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Abstract. In current network infrastructures, several management tasks
often require significant human intervention and can be of high complex-
ity, having to consider several inputs to attain efficient configurations. In
this perspective, this work presents an optimization framework able to
automatically provide network administrators with efficient and robust
routing configurations. The proposed optimization tool resorts to tech-
niques from the field of Evolutionary Computation, where Evolutionary
Algorithms (EAs) are used as optimization engines to solve the envisaged
NP-hard problems. The devised methods focus on versatile and resilient
aware Traffic Engineering (TE) approaches, which are integrated into
an autonomous optimization framework able to assist network adminis-
trators. Some examples of the supported TE optimization methods are
presented, including preventive, reactive and multi-topology solutions,
taking advantage of the EAs optimization capabilities.

Keywords: Robust Traffic Engineering; Evolutionary Computation; Net-
work Resilience; Autonomous Configuration

1 Introduction

Nowadays, IP-based networks are the main communication infrastructures used
by a growing number of heterogeneous applications and services. This circum-
stance fostered the need for efficient and automated tools able to assist network
management tasks and assuring the correct planing of resilient network infras-
tructures [1]. In this context, in order to attain acceptable network service levels
there are several components that should be correctly configured and coordi-
nated. Irrespective of the wide variety of specific solutions to enforce acceptable
network performance, the efficient configuration of routing protocols still plays
a vital role in the networking area. In fact, accurate routing configurations are
essential to improve network resources usage, also allowing that upper layer pro-
tocols, applications and overlay systems have a trustable, resilient and optimized
communication infrastructure.

The simplicity and popularity of some well known intra-domain routing pro-
tocols (e.g. such as OSPF or IS-IS) has motivated the appearance of seminal



research work (e.g. [2]) involving Traffic Engineering (TE) approaches, aiming to
attain near-optimal OSPF weight setting (OSPFWS) configurations for a given
set of traffic demands, usually represented as a demand matrix. The results
of such preliminary efforts have motivated several researchers to the improve-
ment of such TE approaches. Moreover, the recent advances in traffic estimation
techniques and the availability of tools within such purposes [3,4] opened the
opportunity for such theoretical approaches to be effectively applied in real net-
work environments. The OSPFWS problem is by nature NP-hard and, among
many other techniques, Evolutionary Algorithms (EAs) have been proposed to
improve routing configurations [5]. Additionally, several studies highlighted the
advantages of such enhanced configurations over traditional heuristics usually
adopted by administrators [6], and their use in multi-constrained TE optimiza-
tion contexts involving several QoS related constraints |7, 8]. However, many of
such works, despite proving the efficiency of EA based optimization processes,
still present some limitations, usually assuming static optimization conditions,
not considering possible changes in specific optimization input parameters.

In this context, this work aims to contribute for devising more versatile and
robust TE optimization mechanisms fostered by the use of EAs. In particular,
the following topics summarize the main contributions of this work: ¢) the def-
inition of EA based preventive TE methods able to deal a priori with network
condition variations, such as demands variation and link failures; ii) the proposal
of reactive TE optimization methods fostering the EA response time in achieving
new configurations with a reduced instability impact in the infrastructure when
conditions in the network change significatively; iii) support to multi-topology
TE optimization techniques able to increase the traffic volumes supported by
the network, and, iv) the integration of the devised methods in a freely available
optimization tool to assist network administrators. As a result, this work clearly
wides the applicability, versatility and robustness of existent TE optimizing ap-
proaches, resorting to fine-tuned EA based mechanisms, being a further step
toward attaining autonomous and robust network optimization tools.

The paper proceeds with Section 2, describing the devised optimization
framework, highlighting its mains components, the underlying mathematical ba-
sis and the use of Evolutionary Algorithms; Section 3 illustrates some optimiza-
tion capabilities of the framework, resorting to resilient aware EA optimization
methods (with preventive and reactive approaches) and multi-topology based
optimization processes; Section 4 presents the conclusions of the work.

