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Abstract. The booming of the Android platform in recent years has at-
tracted the attention of malware developers. However, the permissions-
based model used in Android system to prevent the spread of malware,
has shown to be ineffective. In this paper, we propose DroidRisk, a frame-
work for quantitative security risk assessment of both Android permis-
sions and applications (apps) based on permission request patterns from
benign apps and malware, which aims to improve the efficiency of An-
droid permission system. Two data sets with 27,274 benign apps from
Google Play and 1,260 Android malware samples were used to evaluate
the effectiveness of DroidRisk. The results demonstrate that DroidRisk
can generate more reliable risk signal for warning the potential malicious
activities compared with existing methods. We show that DroidRisk can
also be used to alleviate the overprivilege problem and improve the user
attention to the risks of Android permissions and apps.

Keywords: Android App, Android Permission, Malware, Risk Assess-
ment, DroidRisk

1 Introduction

The use of touchscreen based mobile devices like smartphones has seen unprece-
dented growth in recent years due to their portability and real-time information
access. According to a recent study from research firm Ovum [10], smartphones
will dominate the mobile phone market with a compound annual growth rate
of 24.9% from 2011 to 2017 and 1.7 billion devices are estimated to be shipped
by 2017. The dominance of smartphones is largely attributed to the Google An-
droid mobile OS which took 68% of the global market in the second quarter of
2012 [3]. This is mainly due to it being open source and the large collection of
mobile applications (apps) in the unrestricted official and third-party Android
app markets. In September 2012, the Google’s official app store, Google Play
(previously known as Android Market [6]), hit total 25 billion app downloads
with more than 675,000 apps [7].
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However, the popularity of Android platform has also attracted the atten-
tion of malware developers. It was reported that more than 260,000 Android
devices were affected by a mobile virus called DroidDream in the official An-
droid Market within 48 hours in 2011 [5]. Felt et al. did a survey of mobile
malware on three different mobile platform including Android [20]. They found
that the most common malicious activities are collecting user information and
sending premium-rate SMS message. Zhou et al. collected 204,040 apps from five
different Android markets between May to June in 2011 [27]. 211 malware were
found in the collected apps, where 32 from the official Android Market and 179
from the third-party markets.

The security mechanism used in Android platform to prevent the spread of
malware is the permission-based model, which protects the access to sensitive
privacy data (contact list, emails, phone call logs, location etc.) and system re-
sources (GPS, camera, WiFi etc.). An Android app needs the user’s approval
of the requested permissions to be installed in the user’s device. Felt et al. con-
ducted two usability studies on the effectiveness of Android permission system
[21]: one Internet survey of 308 Android users and a laboratory survey of 25
Android users. The studies showed that only 17% of participants paid attention
to permissions during app installation, which indicates that the current Android
permission system fails to protect most users from malware.

Several recommendations were made in [21] to improve the low attention
and comprehension rate of Android permission system such as re-organizing
and re-naming categories, description of permissions focusing on risk instead of
resources, smaller permission list etc.. However, based on our own experiences
of installing Android apps, the main reason causing the ineffectiveness problem
is the text-based permission warning interface for app installation, which can
be easily ignored by the users [24]. Our solution for this problem is to have
a quantitative assessment of the risk levels of Android permissions and apps.
With the quantitative risk information, users can easily understand the risk of
an app to be malicious and pay more attention to those permissions with high
risk levels.

This paper has made the following contributions:

– We propose DroidRisk, a framework for quantitative security risk assessment
of Android permissions and apps based on permission request patterns, which
follows the U.S. National Institute of Standards and Technology (NIST)
guide for IT security risk management [11]. To the best of our knowledge, this
is the first attempt to quantitatively assess the risk levels of both Android
permissions and apps.

– We evaluate the effectiveness of DroidRisk with two datasets. The benign
app dataset has 27,274 popular apps collected from Google Play in July
2012. The malware dataset consists of 1,260 Android malware samples from
the Android Malware Genome Project [26]. We show that reliable risk signal
can be generated with the quantitative risk levels of apps for warning the
potential malicious activities.
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– We show that DroidRisk can be applied to alleviate the overprivilege prob-
lem.

