N
N

N

HAL

open science

Separating Obligations of Subjects and Handlers for
More Flexible Event Type Verification

José Sanchez, Gary T. Leavens

» To cite this version:

José Sanchez, Gary T. Leavens. Separating Obligations of Subjects and Handlers for More Flexible
Event Type Verification. 12th International Conference on Software Composition (SC), Jun 2013,

Budapest, Hungary. pp.65-80, 10.1007/978-3-642-39614-4_5 . hal-01492777

HAL Id: hal-01492777
https://inria.hal.science/hal-01492777
Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01492777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Separating Obligations of Subjects and Handlers for
More Flexible Event Type Verification

José Sanchez and Gary T. Leavens

University of Central Florida, Dept. of EECS, Orlando, FL838, USA
{sanchez, | eavens} @ecs. ucf. edu

Abstract. Implicit invocation languages, like aspect-oriented laages, auto-
mate the Observer pattern, which decouples subjects (loaled from handlers
(advice), and then compound them together in the final syskemsuch lan-
guages, event types have been proposed as a way of furtrerplieg subjects
from handlers. In Ptolemy, subjects explicitly announcengs at certain program
points, and pass the announced piece of code to the handtéts éventual ex-
ecution. This implies a mutual dependency between subgudshandlers that
should be considered in verification; i.e., verification wbject code should con-
sider the handlers and vice versa.

However, in Ptolemy the event type defines only one obligatiat both the han-
dlers and the announced piece of code must satisfy. Thitsliime flexibility and
completeness of verification in Ptolemy. That is, some @brpeograms cannot
be verified due to specification mismatches between the aedwcode and the
handlers’ code. For example, when the announced code dosatigy the speci-
fication of the entire event and handlers must make up therdiitce, or when the
announced code has no effect, imposing a monotonic behawitire handlers.
In this paper we propose an extension to the specificatidoresof Ptolemy that
explicitly separates the specification of the handlers ftbenspecification of the
announced code. This makes verification in our new langusglerRyRely more
flexible and more complete, while preserving modularity.

Keywords: Event type, specification, verification, Ptolemy language

1 Introduction

Event types [12], and other similar approaches like XPI4,[A&I [10], Open Mod-
ules[1, 11], A with Join Point Types [15] and Joint Poimttérfaces (JPI) [8, 5, 4],
have been proposed as a way to further decouple subjectshfamidiiers in implicit
invocation and aspect-oriented languages. The verifieaygtems for such languages
should, as usual, strive to be as complete as possible whilang sound. In this work
we propose some enhancements to the Ptolemy language apddification and veri-
fication system for making it more complete while keepingpifirsd.

1.1 Completeness as a Measure of Usefulness

We work in the framework of a partial-correctness Hoareddg]. A judgement of the
form I' F {P}S{Q} means that the Hoare-trip{e?} S{Q} is provable using the type

2 Sanchez and Leavens

environment". The judgement” F { P}S{Q} is valid iff for every states that agrees
with the type environment, if P is true ino (writteno = P) and if the execution of
S terminates in a state’, thens’ = Q. Such a logic isoundif whenever a judgment
I + {P}S{Q} is provable, then it is valid. Conversely, such a logic@snpleteif
whenever such a judgment is valid, then it is provable in etogcl

To compare two logics, one can ask if both are sound, and ifhgocan compare
how complete they are. Logid is strictly more complete thalogic B if there is some
valid judgment that is provable iA but not in B, but every judgment that is provable
in B is provable inA. Given that both logics are sound, then a more complete legic
potentially more useful for users, as they will be able tosermore programs correct.

1.2 A Brief on Ptolemy Language

Ptolemy’s [12] event type concept decouples subjdrasé codg which explicitly an-
nounceeventsfrom thehandlersthat process these events. The event type establishes
the contract every handler must satisfy. In this way the lgasannouncing) code can
be modularly reasoned about using the contract, insteadinfj®wach handler’s code.
The contract not only defines the precondition and postt¢immdévery handler method
should satisfy, but also the abstract algorithm they mdsteecalled aranslucidcon-
tract [3]. In the body of a translucid contraspecification expressiorsan abstract
away details of particular implementation expressionQtily specifying their effects.
Invoke expressionig the contract’s body show where a handler triggers the i@t
of the next handler in thexecution chairfuntil eventually reaching the originally an-
nounced code that stands at the end). In the base andeunce expressiomse used
to explicitly announce occurrences of events, startingettezution chairand passing
theannounced codw it. All this is schematized in Figure 1.

Event Evt{
requires Pe
assumes{
S1
next.invoke()
Sz
}
ensures Qe
}
Handler1{ HandlerN{ H
//Base Code handle(Evt next){ |mhandle(Evt next){ i
requires Pe - - requires Pe
announce Evt() { * 51 - 5. . L7 requires Pe
announced code 2= next.invoke(| == next.invoke() “ announced code
1 " S "-,_ S, ¥4.| ensures Qe
SL ensures Qe ., ensures Qe
'} T
} 1

¥
execution chain

Fig. 1. Event, handlers and announced code

Separating Obligations of Subjects and Handlers 3

Theinvoke expressionis the contract make visible the control effects of the han-
dlers. Active handlers are registered as such usigigter expressionsnd handlers are
bound to the corresponding eventwiien expressions

In Ptolemy, every handler method must be verified to sattefycontract’s pre- and
postconditions and also to structurally refirsed section Rthe translucid contract’s
body, providing conforming implementations for every dfieation expressiod.The
announced code is also verified to satisfy the same corgnaret* and postconditions.