2 A Framework for Robust Traffic Engineering

Figure 1 presents the conceptual architecture of the implemented TE optimiza-
tion framework. As main inputs, the framework receives a description of the
network topology, along with the expected traffic demands denoting the traffic
volumes that, on average, traverse the network domain'. The framework inter-

! There are several techniques to obtain traffic demand matrices, which provide estima-
tions about the overall traffic requirements imposed to a given domain (e.g. [3,4,9]).
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Fig. 1. Illustrative description of the devised Traffic Engineering Framework

nal core includes a routing simulation module that, for a given topology, routing
weights and demand matrices, distributes the traffic along the network links,
thus obtaining an estimation of the foreseeable congestion levels. The optimiza-
tion module is the core of the framework and resorts to several mechanisms
from the field of Evolutionary Computation, namely Evolutionary Algorithms
(EAs). The optimization module achieves near-optimal OSPF weight setting so-
lutions using conventional optimization approaches, where EAs seek for weight
solutions able to efficiently accommodate the considered demands. This module
includes a resilient aware optimization sub-module, considering resiliency issues
that may affect the network (e.g. topology changes, link failures, variable traf-
fic demands, etc.). For this purpose, this sub-module integrates both preventive
and reactive optimization engines. Within the former approach, administrators
may consider that some disruptive events will affect the network infrastructure
and use preventive approaches to achieve solutions that, even in the presence of
such events, assure acceptable network performance. In alternative, when pre-
ventive solutions are not possible to be considered, reactive methods focus on
re-optimizing a given configuration considering the new operational conditions.
Here, the objective is to foster the optimization process and assure that the new
weight configuration has a reduced instability impact in the network. Moreover,
the framework is also able to assume multi-topology optimization scenarios, to
further improve network resources usage and robustness levels. As output, the
system will provide network administrators with near-optimal weight setting
solutions that might be used in subsequent configuration processes. If required,
the optimization framework may also be integrated with automated management
tools that, if conveniently tuned, can effectively contribute for the development
of autonomous and resilient aware network infrastructures.

The presented framework, integrating all the mechanisms here described,
allows a user friendly interaction with the devised methods hiding their inher-
ent complexity. An open source version of the implemented framework is made
available in http://darwin.di.uminho.pt/netopt.

2.1 Mathematical Formulation

The basic mathematical networking model used by the framework is a directed
graph G = (N, A), which represents routers by a set of nodes (N) and transmis-



sion links by a set of arcs (A). A solution to the OSPFWS problem is given by a
link weight vector w = (w,) with a € A. OSPF requires integer weights from 1 to
65535 (21 — 1) [10], but the range of weights can be reduced to smaller intervals
[Winin, Wmaz], the interval [1,20] is used in this work. This reduces the search
space and increases the probability of equal cost paths [11]. Given a demand
matrix D, consisting of several dg; entries for each origin and destination pair
(s,t), where dg; is the amount of data traffic that enters the network at point s
and leaves the network at point ¢, the problem consists in routing these demands
over paths of the network, minimizing a given measure of network congestion.
For each arc a € A, the capacity is expressed by ¢ (a) and the total load by ¢ (a).
For a given candidate weight vector w, for which the Dijkstra algorithm [12] de-

termines the shortest paths, the total load over a is the sum of the fés’t) terms,
representing how much of the traffic demand between s and ¢ travels over arc
a. Here, the cost of sending traffic through arc a is given by @ (¢ (a)). The cost
value depends on the utilization of the arc and the devised framework adopted
the well known linear function proposed by Fortz and Thorup [11], presented in
Equation 1. The objective of the OSPFWS problem is to distribute the traffic
demands to minimize the sum of all costs, as expressed in Equation 2.