– We have implemented two applications of DroidRisk to improve the user
attention to the risks of Android permissions and apps: a modified App web
page in Android market with the quantitative risk information of the app
and its requested permissions, and an Android app to evaluate the risk levels
of apps installed in local device.

2 Related Work

Due to its importance for Android security and user privacy, the permission sys-
tem has attracted lots of research interests. There are several studies on how the
permissions are used by Android apps. In [13], Barrera et al. did an empirical
analysis of the permission-based security models by analyzing 1,100 most popular
Android apps using the Self-Organizing Map (SOM) algorithm. They found that
among the defined permissions only a small portion of them are actively used by
developers. Another finding of their study is that the requested permissions are
not strongly correlated with application categories. Felt et al. did a survey of 100
paid and 856 free apps from Android Market in [20]. It was observed that 93%
of free and 82% of paid apps request at least one dangerous permission. They
also built a tool called Stowaway that can detect whether a compiled Android
app requests more permissions than necessary, i.e. overprivileged [18]. Among
the apps they investigated, about one-third were actually overprivileged. In [25],
Wei et al. studied the permission evolution in the Android ecosystem. One of
their key observations is that the set of dangerous-level permissions always out-
numbers other permission types in all versions of the Android platform and it
is still growing. Frank et al. studied the permission request patterns of Android
apps using pattern mining technique [22]. They tried to relate the permission
request pattern with the app’s reputation which can be served as an indicator
of app quality. Although all these works revealed something about the permis-
sion request patterns of Android apps, they didn’t attempt to identify potential
malware.

Recently, the app’s permission request pattern has been used to generate
risk signal for warning potential malicious activities. Enck et al. proposed a
light weight application certification service called Kirin that uses a rule-based
strategy to identify suspicious apps based on their requested permissions [16].
However, because the rules were defined manually, they can’t adapt to the chang-
ing characteristics of current permissions and apps. For example, the 9th rule
of Kirin is no longer valid because the permission SET PREFERRED APPLICATION

has been deprecated since Android API level 7. In [27], Zhou et al. proposed a
system called DroidRanger to detect malicious apps in official and alternative
Android markets. The first component in DroidRanger is permission-based filter-
ing which uses some dangerous permissions such as RECEIVE SMS and SEND SMS

to find potential malicious apps. It was shown that only 0.66% of apps needed
further analysis after the permission-based filtering step. Chia et al. studied per-
missions systems of Facebook apps, Chrome extensions and Android apps to
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find the reliable signals to identify potential harmful and inappropriate apps
[15]. They investigated several signals including the adjusted community rating,
the availability of the developer’s website and the number of apps published by
the developer. However, none of those signals was found to be reliable. In [24],
Sarma et al. proposed a set of risk signals by examining the permission request
patterns from apps in Android Market and the collected malicious apps. The
proposed risk signals include rare critical permissions (RCP), rare pairs of crit-
ical permissions (RPCP), combination of RCP and RPCP, and category-based
RCP (CRCP). The RCP signal is triggered if at least one of the critical permis-
sions is requested by less than certain percentage of the Android Market apps.
The RPCP signal is triggered if for a pair of critical permissions, any individual
permission occurs more frequent than they occur as a pair. The CRCP signal
is the combination of category information with RCP. Though RCP has shown
superior performance compared with Kirin in terms of warning and detection
rates [24], the users do not have any idea about the risk levels of requested per-
missions by an app and the app itself as there is no quantitative assessment of
the risk levels.

3 Application Dataset

In this section, we describe the benign app and malware datasets collected for
our study. We also provide the statistics of requested permissions of these two
datasets.

3.1 Data Collection

Benign App Dataset Among the large number of Android markets available
worldwide, Google Play is the largest and most reliable one. An antivirus system,
called Google Bouncer, is deployed to detect the malicious apps uploaded by
developers [1]. Any malicious app found by Google Bouncer, that may be harmful
to users or tries to steal privacy information, will be removed from Google Play.
Thus, it is reasonable to assume that the apps from Google Play perform no
malicious activities and can be used to construct the benign app dataset.