1.3 The Billing Example

The billing system example in Figure 2 illustrates the basic concepBtaémy and
motivates our proposed extension. In this system, eacinbllides the amount] to
be paid and the extra charge}lfke taxes. When the base code totals a bill, adding the
charges to the principal amount (line 7), the corresponetireat is announced (lines 6-
8). This gives registered handlers (mayBeyment Handler or Shipping Handler)
the chance to do some adjustments, like adding some extrgeshdn this case we
register just one handler at random (line 5) to emphasizéaittehat the reasoning is
based on the event definition, instead of the particularémeintation of any specific
handler. TheTotalingEventefinition specifies the behavior and abstract algorithm of
every admissible handler. Theequi r es (line 14) andensur es (line 21) clauses
specifies the behavior: every handler requires (line 14)ttieaexisting charges are not
negative and ensures (line 21) that the resulting amourtieobtll is greater than or
equal to the sum of the original amount plus the original ghar The excess, if any,
is due to the extra charges added by the handlerstréhslucid contrac{lines 16-19,
insideassunes{...}) forces the handlers to make the charges greater than of equa
to their current value, but allows charges to be added by kantler in any consistent
way. The specification expression (lines 17-18) must be edflny each conforming
handler, with code that satisfies the stated pre-post donditAlso anyi nvoke ex-
pression must be made explicit in the translucid contraxzotaline 19). This allows
modular verification of control effects, using the spectfimaof the announced event.
This example is verified by Ptolemy’s proof system. Both Haratefine the event's
translucid contract. The specification expression in tlistiact (lines 17-18) is re-
fined by PaymentHandler by increasing the chargeg (= ¢ + 1, line 27), and by
Shipping Handler by leaving the charges the same € ¢ + 0, line 38). Considering
the above and the effect of thenvoke expression, it can be seen that both handlers
satisfy the event specificatioru{ > a + ¢, line 21), and so both are proven valid. The
announced code:(= a + ¢, line 7) also satisfies the event specificatiart & a + c,
line 21), as required by Ptolemy’s proof system, so the cetephnounce expression
(lines 6-8) is proven valid. With the handlers and #renounce expressions proven
valid, the entire program is proven valid in Ptolemy.

! Ptolemy is an expression language.
2 When summarizing assertions, we adopt the Z [14] convemtiaienoting the new value of a
variable with a prime (like:"), and use unprimed variables to stand for their pre-stdtesa

4 Sanchez and Leavens

public class Base {
public void run(){
Bill bill=new Bill (100, 8);
Bill old=new Bill(bill.a(),bill.c());
regi sterHandl er();// Randomy regi ster one handl er
announce TotalingEvent(bill) { // event Q.:a >a+c
bill.setA(bill.a()+bill.c());// code Qs:a'=a+c
}
/lassert bill.a()>old.a()+old.c(); //a >a+c ??
P}

public void event TotalingEvent { // handlers: o >a+c

Bill bill;

requires (bill.c()>=0) // P.: ¢>0

assumes{
/| specification expr.: requires c¢>0 ensures ¢ >c
requires (next.bill().c()>=0)

ensures (next.bill().c()>=old(next.bill().c()));

next.invoke(); // control flow proceed with next handler

}

ensures (bill.a()>=old(bill.a())+old(bill.c())) //Qe a >a+c
}
public class Paynent Handl er { // Paynent Processing Fee Handl er

public void handl eTot al i ng(Tot al i ngEvent next)throws Throwabl e{

refining requires (next.bill().c()>=0)
ensures (next.bill().c()>=old(next.bill().c())){
next.bill().setC(next.bill().c()+1); [/ =c+1

next . i nvoke();
}
when Tot al i ngEvent do handl eTot al i ng;
public PaymentHandl er(){ register(this); }

public class ShippingHandl er { // Shipping Fee Handl er
public void handl eTotal i ng(Tot al i ngEvent next)throws Throwabl e{
refining requires (next.bill().c()>=0)
ensures (next.bill().c()>=old(next.bill().c())){
next.bill().setC(next.bill().c()+0); //c =c+0 NO FEE NOW
}

next.invoke();

}
when Tot al i ngEvent do handl eTot al i ng;

publ i c Shi ppi ngHandl er(){ register(this); }

}

Fig. 2. Billing example in Ptolemy

Separating Obligations of Subjects and Handlers 5

1.4 Completeness Issues: Enforcing the Billing “Increasig” Property

Now we consider a variation on thdling system. A new “business rule” requires us to
enforce the “increasing” property: that all the handlersTotalingEvenimust strictly
increase the total amount, by adding to the charges. Clyr&aiyment Handler sat-
isfies this condition (line 27) bu8hipping H andler does not (line 38). If this property
were metthe assertion on line 9 could be proven trugsince no matter which handler
were registered (line 5) the charges would have been inerede

We have to guarantee that any handiebound to the everfiotalingEventsatisfies
the required property, while keeping the program valkbr doing that we can adjust
the event specification and the handlers.

Definition 1. Animplementation of thiilling programsatisfies the “increasing” prop-
ertyif for each binding clause of the formhen Totaling Event do m appearingin a
classC: if H = bodyOf(C, m) thenI” = {¢ > 0}H{d' > a + c}.