1 for 0<z/c(a) <1/3
3 for 1/3<z/c(a) <2/3
4 10 for 2/3<z/c(a 9/10
Pa@) =9 7 §0T 9?102 4/0( (i)<< { (1) b= &,(L(a)) (2)
500 for 1<zx/c(a)<11/10 acA
5000 for z/c(a) >11/10

To enable results comparison among distinct topologies, a normalized conges-
tion measure @* is used. It is important to note that when @* equals 1, all loads
are below 1/3 of the link capacity, while when all arcs are exactly full the value of
@* is 10 2/3. This value will be considered by the framework as a threshold? that
bounds the acceptable working region of the network. Some of the optimization
mechanisms later discussed in this work introduce some variants to this base
mathematical formulation and to the objective function @*.

2.2 The use of Evolutionary Algorithms

The optimization problems addressed by the proposed framework are NP-hard
and in such context EAs can be used to improve routing configurations, namely
in the resilient aware sub-module of the framework. In general terms, in the
proposed EAs, each individual encodes a solution as a vector of integer values,
where each value corresponds to the weight of a link (W,,a € A). The objective
function used to evaluate each individual (solution) in the EAs varies depending
on the target of the optimization. As example, a simple conventional optimiza-
tion approach might implement the minimization of the congestion according to

2 For visualization, congestion values above such threshold (i.e. * > 10 2/3) are
marked with a gray filled area in the Tables and Figures of this paper.



Algorithm 1: Generic structure of EAs used in the Optimization Module

1t=0;
2 INITIALIZE P(0) ;
3 EVALUATE P(0) ;
4 while t is less than Maximum number of generations do
5 SELECT parents for reproduction;
6 APPLY REPRODUCTION operators to create offspring ;
7 EVALUATE offspring ;
8 SELECT the survivors from P (t) to be kept in P (¢t + 1) ;
9 INSERT offspring into P (t + 1) ;
10 t=1t+1,
11 endw

Equation 2 mentioned before, using an initial population randomly generated in
the [1,20] range. In each EA generation, two mutation and one crossover oper-
ators are used in the reproduction step to generate new individuals (offspring):
Random mutation, Incremental/decremental mutation and Uniform crossover.
A roulette wheel scheme is used in the selection procedure, firstly converting the
fitness value into a linear ranking in the population. In each generation, 50%
of the individuals are kept from the previous generation. In the experiments,
a population size of 100 was considered. The EAs used in this work follow the
generic structure given by Algorithm 1. Additional details about the evaluation
strategies (lines 3, 7) and initial population filling strategies (line 2) are discussed
in section 3, within the context of the presented illustrative mechanisms.

3 Illustrative Methods and Experimental Results

This section includes illustrative examples of resilient aware optimization meth-
ods supported by the framework, namely: i) preventive optimization methods
to deal with heterogeneous traffic demand matrices; i) preventive optimization
methods for link failure scenarios; i) a reactive optimization example fostering
the EA convergence also reducing the impact of the new configurations and iv)
multi-topology optimization approaches able to accommodate larger volumes of
traffic in the infrastructure also improving the network resiliency to an increase
of demands. In order to test the framework, several synthetic networks were gen-
erated with the Brite topology generator [13], using the Barabasi-Albert model,
with a heavy-tail distribution and an incremental grow type. The link capacities
uniformly vary in the interval [1,10] Gbits. For testing purposes, and considering
the topologies characteristics, demands matrices instances (D) are automatically
generated, tuned by a D,, parameter with values in {0.1,0.2,0.3,0.4,0.5} where
larger values imply harder optimization problems?.

3 Previous works showed that matrices generated with D, =0.3,0.4,0.5, induce very
hard optimization problems and such instances will be used in the experiments.



Due to space constraints, the next sections results were taken from a net-
work topology instance with 30 nodes and 55 links, but being representative of
the usual behavior of the framework optimization methods in other topology in-
stances. In all of the following illustrative examples, 10 runs of the corresponding
EA were made, being the results shown the mean of the obtained values.