To collect the information of apps from Google Play, we developed a crawler
to automatically extract the name, category and the requested permissions of
each app from its corresponding web page. In total we collected the informa-
tion of 27, 274 popular apps from Google Play in the middle of July, 2012. The
collected apps belong to 26 subcategories under ”Applications” category and 8
subcategories under ”Games” category.

Malware Dataset The Android malware dataset used in our study is from the
Andriod Malware Genome Project [26]. This dataset consists of 1, 260 Android
malware samples in 49 families from different markets which has a much larger
size compared with the malware dataset of 121 samples used in [24]. 86% of
the samples are repackaged versions of normal apps. 36.7% of them leverage
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root-level exploits. More than 90% try to remote control the device. 45.3% and
51.1% of them stealthily send short messages or make calls and collect privacy
user information, respectively. Unfortunately, there is no category information
for this malware dataset.

3.2 Statistics of Requested Permissions

Many malware request more permissions than the need of their claimed functions
to perform malicious activities. For example, a game-like malware may request
the permission to send short messages, which could result in a financial loss to
the user. In this section, we provide the statistics of permissions requested by
benign apps and malware, which inspire our work of DroidRisk.

Frequently requested permissions Figure 1 shows the top 20 requested
permissions in the benign app and malware datasets. INTERNET is the most
frequently used permission by both the benign apps and malware. There are
many reasons to request permission for internet access: some of the apps need
to log in; some are designed to use internet like browsers and email clients;
some need to load advertisement etc. As a result, Internet-related permissions,
such as ACCESS NETWORK STATE and ACCESS WIFI STATE, become very popu-
lar. Another set of widely used permissions are location related ones such as
ACCESS FINE LOCATION and ACCESS COARSE LOCATION for location based ser-
vices. The most significant differences between benign apps and malware ob-
served from Figure 1 are: malware are more favor of changing the settings and
use money-related services such as short message service (SMS). Changing set-
tings, especially changing the network settings, generally is the first step before
a malware performs any malicious activity. Sometimes malware even try to kill
background processes, which could help them avoid being detected by anti-virus
apps. It can be seen that SMS is a popular service among malware as four SMS-
realted permissions are much more popular in malware than benign apps. In
[26], Zhou and Jiang introduced a family of malware targeting on the financial
charging. This kind of malware may stealthily edit and send out SMS to waste
the user’s money. They may subscribe premium-rate services without the user’s
consent for profit.

Number of requested permissions Figures 2(a) and 2(b) show the per-
centages of malware and benign apps requesting certain number of permissions,
respectively. As can be seen, malware are likely to request more permissions than
benign apps. It is shown that 58.8% and 92.7% of the benign apps request no
more than 4 and 11 permissions respectively, while the numbers for malware are
7.5% and 49.3%. Figures 2(c) and 2(d) show the percentages of malware and
benign apps requesting certain number of dangerous permissions, respectively.
It can be easily seen that malware also request more dangerous permission than
benign apps. More than half of the benign apps request 2 or less dangerous per-
missions and 91.8% of them have no more than 7 dangerous permissions. For
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Fig. 1: Top 20 most popular permissions in: (a) malware dataset (b) benign app
dataset

malware, 62.5% of them have at least 7 dangerous permissions, and around a
quarter of them request 13 or more dangerous permissions. Clearly, malware are
more interested in dangerous permissions for their malicious activities.
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Fig. 2: Percentage of apps requesting certain number of permissions: (a) malware
(b) benign apps; Percentage of apps requesting certain number of dangerous
permissions: (c) malware, (d) benign apps

4 Methods

4.1 Quantitative Security Risk Assessment

Quantitative methods have been used to assess the financial risk for a long time
[12] but they are still relatively new for security risk assessment. To guide the risk
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management for IT systems, NIST published a set of IT security risk manage-
ment best practices in 2002 [11]. According to the NIST guide, risk assessment
is the first step of IT risk management. To quantitatively assess the risk level
of an system, it needs to find the risk of each potential adverse event for the
system, which is defined as [11, 23]:

R(Ei) = L(Ei)× I(Ei) (1)

where Ei is the ith potential adverse event, R(Ei) is the risk of Ei, L(Ei) and
I(Ei) are the likelihood and the impact of Ei, respectively. The likelihood rep-
resents the probability that a weakness is exploited by the attacker, while the
impact refers to the magnitude of harm caused by this weakness being exploited
[23]. Assume the adverse events are independent, the system risk Rsys can be
obtained by summing the risk values of individual adverse events as shown in
Equation (2):

Rsys =
∑
i

R(Ei) =
∑
i

L(Ei)× I(Ei) (2)

where i = 1, 2, ..., n and n is the total number of potential adverse events.

4.2 DroidRisk – Quantitative Security Risk Assessment of Android
Permissions and Apps

The DroidRisk framework for quantitative risk assessment of Android permis-
sions and apps follows the NIST guide. We consider an Android app A as the
system and each permission pi requested by A as the individual adverse event.
By assuming that the permissions requested by A are independent, the risk level
of the app A, RA, can be defined as:

RA =
∑
i

R(pi) =
∑
i

L(pi)× I(pi) (3)

where R(pi) is the risk level of permission pi, L(pi) and I(pi) are the likelihood
and the impact of permission pi respectively, i = 1, 2, ..., n and n is the total
number of requested permissions by A.

The key problem to be solved in the DroidRisk framework is to calculate the
likelihood L(pi) and the impact I(pi) for a requested permission pi. We define
the likelihood L(pi) as the probability that the app A is malware if pi is requested
by A, i.e. P (A is malware | pi). This posteriori conditional probability can be
calculated using Bayes’ rule as show in Equation (4):

P (A is malware | pi) =
P (pi | A is malware)× P (A is malware)

P (pi)
(4)

where P (pi | A is malware) is the priori probability that a malware requests
permission pi, P (A is malware) is the priori probability that an app is malware
for all collected apps, and P (pi) is the priori probability that any collected app,
benign or malicious, requests permission pi.
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For estimating impact levels of permissions, we consider two classes of per-
missions, normal and dangerous1. Although it is hard to evaluate the exact level
of harm caused by a permission if it is requested by a malware, it is certain
that dangerous permissions are more harmful than normal permissions. Thus,
we set the impact level of normal permissions, Inp as 1 while give dangerous
permissions a higher impact level. In Section 5.2, we used an empirical method
to determine the impact level of dangerous permissions, Idp.

5 Results

In this section, we first present the likelihood values calculated for Android
permissions based on two datasets we collected. We then show how to determine
the impact level for dangerous permissions with an empirical method followed
by the presenting of risk levels of Android permissions and apps from the two
datasets. Finally we demonstrate that DroidRisk can be used to assess the risks
of apps in third-party markets.

5.1 Likelihood of Android Permissions

With the collected benign app dataset and malware dataset, we can calculate
the likelihood of each Android permission using Equation (4). Figure 3 shows
the top 20 permissions with highest likelihood values. The blue bar represents
the likelihood of a normal permission while the red bar is for the likelihood of a
dangerous permission.

There are 14 dangerous permissions on the list. WRITE APN SETTINGS has
the highest likelihood among all permissions, which can change the network
setting, thus to intercept and inspect the network traffic without the user’s
awareness. There are 5 SMS and MMS related dangerous permissions on the
list, which means that SMS and MMS services are the major target of mal-
ware developers. Unlike other systems which don’t pay attention to normal class
permissions, we have 6 of them on the list. These permissions may be used by
malware to facilitate some malicious activities. For example, INSTALL PACKAGES

and DELETE PACKAGES are used by several malware families such as JSMSHider

and GoldDream to perform update attack and KILL BACKGROUND PROCESSES is
used by an Android Trojan named AnserverBot to avoid being detected by
certain anti-virus apps [26]2.

1 Android characterizes the potential risk of the permissions using 4 protection levels –
normal, dangerous, signature and signatureOrSystem. Since signature or signature-
OrSystem permissions can’t be granted to third party apps, we category them into
normal class. The protection level for a given permission in this study is obtained
from Android API level 9.