The currenflTotalingEventspecification does not guarantee the above property, as
its postcondition(a’ > a + ¢) does not imply(a’ > a + ¢). The way for thebilling
system to satisfy this property is by having an event postitiom @), such tha). =
(@’ > a+c). However in Ptolemy thi§). must be such thdt’ = a+c¢) = Q., to meet
the requirement of Ptolemy’s proof system that the annodinode (line 7) satisfies the
event specification. The fact that these two implicatiossiitén a contradiction shows
that the above property cannot be proved in Ptolemy. Thigslioe incompleteness of
Ptolemy’s proof system, that is incapablenabdularlyproving the assertion in line 9.

In section 3 we propose an extension to Ptolemy that maké&ation more flexi-
ble and complete, and in particular able to enforce the &asing” property and verify
the aforementioned assertion. First, we explain Ptolem§ieation in more detail.

2 \Verification in Ptolemy

In Ptolemy, event types state the obligations that handleosild satisfy. In the gen-
eral case that was presented in Figure 1, the elzetd declaration specifies the pre-
condition (P.) and postcondition@.) that handlers should conform to, and also the
translucid contract (assumes clause) that they shoulcerefin

Verification in Ptolemy is straightforward [3]. Every haedbody H for an event
and every piece of announced catléor that event must satisfy the same pre-post obli-
gations [3, Figure 11], declared in the evemt&squi r es andensur es clauses. Be-
sides that, the handlers must also refine the event’s treidsiantract. This is expressed
in the requirement that a program is conformal, meaningeghah handler conforms to
the corresponding event declaration’s specification.

Definition 2. A Ptolemy program Progs conformalf and only if for each declaration
of an event typeyut, in Prog, and for each binding clause of the fownen Evt do m
appearing in a clas¢’ of Prog: if (P., A, Q.) = ptolemySpec(Evt) and

H = bodyOf (C, m), then there is some type environméhtsuch that

I'"(next) = closure Evt, "= AT HandI" = {P.} H{Q.}.

3 The auxiliary functionbodyOf (C', m) returns the body of methag in classC.

6 Sanchez and Leavens

In the above, the formul®, is the event's preconditiorf). is its postcondition,
and A is the body of theassunes clause (the “translucid contract” [3]), which in
our notation is written P, A, Q.) = ptolemySpec(Evt). Similarly, bodyOf (C, m)
returns the code that is the body of methadn classC.* The structural refinement
relationC is explained below. Furthermore, we say that a Hoare-t{ptéS{Q} is
valid, written I = {P}S{Q}, if in every state (typable by") such thatP holds,
wheneverS terminates normally, the@ holds in the resulting state.

In Ptolemy, the verification of handlers is done modularlg aeparately from the
announcements. The body of each handler must structuediherthe translucid con-
tract from the event specification. A handler bod, structurally refinesa translucid
contractA, written A C H, if one can match each expressiondnto an expression in
A[13]. The matching of most expressions are exact (only threesaxpression matches)
with the exception of specification expressions of the foregui r es P ensur es
@, which can occur inrd and must each be matched by expressiond iaf the form
refining requires Pensures Q { S}, whereS is the code implementing
the specification expression. In Ptolemy structural refiereinis checked by the type
checking phase of the compiler [3].

To summarize, according to the work on translucid contrémt®tolemy [3], the
way that one proves that a program is conformal is by provimgeach handler body
H for an eventEvt such that(P., A,Q.) = ptolemySpec(Evt): I" A C H and
I + {P.}H{Q.}. In order to guarantee soundness, the body of eafh ni ng
expression must satisfy the given specification, as in treF(RNG) rule of Figure 3.

(SPECIFICATION-EXPR)

'+ {P}requires Pensures Q{Q}

(REFINING)
r={ris{Q}
I'-{P}(refining requires Pensures Q{ S }){Q}

(ANNOUNCE)
(Pe, A, Qe) = ptolemySpec(Evt), x : T = formals(Evt),
' {Pe[y/=]}S{Qe[y/=]}
I' - {P.[y/x]} announce Evt(y) S {Qc[y/x]}

(INVOKE)
closure Evt = I'(next), (Pe, A, Qe) = ptolemySpec(Evt)

I'{P.} next.invoke() {Qc}

Fig. 3. Hoare Logic axioms and inference rules for the interestiomgstructs of Ptolemy.

* These auxiliary functions query the program, which is dats a fixed context.

Separating Obligations of Subjects and Handlers 7

For everyannounce expression in a valid program, the announced c®daould
satisfy the event specificatio(,).). Then, if the base code guarantégefore the
announce expression it can assundg. holds afterwards. This constitutes Ptolemy’s
(ANNOUNCE) rule in Figure 3. In that rulé, [y /=] meansP, with the actual parameter
variablesy;® simultaneously substituted for the free occurrences af thehich are the
event’s formal parameters. Note that the body of the annemeat,S, cannot use the
event’s formal parameters, but only has access to the atigipe environment]". In
the (ANNOUNCE) rule, there is no distinction made regarding the presenedsence
of any registered handlers, because the same reasoningsapgither case.

Ani nvoke expression in a handler is reasoned about in the same watyisT tize
code executing the invoke expression must estallistind can assum@,. afterwards.
This is (INVOKE) rule in Figure 3. In this rule, the event's name is obtairrearf the
type ofnext , and this gives access to the specificatién, A, Q.) of that event.

A Hoare logic issoundif whenever” - {P}S{Q} is provable then every termi-
nating execution of' starting from a state in whick holds ends in a state in which
holds. Soundness for Ptolemy depends on the program beirigratal.