3.1 Preventive Optimization - Traffic Demands

The traditional routing problem deals with the selection of paths to route given
amounts of demands between origin and destination routers, and some previous
works assumed that the volume of traffic between each source-destination pair is
known and fixed. However, the variety of services in the contemporary networks
translates into traffic variations that hinder the planning and management of
networks only based on static traffic demands. As example, traffic demands may
follow many times periodic and foreseeable changes resulting in matrices with
distinct levels of demands for distinct time periods [14,15] or demand matrices
that, despite inducing similar overall levels of traffic, may have quite distinct
source-destination individual entries. Thus, with the proposed framework it is
possible to seek for weight configurations promoting an acceptable level of con-
gestion for a given set of considered traffic matrices. In this context, we redefine
the OSPF weight setting task as a multi-objective problem. For a given network
topology and a set of demand matrices D;, the aim is to find a set of weights
w that simultaneously minimize the functions @ (w), where ®F (w) represents
the function @* (w) considering the traffic demands of matrix D;. For a maxi-
mum of D,,,, matrices, the multi-objective optimization is achieved using the
aggregated objective function of Equation 3, instantiating the evaluation steps
in lines 3 and 7 of Algorithm 1. The «; parameters (a; € [0,1], > oy = 1) will
tune the importance of each partial objective in the optimization process.

A practical example of optimization considering two generic traffic matri-
ces Dy, Dy is now presented. In such scenario, Equation 4, with as = 1 — aq,
represents the objective function that was used in Algorithm 1. Some results
are presented in Table 1 for two pairs of demand matrices {D; = D0.5,, Dy =
DO0.4} (distinct matrices with distinct overall levels of demands) and {D; =
D0.5,, Dy = D0.5,} (distinct matrices with similar overall levels of demands).
In the experiments, a; was set to 0.5, giving equal importance to both matrices
(comparative values with ai; = 1,0 are also shown). As observed in the presented
results, an optimization process that is usually executed for a specific demand
matrix may not be good enough for other distinct matrices. In Table 1, a sin-
gle objective solution performed for the demand matrix D0.5,, with congestion
measure 2.894, is inadequate for the demand matrix D0.5;, as the congestion
measure reaches over 50. It is possible, using the proposed method, to obtain a
suitable configuration for both matrices, only slightly compromising the conges-
tion level in each individual scenario (last row of results in Table 1). Under this
scheme, the administrator is able to fine tune adjustments, such as favoring one
of the matrices and penalizing the other (o is set to define such trade-off).



Table 1. Optimization results for two traffic
demand matrices - @] (w) values

Dmax
D1—Ds || D0.5,—D0.4 || D0.5,—D0.5; f(w) = " (w) (3)
@7 (w) [ (w)][P3(w) [ @5 (w) [ &5 (w) ;
a;=1 3.021 |43.693|| 2.894 [52.859 fw) =197 (w) + (1 —ai)®; (w) (4)
a1=0 64.892| 2.061 ||28.440| 3.894

[1=0.5 [[3.583]2.326 ]| 4.722 ] 4.886 |

3.2 Preventive Optimization - Link Failures

Besides traffic demands changes, other topology level events (e.g. such as a link
failures) may also have a severe impact on the network performance, as traffic
previously flowed through the failed link is shifted to other recalculated routes,
which may cause congestion in parts of the network. In this section, we propose
an EA based preventive optimization mechanism to improve network resilience
to link failures. For a given network topology with n links the aim is to find a set
of weights w that simultaneously minimize the function @} (w), representing the
congestion cost the network in the normal state, and other possible additional
functions @7 _, (w), representing the congestion cost of the network when fore-
seeing that i specific links from the topology have failed*. The multi-objective
optimization may use a generic objective function as in Equation 5, instantiating
the EA evaluation steps (lines 3,7 of Algorithm 1), with a;€[0,1] and > a;=1.