2 KILL BACKGROUND PROCESSES has been used to replace the old name
RESTART PACKAGES for permission - ‘kill background processes’ since the release of
Android API level 8.
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5.2 Impact Level of Dangerous Permissions

Based on the discussion in Section 4.2, the impact level of dangerous permissions,
Idp should be higher than the impact level of normal permissions, Inp. Since there
is no way to obtain the actual level of harm caused by normal permissions or
dangerous permissions, we solved the problem with an empirical method using
ROC (Receiver Operating Characteristic) curve. ROC curve is an efficient tool to
evaluate the binary classification performance and select the optimal threshold
setting [17]. In our case, once Idp is determined, we can obtain the risk level of
each Android permission, and then compute the risk levels of benign apps and
malware according to their requested permissions. As one of our design goals is
to classify benign apps and malware with a single threshold of risk level, ROC
curve is the appropriate choice to find the value of Idp which gives the best
classification performance.

ROC curve is plotted with the true positive rate (TPR) versus the false
positive rate (FPR) under various threshold settings. Figure 4 shows the ROC
curve generated for Idp = 2. In Figure 4, the ideal classification performance is
obtained at the upper left corner, which means no classification error. The closer
the ROC curve to the upper left corner, the better the classification performance.
Therefore, a popular metric used to measure the classification performance is the
area under curve (AUC) [14], which is the area between the ROC curve and the
x-axis. Usually a AUC greater than 0.9 is considered as excellent classification
performance.The value of Idp is determined as 1.5 which gives the highest AUC
value (0.9313).
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highest likelihood value
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5.3 Risk Levels of Android Permissions and Apps

Once the impact value of dangerous permissions is obtained, we are able to
compute the risk levels of all Android permissions. Figure 5 shows the top 20
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permissions with highest risk levels. Compared with the top 20 list for likeli-
hood, there is no new permission on the list but the rankings of most dangerous
permissions are promoted because of higher impact level. WRITE APN SETTINGS

is still on the top of the list with highest risk level among all permissions.
We also compute the risk levels for all benign apps and malware in our

datasets by simply summing the risk levels of requested permissions as shown
in Equation (3). Figure 6 shows the histograms of the risk levels of benign apps
and malware. It can be easily observed that majority of benign apps have risk
levels less than 2, while malware typically have higher risk levels.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

EXPAND_STATUS_BAR
SET_WALLPAPER_HINTS

PROCESS_OUTGOING_CALLS
MOUNT_UNMOUNT_FILESYSTEMS

CALL_PHONE
READ_LOGS

KILL_BACKGROUND_PROCESSES
DISABLE_KEYGUARD
WRITE_CONTACTS

CHANGE_WIFI_STATE
RECEIVE_MMS

BROADCAST_PACKAGE_REMOVED
DELETE_PACKAGES

SEND_SMS
RECEIVE_SMS

READ_SMS
INSTALL_PACKAGES

WRITE_SMS
RECEIVE_WAP_PUSH

WRITE_APN_SETTINGS

Fig. 5: Top 20 permissions with
highest risk levels
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Fig. 6: Risk level histograms, (a)
malware, (b) benign apps

As seen in Figure 6(b), there are few benign apps with very high risk levels.
We did an investigation on top 20 benign apps with highest risk levels which
are shown in Figure 7. The top 6 apps on this list are solely used for in-store
demonstration of certain mobile devices. Some of them are warned by the ven-
dors not for public use. The possible reason is that such apps may need lots of
permissions to demonstrate different features of the device. It’s not surprising
to see 6 security apps on this list since they usually require lots of permissions
to monitor the whole system and may block, intercept or change the behaviors
of the system or other apps. Therefore, it is highly recommended that users
should carefully choose the security apps for their devices since there are mal-
ware pretending to be anti-virus apps [2]. The rest of the apps on this list are
communication tools used for SMS, calls, email exchange etc. Since SMS, calls
and other communications may leak privacy information or result in unexpected
financial charge, users need to pay special attention to those apps.