Theorem 1. Suppose that the Hoare logic for Ptolemy, without using tles in Fig-
ure 3, is sound. Then for conformal programs, the whole logicuding the rules in
Figure 3, is sound.

We omit the proof (which goes by induction on the structurihefproof in the entire
Hoare logic). However, the key argument is the same as thatréybox specifications,
that structural refinement implies refinement [13].

Ptolemy’s design makes both handlers and the announcechemdehe same pre-
post specificationsH., Q.).® This design is convenient in some cases, but it limits
Ptolemy’s flexibility and completeness. For example, itas possible to use Ptolemy’s
event type pre and postconditions to specify and verify theréasing” property of our
billing system (section 1.4), because the announced code achirvesdtcondition
a’ = a + ¢ and not the event’s postconditiah > a + ¢. However, this property could
be considered correct with respect to a more flexible spatiific that gives different
postconditions to the announced code and handlers, whighas we do below. This
example shows that verification in Ptolemy is incomplete.

We have other similar examples that show incompleteneswtdRy’s verification
rules. The common theme, like in théling example, is that the effect of the announced
code does not match the effect of the handlers.

Another situation that shows Ptolemy’s incompletenessigoewhen the announced
code has no effect (e.ggki p). As Ptolemy imposes the event pre-post obligations on
the announced code, it requires that the trighe}ski p{Q.} holds, or, by Hoare logic,
that P, = Q.. Since these same obligations are imposed on the handiesshey are
limited to monotonic behaviors; i.e. ones that preservepiteeonditionP.. This is
a symptom of incompleteness, because in a program where tingst be registered

5 We use variables in these rules to avoid problems with sifietsfin expressions, although
Ptolemy allows general expressions to be passed as agguahants to announcements.
® We use the convention of denoting bi, Q) the pre- and postconditions of some code.

8 Sanchez and Leavens

handlers, one would not be able to verify an event announceime/hich the handlers
achieve a postconditiof. that is not implied by the event’s preconditioR.}.

In the next section we detail our proposed modification teestthese incomplete-
ness issues and analyse its impact regarding modular iegson

3 Explicit Separate Specification

A solution to the incompleteness problems can be found bygmizing that there is a
mutual dependency between base code, handlers and andaamss in the execution
chain. The base code depends on the behavior of the activaelters that are triggered
by anannounce expression. The handlers depend on the other activatednayahd
on the behavior of the announced code at the end of the chigiaré).

The first change from Ptolemy in oltolemyRelManguage consists in separat-
ing the specification for the handlerB.((.) from the specification for the announced
code (P5,Q;)- As before, every handldi is reasoned about using the event requires-
ensures specificationP{,.). But the announced codg is reasoned about using its
own specification P;,Q;). (Both cases are depicted in Figure 5). This new approach
allows different specifications for the handlers and forah@ounced code, as in our
billing example. This also allows announced code that has no effeet verified with-
out limiting, in any way, the handlers’ specification.

~— base code
‘ handler1
5 handler2 ...
pe .. = | }—— handlerN =
Pe I Ps
Ps | | anounced
code =
Qe Qe
Qe |
Qe :
: {a) first handler {b) no handlers, just
| the announced code
Fig. 4. Mutual dependencies between base Fig. 5. Reasoning about the base code

code, handlers and announced code

In PtolemyRely, the second change is that the verificatidmotiiannounce and
i nvoke expressions is slightly modified. Famnounce expressions there are two
situations, as shown in Figure 5. If there are registeredleasthen the base code in-
teracts with the first of them, which guarantees the everitpadition ..). If there are
no handlers then the announced code is executed, enswpgsitcondition@,). This
two cases are formalized by the rulessAfNOUNCEHAS) and (RANNOUNCENONE)
in Figure 8.

i nvoke expressions are only valid inside the body of a handler, hnd should
be analyzed in a context where there are registered hanilleeg effect, instead, de-
pend on the nondeterministic position of the containingdhernn the execution chain.

Separating Obligations of Subjects and Handlers 9

If there are other handlers left in the execution chain, thenespecification ., Q.)

is used, as all handlers satisfy it. If only the announcededsdetft, its specification
(Ps, @Qs) should be used. However, for modular verification, the fgwbis that the
event declaration, and consequently the handlers, do rmw khe announced code
and thus do not knowPs, Q). To avoid whole-program reasoning, we make a third
change, in this case to Ptolemy'’s event type declaratioow. i$ers also specify, in the
event declaration, the pre-post obligatiqd3, @) for any announced code. Putting
this specification in the event type declaration in a m&k i es clause (see Figure 6)
allows the handlers to be verified based on that specificatistead of the actual an-
nounced code’s specification. It also allows one to avoidglthe verification that each
handler satisfies the event pre-post specification one aaatltime. Instead, that can
be done in two separate steps: first, once and for all, vedfifiat the event's translucid
contract satisfies the event’s pre-post specification, bad verifying that each han-
dler refines this translucid contract, which in turn guagastevery handler satisfies the
event's specification.

To summarize, with our changes in PtolemyRely, the everd tigrlares specifica-
tions for the handlers,P., Q.), and for the announced codg;,., Q). In the rest of
this section, we give the formal details of our approach.

3.1 Syntax

For PtolemyRely, we change the syntax of Ptolemy event deabas by introducing
arel i es clause that establishes the specification for the annourwee(P, , Q).
This is shown in the event syntax schema, Figure 6.

t event Ewt { sp::=...|handlers(c)
o fi 0t fa contract::= ..._|
relies requires P. ensures Q. relies requiresspensures sp
requires P. requiressp
assumes { ... next.invoke(); ...} assunes { se}
ensures Q. ensures sp
}

Fig. 7. Formal syntax changes.
Fig. 6. Event syntax schema.