As a practical optimizing example, it is assumed the specific case where the
administrator intends to preventively protect the failure of the link with the
highest traffic load, which may configure one of the worst single link failure
scenarios for congestion. In this case, the objective function integrates a first
state where all links are functional and another where it foresees that the link
has failed. For each candidate solution w, the proposed EA algorithm assesses
the congestion level of the network without failure (@}) and assuming the failure
(&% _,), as expressed by Equation 6, with «,—1 = 1 — «,. In our proposal,
we consider a flexible factor «; that can assume any value in the range [0, 1],
instead of using a fixed weighting factor, thus giving more flexibility to network
administrators. As example, [16,17] present alternatives approaches that resort
to other optimization methods, also differing in the configuration of the weighting
factor. In Equation 6, when «,, = 1, the optimization is only performed for the
normal state topology, without any link failures, whereas when using a,, = 0.5
the same level of importance is given to the two topology states. However, as
the link failure optimization can compromise the network congestion level in a
normal state, a network administrator may wish to focus on the performance
of the normal state network, e.g. using a «,, value between 0.5 and 1, at the
expense of the congestion level in a failed state, that may not occur.

4 The administrator may select such 4 candidate links (i=|Z|, ZCA) based on a given
criteria, such as link failure probabilities, topology related criteria, link loads, etc.



Table 2. Preventive link failure opti-

mization with o, = 1 and 0.5 fw) = and (w)_’_"‘+an7i¢;_i (W) +-.. (5)

» || Without failure|| With failure
e . .
% optim. a,=1 ||optim. a,=0.5
g Before|  After|| Before| After| (W) = an®;, (W) + (1 — an) Py (w) (6)
A ||Failure| Failure||Failure|Failure

DO.3[[ 1.401] 25.242[] 1.466] 1.493 ’SPMM) N SPos,t)

D0.4|| 1.712] 35.524[] 1.720] 1.882| SPCun = op g (7)

DO0.5|| 3.682] 160.043|| 4.745] 4.165 m‘“(' 1.0 | 2“’”')

A set of experiments was devised to illustrate this approach, and the results
are presented in Table 2. The algorithm was applied to the network topology
considering traffic demands levels of D0.3, D0.4 and D0.5, and weighting factors
1 (without link failure optimization as a reference value) and 0.5. Comparing
the results of Table 2, one can observe that, under the proposed mechanism, a
slightly worse behavior of the network congestion level in its normal state, is
largely compensated by a large gain in scenarios of link failure. For o = 0.5,
with an almost imperceptible penalty in the congestion level (e.g. from 1.712 to
1.720 in the D0.4 instance), the gains on the congestion levels of the link failure
network are very significant, reducing from 35.524 (absolutely outside of the
acceptable network working region) to 1.882 in the same demand instance. The
results obtained in all the demand instances clear indicate the obvious advantages
of administrators resorting to this preventive link failure optimization method.

3.3 Reactive Optimization Approaches

The previous illustrated methods may have some inherent limitations, assuming
that the network administrator has in advance some knowledge about foreseeable
events that may affect the network. Thus, the proposed framework also integrates
reactive optimization methods, providing new weight configurations whenever
a new re-optimization is triggered. Here, the objectives are i) foster the EA
convergence to timely provide new appropriate configurations and i) achieve
weight solutions with a reduced instability impact in the infrastructure.

For this purpose, after analyzing several optimization examples, it was ob-
served that reactive optimization methods can be often fostered using a special
filling strategy of the initial EA population. In this context, the framework saves
approximately 10% of individuals from the final population of the previous opti-
mization process and integrates such individuals in the initial population, when-
ever a new reactive optimization is triggered (i.e. changing the default behavior of
line 2 of Algorithm 1). In addition to a faster convergence, this method also tends
to assure new weights with a reduced instability impact in the infrastructure,
being such estimation also provided to the administrator. The metric presented
in Equation 7, SPC(, ;), assesses the changes in the shortest paths between two
nodes, (s,t), for two distinct configurations, where SPy(,¢) and SPy(, ) repre-
sent a set of links which integrate the (s,t) shortest paths in the current and in



