joint Points[4] extend and refine the
notion of join point types of Steimannet al.JPI decouples aspects from base code and
provides modular type-checking. Implicit announcement issupported through point-
cuts, and explicit announcement through closure join points. JPI, similarly to JPT, lacks
specification and verification features. Thus, it could alsobenefit from the specification
and verification approach in Ptolemy and PtolemyRely.

Khatchadourian and Soundarajan [9] proposed an adaptationof the rely-guarantee
approach used in concurrency, to be applied in aspect orientation. The base code rea-
soning relies on certain constraints imposed on any applicable advice. These constraints
are expressed as arely relation between two states. A conforming piece of advice may
only make changes to the state in a way that satisfies therely relation. In this way the
reasoning of the base code is stable even in the presence of advice. The event pre-
postconditions(Pe, Qe) that Ptolemy imposes on every handler can be thought as a re-
alization of therely relation:rely(σ1, σ2) ≡ Pe(σ1)∧Qe(σ1, σ2). As observed by those
authors, the relation between the base code and the advice isnot symmetric, as it is in
the case of peer parallel processing. In their approach the base code should justguaran-
teethe preconditions required by the advice. PtolemyRely follows a similar strategy, in
which the base code guarantees (to the handlers) only the preconditions of the handlers.
Thus in PtolemyRely:guar(σ1, σ2) ≡ Pe(σ1). Our key observation in PtolemyRely
is that the advice codemight depend on the piece of base code announced at a given
join point, which may be eventually invoked from inside the advice. In PtolemyRely

Separating Obligations of Subjects and Handlers 15

we take ideas from both approaches, Ptolemy andrely-guarantee, and declare, as part
of the event type, the conditions the advice code relies on, which corresponds to what
the base code shouldguaranteeto every applicable advice.

5 Conclusions and Future Work

When reasoning about event announcement in AO systems, there exists a mutual depen-
dency between the base code (subject) and the advising code (handlers). The approach
followed in systems like Ptolemy [3], where the samerequires-ensuresobligation is
applied to both the handlers and the announced code, limits the flexibility and the com-
pleteness of the system.

In this paper we showed an extension to the event type conceptin the Ptolemy
language that explicitly separates the specification and verification of these obligations.
We implemented our proposal as an extension to the Ptolemy compiler and showed that
the resulting methodology is more flexible and complete thanthe original.

We also showed how to make the verification of the handlers more concise. Instead
of verifying each handler to satisfy the event pre-post specification, one can verify, once
and for all, the translucid contract of the event to satisfy this pre-post specification. Then
each handler can be verified to structurally refine this translucid contract. This indirectly
guarantees the required behavior of the handlers.

Previous work [2] has shown how the translucid contract concept of Ptolemy can be
adapted to other approaches like XPI, AAI and Open Modules; adding specification and
verification capability to them. Our work suggests that these approaches, and others like
JPT and JPI, would benefit from our enhancement to the translucid contract concept.

Since event subtyping has been recently proposed for Ptolemy [6], a natural future
extension to our work would be to apply the added relies clause in the presence of event
polymorphism, and to analyse its impact regarding modular reasoning. We also plan to
apply our approach to more complex cases, and also to use static checking techniques
in the verification process.

Acknowledgments

The work of both authors was partially supported by NSF grantCCF-1017334. The
work of José Sánchez is also supported by Costa Rica’s Universidad Nacional (UNA),
Ministerio de Ciencia y Tecnologı́a (MICIT) and Consejo Nacional para Investigaciones
Cientı́ficas y Tecnológicas (CONICIT).

References

1. Jonathan Aldrich. Open modules: Modular reasoning aboutadvice. In Andrew P. Black, ed-
itor, ECOOP 2005 — Object-Oriented Programming 19th European Conference, Glasgow,
UK, volume 3586 ofLecture Notes in Computer Science, pages 144–168. Springer-Verlag,
Berlin, July 2005.

16 Sánchez and Leavens

2. Mehdi Bagherzadeh, Hridesh Rajan, and Gary T. Leavens. Translucid contracts for aspect-
oriented interfaces. InFOAL ’10: Workshop on Foundations of Aspect-Oriented Languages
workshop, pages 5–14, March 2010.

3. Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, and Sean Mooney. Translucid con-
tracts: expressive specification and modular verification for aspect-oriented interfaces. In
Proceedings of the tenth international conference on Aspect-oriented software development,
AOSD ’11, pages 141–152. ACM, 2011.

4. Eric Bodden. Closure Joinpoints: Block joinpoints without surprises. InAOSD ’11: Proceed-
ings of the 10th International Conference on Aspect-oriented Software Development, pages
117–128. ACM, March 2011.

5. Eric Bodden,Éric Tanter, and Milton Inostroza. Joint point interfaces for safe and flexi-
ble decoupling of aspects.ACM Transactions on Software Engineering and Methodology
(TOSEM), 2013. To appear.

6. Rex D. Fernando, Robert Dyer, and Hridesh Rajan. Event type polymorphism. InProceed-
ings of the eleventh workshop on Foundations of Aspect-Oriented Languages, FOAL ’12,
pages 33–38. ACM, 2012.

7. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580,583, October 1969.

8. Milton Inostroza,́Eric Tanter, and Eric Bodden. Join point interfaces for modular reasoning
in aspect-oriented programs. InESEC/FSE ’11: Joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on theFoundations of Software
Engineering, pages 508–511, 2011.

9. Raffi Khatchadourian and Neelam Soundarajan. Rely-guarantee approach to reasoning about
aspect-oriented programs. InSPLAT ’07: Proceedings of the 5th workshop on Engineer-
ing properties of languages and aspect technologies, page 5, Vancouver, British Columbia,
Canada, 2007. ACM Press.

10. Gregor Kiczales and Mira Mezini. Aspect-oriented programming and modular reasoning.
In Proc. of the 27th International Conference on Software Engineering, pages 49–58. ACM,
2005.

11. Neil Ongkingco, Pavel Avgustinov, Julian Tibble, Laurie Hendren, Oege de Moor, and
Ganesh Sittampalam. Adding open modules to AspectJ. InProceedings of the 5th Interna-
tional Conference on Aspect-Oriented Software Development (AOSD), pages 39–50, March
2006.

12. Hridesh Rajan and Gary T. Leavens. Ptolemy: A language with quantified, typed events. In
Jan Vitek, editor,ECOOP 2008 – Object-Oriented Programming: 22nd European Confer-
ence, Paphos, Cyprus, volume 5142 ofLecture Notes in Computer Science, pages 155–179,
Berlin, July 2008. Springer-Verlag.

13. Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Modular verification of higher-
order methods with mandatory calls specified by model programs. InInternational Confer-
ence on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
Montreal, Canada, pages 351–367, New York, NY, October 2007. ACM.

14. J. M. Spivey.Understanding Z: a Specification Language and its Formal Semantics. Cam-
bridge University Press, New York, NY, 1988.

15. Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner. Types and
modularity for implicit invocation with implicit announcement. ACM Trans. Softw. Eng.
Methodol., pages 1:1–1:43, 2010.

16. Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuanyuan Song, Yuanfang Cai, Mac-
neil Shonle, and Nishit Tewari. Modular aspect-oriented design with xpis.ACM Trans. Softw.
Eng. Methodol., pages 5:1–5:42, September 2010.