We make two changes to the formal syntax of Ptolemy [3]. Ttst fidds a predi-
catehandl er s that returns the number of handlers currently registeredgceevent
argument. The second changes contract definitions, as sihdwigure 7. The nonter-
minal ¢ stands for event namesp stands for specification predicates, aedtands for
specification expressions (the contract’s body in this)case

10 Sanchez and Leavens

3.2 Semantics

In PtolemyRely, as stated in the definition of conformance,alieck for structural
refinement of each handler to the translucid contract, asml @heck each handler to
satisfy the eventequiresensurespecification.

Definition 3. A PtolemyRely program Prdg conformalf and only if for each declara-
tion of an event typdyuvt, in Prog, and for each binding clause of the fomimnen Fvt do m
appearing in a clas¢’ of Prog: if (P, Q,, P., A, Q.) = eventSpec(Euvt) and

H = bodyOf (C, m), then there is some type environméhtsuch that

I'"(next) = closure Evt, "'+ AC H,andI"”" = {P.} H{Q.}.

The functioneventSpec(Evt) returns the specification information from the event
type’s declaration. The returned 5-tuple consists of thiegelause contract., @Q,.),
and the translucid contract: pre and post-conditidis ¢.) and assumes body.

Theannounce andi nvoke expressions are verified using the rules in Figure 8.
Forannounce expressions there are two rules, depending on whether ongroge
that there are registered handlers for the evemtNROUNCEHAS) applies when there
are registered handlers. In this casedh@ounce expression is reasoned about using
the event's specificatiofP,, @Q).). For this rule to be valid, the announced code,
must satisfy the specificatiqP., @) given in the event's type. (IRINOUNCENONE)
applies when there are no registered handlers. In this gdgdle announced code is
executed, and thus the relied on specificatiBn @) is used.

(RANNOUNCEHAS)
(Pr, Qr, Pe, A, Qe) = eventSpec(Eut),
x : T = formals(Evt), I'+ {P.[y/x] Ahandl ers(Evt) > 0}S{Q,[y/z]}

'+ {P.[y/x]} (announce Evt(y) S) {Q.[y/x]}
(RANNOUNCENONE)

(Pr, Qr, Pe, A, Q.) = eventSpec(Evt),
x : T = formals(Eut), I'+ {P-[y/z] Ahandl er s(Evt) = 0}S{Q~-[y/x]}

'+ {P,[y/=]} (announce Evt(y) S) {Q.[y/x]}

(RINVOKE)
closure Evt = I'(next), (Pr,Qr, Pey A, Qe) = eventSpec(Eut)

I'+{P. A P.}next . i nvoke() {Q.V Q.}

Fig. 8.Hoare Logic inference rules for those constructs of PtolRaty that differ from Ptolemy.

The soundness theorem for PtolemyRely states that if a anogr conformal, then
all provable Hoare triples are valid.

Theorem 2 (Soundness)Suppose that the Hoare logic for Ptolemy, without using the
rules fori nvoke andannounce, is sound. Then for conformal PtolemyRely pro-
grams, the whole logic, including the rules for those camdtfs in Figure 8, is sound.

Separating Obligations of Subjects and Handlers 11

Proof: LetI", P, S andQ be given such that - { P}S{Q} is provable using Ptole-
myRely’s Hoare logic, including the rules in Figure 8. Weyedhat!” = {P}S{Q}
(i.e., that this Hoare triple is valid) by induction on theusture of the proof of that
triple. In the base case, there are no uses of the rules imé=&j$0 validity follows by
the hypothesis. For the inductive case, suppose that tlué pas as its last step one of
the rules in Figure 8. We assume inductively that all subsjdproofs are valid. There
are three cases. If the last step uses theN(ROUNCENONE) rule, then the hypothesis
that the announced code satisfies the specificafdn),.) makes the conclusion valid.
If the last step uses the ARNOUNCEHAS) rule, then the hypothesis that the program
is conformal means that, by definitionB, = { P.} H{Q.} where F., Q.) is the spec-
ification of the handler’s from the event type. This again egthe conclusion valid.
If the last step uses the (RvVOKE) rule, then there are two sub-cases, and the proof is
similar to that given for the previous cases, using the dedmbf “conformal.”i

We note that proving that a program is conformal can be domesimple way, by
provingI” + {P.} A{Q.}, where(P,, Q.) is the event's pre/post specification, aAd
is the translucid contract for the event, and then checkiagéach handler’s body]
structurally refines the translucid contraé¢t’ (- A C H). After that, it follows that
I'" E {P.} H{Q.} using techniques from the work of Shamtal.[13].

3.3 Billing Example Revisited (PtolemyRely)

In Figure 9 we show how ounilling example could be written in PtolemyRely. Here we
show how it can be verified using PtolemyRely’s rules, how'thereasing” property
can be specified and verified and how the assertion in line &visproved.