D04 DO.5 Reactive Optimization (D0.4 Example)
Iter. Rand. |Pop.10%|| Rand. |Pop.10%| .4
Populat.| seeding ||Populat.| seeding |
1 449.749| 35.824|| 756.911| 160.043 2 100
10 || 166.583 9.263|| 564.174| 135.724 E’; 0
20 71.439 3.105(| 359.052| 99.458| 3
40 22.061 2.374( 192.239| 60.948 ; A
60 9.666]  2.245[| 130.543| 45.726 L ey 0 70 o0
100 3.012 2.110 75.011] 25.887
250 2193 1958 26328 10488 —&—Random Population Pop. wiith 10% seeding
500 2.027|  1.909|] 10.477] 8.263 Do.4 D0.5
750 || 1.990] 1.887|] 7.104] 7.712 Rand. [Pop.10%|[Rand.[Pop.10%
1000 1.956 1.882 6.248 4.022 APC 0.7641‘ 0.890 0.683‘ 0.856
Aiter. =~ —80% Ajter. = —50% Aapc = +17% || Aapc = +25%

Fig. 2. Reactive link failure optimization: Iterations and APC metric (D0.4, D0.5)

the new configuration, respectively. The arithmetic mean of SPC/, 4 for all (s, t)
pairs, with s,t € N and s # t, is denoted by Average Path Change (APC), with
values in the interval [0,1]. APC values close to 1 represent routing configura-
tions not imposing significant changes to the already established paths, whereas
for lower values a higher impact in the network is expected.

As an example, Figure 2 shows the behavior of the EA based reactive link
failure optimization, after the link with the highest load has failed (for D0.4,
DO0.5 instances). The values are plotted against the conventional optimization
approach for a reference baseline. As shown, the proposed reactive strategy has
a faster convergence, reducing significantly the number of iterations required to
achieve acceptable weight settings®. In this case, a decrease in the order of 80%
and 50% in the considered instances. Also, in addition to a faster response, the
APC values comparison included in Figure 2 clearly shows that the re-optimized
configurations have a lower instability impact in the network, comparatively to
the conventional optimization, with APC values of 0.890 and 0.856, i.e. improve-
ments in the order of 17% and 25% considering the baseline references.

3.4 Multi-topology Optimization Approaches

This section illustrates other of the framework optimization capabilities, taking
as example multi-topology approaches. In this case, it is assumed that the net-
work administrator is only focused on studying the viability of such techniques
as a means to maximize network resources usage and improve the infrastructure
resilience to demands grow. For that, network edge routers may assume a given
pre-defined strategy to internally classify and split traffic among several rout-
ing topologies, e.g. a flow level division approach assuring that packets within

5 It is worth to mention that each EA single iteration involves the generation of several
new individuals and the computation of the corresponding fitness functions.



a specific flow are maintained in the same logical topology to avoid packet re-
ordering at end systems. In this optimization mode, the proposed framework
resorts to a distinct mathematical model. Given a physical topology represented
by the graph G = (N, A), T logical topologies are defined as G, = (N, A;) with
N, CN, A, C Aand 7 =1..T. To model a possible traffic balancing approach,
the demands D are uniformly distributed® among several D, traffic matrices,
which are mapped to the T" logical topologies, where each d7, element represents
traffic with origin s and destination ¢ that traverses the topology 7. In this multi-
topology perspective each logical topology has associated a set of weights, w.,,
ruling the shortest paths computation over such topology and, consequently, the
traffic distribution within the network. For optimization purposes, the selected
EA uses individuals that aggregate all the w, weighting sets, i.e. a vector of
integers in the form of w = (w(l’l),...,w(n71),w(271), ...,w(n’T)), with n = |A].
After the shortest paths computation, for each arc a € A, fI, , represents the
traffic from s to t that traverses the arc a in the logical topology 7. For a given
specific 7 topology, the partial load of arc a derived from such logical topology
is represented by £, (a), as in Equation 8. The total load of arc a in the physical
topology, ¢ (a), is then the sum of all partial loads, as in Equation 9. On the
proposed EA each candidate solution w is then evaluated using the function &*.