5.4 Third Party Android Market

Besides Google Play, there are lots of third party android markets available
worldwide, which are considered as the major source of malware [27]. Many
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of such markets are not capable to do a malware detection before they put a
new app on the shelf. Some of them even solely depend on the feedback from
users to decide whether an app needs to be removed from their markets or not.
However, third party markets are more preferred than Google Play by many
users. One reason is that these users need free apps which cannot be found in
Google Play, e.g. free app of the day in Amazon appstore for Android. Another
reason is that some users need a localized version of the original app, especially
for users whose native language is not English. We arbitrarily selected a third
party Android market in China, mumayi [9], to investigate the risk of third party
Android markets.

We downloaded 602 popular apps from mumayi using a crawler and collected
their requested permission information. We then computed the risk level of each
collected app using DroidRisk. Figure 8 shows the boxplots of the risk levels
of apps from Google Play, apps from mumayi and malware. The median risk
levels for apps from Google Play, apps from mumayi and malware are 0.32, 1.35
and 3.22, respectively. This indicates that to install an app from the third party
market is more risky than the official market, Google Play.
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Fig. 7: Top 20 benign apps with
highest risk levels

Fig. 8: Boxplots of the risk levels
of apps from Google Play, apps
from mumayi and malware

6 Applications of DroidRisk

In this section, we show that reliable risk signal to identify potential malware
can be generated with the quantitative risk information obtained by DroidRisk.
The applications of DriodRisk for alleviating the overprivilege problem and im-
proving the user attention to the risks of Android permissions and apps are also
presented.
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6.1 Reliable Risk Signal

Risk signals are used by users to identify potential malware. A reliable risk signal
should be triggered by as many malware as possible, and rarely be triggered by
benign apps. We compare the performance of DroidRisk with two state-of-art
methods: Kirin from [16], RCP and RCP + RPCP from [24] using 10-fold
cross-validation. The risk signal for RCP is generated with rule #RCP (θ) ≥ 1
which is the simplest one in [24]. The risk signal for RCP +RPCP is generated
with rule #RCP (2) + #RPCP (1) ≥ θ which is the best performing one in
[24]. The performance of Kirin is obtained with 7 rules as described in [24].
Figure 9 presents the ROC curves of different method for fold-1. For other folds,
we obtained similar results. From Figure 9, we can observe that DroidRisk has
significant better classification performance than other methods. One possible
reason is that DroidRisk tries to capture the request patterns of both normal
and dangerous permissions while there are only 9 manually defined rules in Kirin
and only 24 or 26 critical permissions are used for RCP and RCP +RPCP .

Figure 9 also shows that the risk signal of Kirin is not tunable as the rules are
predefined. Although the risk signals generated by RCP and RCP +RPCP are
adjustable, it is not easy to find a reliable one since there are several parameters
to be tuned. With the quantitative risk information generated by DroidRisk,
the risk signal is generated from a single threshold of risk level which can be
easily found using ROC curve. The simple thresholding operation also makes it
suitable to be implemented in resource-constrained mobile devices.

The results of the 10-fold cross validation are shown in Figure 10, where F-
score is used as the performance measure. The parameters of DroidRisk, RCP
and RCP +RPCP are chosen as the best performing ones for the training sets.
It can be seen that DroidRisk has the best performance among all the methods.
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Fig. 9: ROC curves of different
methods for fold-1

Fig. 10: Boxplots of the F-scores
of different methods for 10-fold
cross validation
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6.2 Overprivilege Problem