Contrary to Ptolemy, PtolemyRely allows us to have différgmecifications for
the handlergP., Q.) and for the announced cod€s, Q). As mentioned before, the
specification for the handler&P., Q.), goes in the equi r es- ensur es clauses of
the event declaration, meanwhile the minimum specificdtiorany announced code,
(P.,Q.), goes in the newel i es clause. The specification of the announced c8de
(line 7) is (Ps, Qs), that corresponds tc > 0,4’ = a + ¢). We take the expected
behavior for the announced codg,, @) (lines 13-14) to be the same as the actual
behavior for the announced-co@&;, Q). The specification for the handlefB., Q.)
is declared in line 15 and line 22 45> 0,a' > a + ¢).

In PtolemyRely we can prove our “increasing” property: tathandlers should
strictly increase the total amount of the bill. If a handiéris verified, it means that it
satisfies thé P., Q) specification. In this casé: + {¢ > 0} H{a' > a + ¢}, which is
exactly what the “increasing” property demands.

Since there are registered handlers (line 5) theaNiROUNCEHAS) rule applies.
It requires{ P, }S{Q,}, which holds in theannounce expression in lines 6-8. The
postcondition in the consequent of this rufg,, corresponds in this casedb> a + ¢,
this immediately proves the assertion in line 9. To reasmutibnvoke expressions
one should use the (RvVOKE) rule, that consider&P., Q.) and(P., @,). In this case
it corresponds to the following:

I't{(c>0)A(c>0)}next.invoke(){(a" >a+c)V(d =a+c)}

and this is equivalenttd’ - {¢ > 0}next . i nvoke() {a’ > a + ¢}

12 Sanchez and Leavens

© ® N o 0 h W NP

public class Base {
public void run(){
Bill bill=new Bill (100, 8);
Bill old=new Bill(bill.a(),bill.c());
regi sterHandl er();// Randomy regi ster one handl er
announce TotalingEvent(bill) { // event Q.:a >a+c
bill.setA(bill.a()+bill.c());// code Qs:a'=a+c
}
assert bill.a()>old.a()+old.c(); //a' >a+c
}}

public void event TotalingEvent { // handlers: a >a+c
Bill bill;
relies requires bill.c()>=0 // announced code: P.: ¢>0
ensures bill.a()==old(bill.a())+old(bill.c()) //Qrd =a+c
requires (bill.c()>=0) // //handlers: P.: ¢>0
assumes{
/| specification expr.: requires ¢>0 ensures ¢ >c
requires (next.bill().c()>=0)
ensures (next.bill().c()>=old(next.bill().c()));
next.invoke(); // control flow proceed with next handler
}
ensures (bill.a()>old(bill.a())+old(bill.c())) //Qe: a >a+c
}
public class PaynmentHandl er { // Payment Processing Fee Handl er
public void handl eTot al i ng(Tot al i ngEvent next)throws Throwabl e{
refining requires (next.bill().c()>=0)
ensures (next.bill().c()>=old(next.bill().c())){
next.bill().setC(next.bill().c()+1); [/ =c+1

next . i nvoke();
}
when Tot al i ngEvent do handl eTot al i ng;
public PaynentHandler(){ register(this); } }
public class ShippingHandl er { // Shipping Fee Handl er
public void handl eTotal i ng(Tot al i ngEvent next)throws Throwabl e{
refining requires (next.bill().c()>=0)
ensures (next.bill().c()>=old(next.bill().c())){
next.bill().setC(next.bill().c()+5); //c =c+5
}

next.invoke();

}
when Tot al i ngEvent do handl eTot al i ng;

publ i ¢ Shi ppi ngHandl er(){ register(this); } }

Fig. 9. Billing example revisited (PtolemyRely)

In this revisited version we adjuste&hippingHandlerto meet the “increasing”
property (line 38). Both handlers refine the translucid maxtt providing code (line 28

Separating Obligations of Subjects and Handlers 13

and 38) that correctly refines the specification expressidhé contract (lines 18-19).

Also both, PaymentHandleand ShippingHandler satisfy the handlers specification

(¢ > 0,a’ > a+ ¢). This can be shown as follows. Both increment the chaxges,c,

(line 28 and line 38) and then invoke the next handler. Cansid this increment, and

the indicated postcondition of thewvok e expression, we have’ > ¢)A(a’ > a+c'),

and from that we gdia’ > a+c), that shows that both handlers satisfy the specification.
We have showed that the whole program is verified (announmezsgion and han-

dlers), that the “increasing” property can also be verified that the assertion in line 9

can be proved in PtolemyRely.

3.4 Extension of Ptolemy
Our new approach extends Ptolemy’s, as stated in the follple@mma.

Lemma 1. Let Prog be a program in Ptolemy arttlbe an expression of Prog. L&tbe
a type environment that types Supposd” + {P}S{Q} is provable in Ptolemy. Then
there is a PtolemyRely program Prdg whichI" - { P}S{Q} is provable by the rules
for PtolemyRely.

Proof: The new progranfrog in PtolemyRely is constructed by taking each event
declaration® declared irProg, and producing a new event declaratighwhich is just
like E, exceptthat ael i es clause is inserted of the form

relies requires P, ensures Q.

where(P,, A, Q.) = ptolemySpec(E). Then the rest of the proof proceeds by induc-
tion on the structure of.

If S is not ani nvoke or announce expression, then the proof rules for Ptole-
myRely are the same as for Ptolemy, so there are only twoestiag cases.