L= > fi. ©® l@= Y L@
(s,t)ENXN T=1..T

This optimization mode is illustrated resorting to a scenario were the consid-
ered network topology is under very heavy traffic constraints, assuming for that
purpose a D0.6 demand matrix. In this example, a conventional single topology
routing approach is not able to find weight settings able to completely accom-
modated such traffic volumes. Table 3 shows the framework optimization results
of the multi-topology approach (including baseline values for a single topology).
Such results show that the EA was able to find weight settings perfectly accom-
modating all the traffic demands, simply by considering an additional topology.
This is explained by the EA ability to find weight settings that impose, for each
source/destination pair, a considerable dissimilarity level between the shortest
paths computed on each of the considered logical topologies. Such perception is
further corroborated by Table 4, with the APC values among distinct topologies,
where, for each pair of compared topologies, the shortest paths differ roughly in
the order of 40%. This justifies why more versatile traffic distribution processes
could be achieved with a correctly configured multi-topology routing approach.

An additional results visualization is given by a specific framework interface,
showing the link loads distributions, comparing the network behavior when op-
timized by a conventional method and when using a multi-topology approach,
with T=4 (Fig. 3). As seen, in the multi-topology case a more efficient use of
link capacities is achieved, Fig. 3b, comparatively to the single topology scenario,
Fig. 3a, where a considerable number of links have insufficient capacity to hold
the network traffic volumes ([0,1] values denote uncongested links). This method

5 Other alternatives might be assumed by the framework optimization model, depend-
ing on the traffic load distribution techniques adopted in the network.



Table 3. Congestion cost for multi- Table 4. Shortest paths comparison (APC

topology optimization (D0.6) values) with T'=4 topologies (D0.6)
[Number of Topologies (T')[[Dem. D0.6] [Topology|| Th [ T | Ts [ Tu |
1 (T1: conventional opt.) 34.270 T - 10.591{0.639(0.598
2 (T +T2) 6.230 T 0.591| - ]0.590(0.584
3(Mi+Tr+Ts) 5.926 Ts 0.639(0.590| - ]0.699
4 (Ty +To +Ts + Ta) 5.338 Ty 0.598(0.584(0.699| -
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Fig. 3. Link loads distribution for a scenario with traffic demands of D0.6: a) without
multi-topology optimization b) with optimization for a network with 4 logical topologies

can be used by administrators to optimize multi-topology routing protocols (e.g.
Multi-topology OSPF) in order to increase the network ability to support larger
traffic volumes, without having to upgrade the existent infrastructure capacity.

4 Conclusions

This work addressed the proposal of versatile and resilient aware EA based
TE approaches. The devised mechanisms include preventive approaches, pro-
viding network administrators with resilient routing configurations and reactive
methods, fostering the response time of the optimization framework, while re-
ducing the instability impact on the existent infra-structure. Other advanced
approaches, dealing with multi-topology schemes, were also devised to attain
improved network resources usage. It is worth to mention that even with modest
end-user computational platforms (e.g. Core 2 Duo/Core i3/etc. processors) the
presented NP-hard optimization examples required computational times roughly
in the order of some minutes. As obvious, when considering even harder opti-
mization problems, a considerable increase in computational times is expected.
In such more demanding scenarios, if administrators need to re-optimize a given
configuration, the devised reactive TE approach is an important asset to foster
the optimization process and timely provide new near-optimal configurations.
Future work will address the definition of other optimization methods widening
the framework optimization scope, and the development of additional graphi-



cal interfaces allowing to easily define, from the administrator perspective, the
network topology submitted to the TE optimization framework.
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