Android permission system gives the app developers the ability of requesting
any permission no matter they actually use it or not. Many developers and users
rarely pay attention to whether the requested permissions are useful for them
or not. As a result, Android apps tend to be overprivileged, which may raise
security problems. We randomly selected 50 popular apps from both the third
party Android market, mumayi, and Google Play. We used the Stowaway [18]
to detect unnecessary permissions in each app. Table 1 shows the statistics of
the collected apps due to the overprivilege problem. The boxplots in Figure 11
show how the unnecessary permission affect the risk levels of apps from mumayi
and Google play. It can be seen that the overprivilege problem is common in
both the official and third party markets although the problem is much severe
in third party market. The median risk level of apps from mumayi has increased
from 1.04 to 1.43 due to overprivilege. Although the median risk level of apps
from Google Play only increases from 0.64 to 0.66, we did find 7 apps whose risk
levels raise above the threshold set by DroidRisk because of those unnecessary
permissions, which makes them suspicious to be malware. Since the app devel-
opers always try to get more downloads, declaring unnecessary permissions to
result in a high risk level for the app will make the user more likely to cancel
the download because of the warning of our DroidRisk system. Thus, the over-
privilege problem can be alleviated since the developers need to be more careful
about requesting permissions for their apps, especially those related to possible
malicious activities.

mumayi Google Play

Percentage of overprivi-
leged apps

64% 44%

Average # of unnecessary
permissions

1.92 0.84

Table 1: Statistics of the collected apps from
mumayi and Google Play due to overprivi-
lege problem

Fig. 11: Risk levels with and
without unnecessary permis-
sions for apps from, (a-b): mu-
mayi, (c-d): Google Play

6.3 Improving User Attention to Risks of Android Permissions and
Apps

One problem with current Android permission system is that all information
related to the risks of permissions are text descriptions while users often do
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not pay attention to the text information due to various reasons [21]. One of the
design goals of DroidRisk is to improve the user attention of the risks of Android
permissions and apps. In the following, we show two applications that utilize the
quantitative risk information obtained by DroidRisk to reach this design goal.

App web page with quantitative risk information: Each Android app
has a web page after it is submitted to an Android market, official or third party.
Users often browse the market to find out interesting apps for their devices.
Since the text-based permission information shown in the app’s web page is
not effective in informing the user about the risk of the app, we developed a
solution to present the quantitative risk information of the app and its requested
permissions in the web page. The solution was implemented in FireFox browser
by creating a GreaseMonkey3 script to change the display of the app’s web page.
Figure 12 uses the Fake SMS Creator Free app’s web page in Aptoide, a third
party market[4], as an example to show how the risk information of the app and
its requested permissions are displayed in the web page. The current design uses a
colored box that displays the risk value of an app or a requested permission. The
color scheme of the design corresponds to the risk level. When the user’s mouse
moves above the box of the app’s risk level, a textbox will be shown to alert the
potential risk and ask the user to see the list of permissions. It is expected that
this design with the quantitative risk information and the color-based visual cue
can significantly improve the attention rate of Android permission system.

DroidRisk Android App: To let the users evaluate the risks of apps in-
stalled in their local devices, we developed an Android App of the same name
as the framework. This app extracts the permissions requested by each installed
app and computes the risk level of the app. Figure 13(a) shows the app’s inter-
face which shows the list of installed apps with their corresponding risk levels.
The user can tap any app to see the list of permissions requested by the app
and their risk levels (Figure 13(b)). The app also uses a color scheme to give the
users a direct visual cue of the risk level. We plan to expand the functionalities
of DroidRisk app in future to report the risk level of any app in any Android
market once the user provides the corresponding information.

7 Conclusion

In this paper, we demonstrate that the proposed DroidRisk framework can be
used to improve the efficiency of Android permission system for informing the
user about the risks of Android permissions and apps. It can be easily incor-
porated into existing Android malware detection systems as the first barrier to
prevent the spread of malware. It will be especially useful for those third party
markets without malware detection capability. In our future work, we will in-
vestigate alternative ways to find the impact levels of Android permissions, e.g.
based on the study of [19] which ranks the risks of permissions according to

3 GreaseMonkey is a Firefox add-on that allows the user to customize the display or
behavior of a web page using a user script [8].
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Fig. 12: Screenshot of the Fake
SMS Creator Free app’s web
page in Aptoide with quanti-
tative risk information

(a) (b)

Fig. 13: DroidRisk Android App: (a)
view of the list of installed apps with
their corresponding risk levels, (b)
view of the list of permissions re-
quested by an app and their risk lev-
els

the users’ ratings. We will also explore security rules involving multiple permis-
sions and evaluate their corresponding risks which may be underestimated by
DroidRisk.
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