WhenS'is ani nvoke expression of the formext . i nvoke() then, by hypoth-
esis, we have in Ptolemy’s proof systefh {P}next . i nvoke() {Q}. Thus by
the Ptolemy (NVOKE) rule, we must havé'(next) = closure Evt, for some event
nameFEvt, where(P, A, Q) = ptolemySpec(Evt). By construction ofProg’, we have
(P,Q,P,A Q) = eventSpec(Euvt), so P plays the role of bottP. and P, in Ptole-
myRely’s (RNVOKE) rule, and@ plays the role of botl). and Q.. in that rule. So
we havel’ - {P A P}next.invoke() {Q V Q}. To do this we use the rule of con-
sequence in Hoare logic, siné® A P) = P and(Q V Q) = Q, to get the desired
conclusion in the proof system for PtolemyRely.

When S is anannounce expression of the formnnounce Evi(y) { S}, then
using Ptolemy’s ANNOUNCE) rule we havel - { Pg,:[y/x]|} S{QEvt|y/x]}, and so
we also have™ - { Pgyi[y/x]} So{QEw[y/x]}, wherel is the type environment for
expressiort, (Pgyt, A, QEvt) = ptolemySpec(Evt) andx : T = formals(Evt). Us-
ing PtolemyRely’s (RNNOUNCEHAS) or (RANNOUNCENONE) rules, we must prove
that: I & {Pru|y/x|}S{QE.:[y/x]}. Since by construction dProg we have that
(Pgot, QBvt, Prot, A, QEvt) = eventSpec(Ewt), then Pg,, plays the role ofP. and
P,, and@Q g, plays the role of). and@,., and so both rules allows us to immediately
prove the desired conclusion. One can apply whichever sidppropriate, or a derived
rule with preconditiorPg.: [y /x| A P.[y/x] and postconditio®) g,:[y/x] vV Q. [y /],
and then use the rule of consequerikce.

14 Sanchez and Leavens

4 Related Work

The original work on Ptolemy [12] addressed the problem ofiutar reasoning of
implicit invocation systems, like AO systems. Many othdusions have also been pro-
posed: XPIs [16], AAI [10], Open Modules [1, 11], Join Pointpes (JPT) [15] and
Joint Point Interfaces (JPI) [8, 5, 4]. In this work we catkattion to the mutual depen-
dency that exists between the base caudjec) and the advising codééandlerg. We
enhanced Ptolemy’s event type specifications by clearlgrsgipg the obligations im-
posed on the handlers from the obligations of the announaeéé, én such a way that
both can be reasoned about modularly. Here we review how,afl,ahis problem is
addressed in the other approaches and if our strategy carpbedito them.

Previous work [2] has shown how the translucid contract ephof Ptolemy can
be adapted to other approaches like XPls, AAl and Open Madaldding specifica-
tion and verification capability to them. All these approeehvould benefit from our
enhancement to the translucid contract concept, in cageath@pted it, as they would
become more complete and more flexible.

Steimanret al.[15] proposed an approach for dealing with Implicit Invacatand
Implicit Announcement (IllA) based on Join Point Types amdymorphic pointcuts.
Ptolemy’s approach [3], which we extended in this work, imikir to the work of
Steimann et al. One important difference, though, is thatelrty does not support
implicit announcement. On the other hand, Steimann et ahatdreat the issue of
specification and verification, suggesting that one carottée an informal description
of the nature of the join points” [15, p. 9]. Neverthelesscsi the IlIAjoinpointtype
concept is very close to theventconcept of Ptolemy, the translucid contract approach,
including our contribution, could be partially applied tirj point types.

Joint Point Interfaces (JPI) [8, 5] and Closure Joint Pdiitextend and refine the
notion of join point types of Steimaret al. JPl decouples aspects from base code and
provides modular type-checking. Implicit announcemerdtipported through point-
cuts, and explicit announcement through closure join goiiRl, similarly to JPT, lacks
specification and verification features. Thus, it could &lepefit from the specification
and verification approach in Ptolemy and PtolemyRely.

Khatchadourian and Soundarajan [9] proposed an adaptatitie rely-guarantee
approach used in concurrency, to be applied in aspect atient The base code rea-
soning relies on certain constraints imposed on any agpécalvice. These constraints
are expressed asrely relation between two states. A conforming piece of advicg ma
only make changes to the state in a way that satisfiesetigeelation. In this way the
reasoning of the base code is stable even in the presencevicEad@he event pre-
postconditiong P., Q) that Ptolemy imposes on every handler can be thought as a re-
alization of theely relation:rely (o1, 02) = P.(01)AQ. (01, 02). As observed by those
authors, the relation between the base code and the advioé sgmmetric, as it is in
the case of peer parallel processing. In their approachabe tode should juguaran-
teethe preconditions required by the advice. PtolemyRelyfed a similar strategy, in
which the base code guarantees (to the handlers) only thermmut#ions of the handlers.
Thus in PtolemyRelyguar(oy1,02) = P.(01). Our key observation in PtolemyRely
is that the advice codmight depend on the piece of base code announced at a given
join point, which may be eventually invoked from inside thdvige. In PtolemyRely

Separating Obligations of Subjects and Handlers 15

we take ideas from both approaches, Ptolemyrahdguaranteeand declare, as part
of the event type, the conditions the advice code relies tiglwcorresponds to what
the base code shoutgiarantego every applicable advice.

5 Conclusions and Future Work

When reasoning about event announcementin AO systems gkists a mutual depen-
dency between the base codaljjec) and the advising codééndler3. The approach
followed in systems like Ptolemy [3], where the samgquires-ensuresbligation is
applied to both the handlers and the announced code, lingtiexibility and the com-
pleteness of the system.

In this paper we showed an extension to the event type comcdphe Ptolemy
language that explicitly separates the specification arification of these obligations.
We implemented our proposal as an extension to the Ptolempiter and showed that
the resulting methodology is more flexible and complete thearoriginal.

We also showed how to make the verification of the handler&rooncise. Instead
of verifying each handler to satisfy the event pre-postgijgation, one can verify, once
and for all, the translucid contract of the event to satibfy pre-post specification. Then
each handler can be verified to structurally refine this teaid contract. This indirectly
guarantees the required behavior of the handlers.

Previous work [2] has shown how the translucid contract ephof Ptolemy can be
adapted to other approaches like XPI, AAl and Open Modubdirey specification and
verification capability to them. Our work suggests that éesproaches, and others like
JPT and JPI, would benefit from our enhancement to the treidstontract concept.

Since event subtyping has been recently proposed for Pyd&lna natural future
extension to our work would be to apply the added relies e@uthe presence of event
polymorphism, and to analyse its impact regarding modelasoning. We also plan to
apply our approach to more complex cases, and also to ugedtatking techniques
in the verification process.

Acknowledgments

The work of both authors was partially supported by NSF gf2@F-1017334. The
work of José Sanchez is also supported by Costa Rica’sddsidad Nacional (UNA),
Ministerio de Cienciay Tecnologia (MICIT) and Consejo Maxal para Investigaciones
Cientificas y Tecnolbgicas (CONICIT).

References

1. Jonathan Aldrich. Open modules: Modular reasoning ahdvite. In Andrew P. Black, ed-
itor, ECOOP 2005 — Object-Oriented Programming 19th Europeanf&ence, Glasgow,
UK, volume 3586 ol ecture Notes in Computer Sciengages 144-168. Springer-Verlag,
Berlin, July 2005.

16

10.

11.

12.

13.

14.

15.

16.

Sanchez and Leavens

. Mehdi Bagherzadeh, Hridesh Rajan, and Gary T. Leaveranslucid contracts for aspect-

oriented interfaces. IROAL '10: Workshop on Foundations of Aspect-Oriented Laugs
workshop pages 5-14, March 2010.

. Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, aad Be®oney. Translucid con-

tracts: expressive specification and modular verificatmmaspect-oriented interfaces. In
Proceedings of the tenth international conference on Aspgented software development
AOSD 11, pages 141-152. ACM, 2011.

. Eric Bodden. Closure Joinpoints: Block joinpoints witheurprises. IMOSD '11: Proceed-

ings of the 10th International Conference on Aspect-ogdroftware Developmentages
117-128. ACM, March 2011.

. Eric Bodden Eric Tanter, and Milton Inostroza. Joint point interfaces $afe and flexi-

ble decoupling of aspectsACM Transactions on Software Engineering and Methodology
(TOSEM) 2013. To appear.

. Rex D. Fernando, Robert Dyer, and Hridesh Rajan. Eveetpgbymorphism. IrProceed-

ings of the eleventh workshop on Foundations of Aspectr@@ieLanguagesFOAL '12,
pages 33-38. ACM, 2012.

. C. A. R. Hoare. An axiomatic basis for computer prograngni€ommunications of the

ACM, 12(10):576-580,583, October 1969.

. Milton InostrozaEric Tanter, and Eric Bodden. Join point interfaces for madteasoning

in aspect-oriented programs. ESEC/FSE '11: Joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium éotimelations of Software
Engineering pages 508-511, 2011.

. Raffi Khatchadourian and Neelam Soundarajan. Rely-gtegapproach to reasoning about

aspect-oriented programs. 8PLAT '07: Proceedings of the 5th workshop on Engineer-
ing properties of languages and aspect technolggiegie 5, Vancouver, British Columbia,
Canada, 2007. ACM Press.

Gregor Kiczales and Mira Mezini. Aspect-oriented pesgming and modular reasoning.
In Proc. of the 27th International Conference on Software Begring pages 49-58. ACM,
2005.

Neil Ongkingco, Pavel Avgustinov, Julian Tibble, Lautendren, Oege de Moor, and
Ganesh Sittampalam. Adding open modules to AspectProneedings of the 5th Interna-
tional Conference on Aspect-Oriented Software Develop#€DSD) pages 39-50, March
2006.

Hridesh Rajan and Gary T. Leavens. Ptolemy: A languagfe quantified, typed events. In
Jan Vitek, editorECOOP 2008 — Object-Oriented Programming: 22nd Europeanf@e
ence, Paphos, Cyprusolume 5142 ot ecture Notes in Computer Sciengages 155179,
Berlin, July 2008. Springer-Verlag.

Steve M. Shaner, Gary T. Leavens, and David A. Naumanrdubo verification of higher-
order methods with mandatory calls specified by model pragradnInternational Confer-
ence on Object-Oriented Programming, Systems, Languagg#\pplications (OOPSLA),
Montreal, Canadapages 351-367, New York, NY, October 2007. ACM.

J. M. Spivey.Understanding Z: a Specification Language and its Formal @givs Cam-
bridge University Press, New York, NY, 1988.

Friedrich Steimann, Thomas Pawlitzki, Sven Apel, andigiian Kastner. Types and
modularity for implicit invocation with implicit announceent. ACM Trans. Softw. Eng.
Methodol, pages 1:1-1:43, 2010.

Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuaian Song, Yuanfang Cai, Mac-
neil Shonle, and Nishit Tewari. Modular aspect-orientesigiewith xpis.ACM Trans. Softw.
Eng. Methodol.pages 5:1-5:42, September 2010.

