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Stochastic Process Algebra and
Stability Analysis of Collective Systems

Luca Bortolussi''?*, Diego Latella?, and Mieke Massink?

Dipartimento di Matematica e Geoscienze, University of Trieste, Italy?
Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy?

Abstract. Collective systems consist of large numbers of agents that
coordinate through local behaviour, adapt to their environment and pos-
sibly give rise to emergent phenomena. Their formal analysis requires ad-
vanced scalable mathematical approximation techniques. We show how
Stochastic Process Algebra (SPA) can be combined with numeric anal-
ysis tools for the analysis of emergent behavioural aspects of such sys-
tems. The approach is based on an automatic transformation of SPA
models into ordinary differential equations in a format in which numeric
and symbolic computing environments can be used to perform stability
analysis of the system. The potential of the approach is illustrated by
a crowd dynamics scenario in which various forms of behavioural and
topological asymmetry are introduced. These are cases in which ana-
lytical approaches to stability analysis are in general not feasible. The
analysis also shows some surprising aspects of the crowd model itself.

Keywords: Fluid flow, process algebra, crowd dynamics, self-organisation.

1 Introduction

A key factor to allow modern cities to reach or maintain a good and sustainable
quality of life for their increasingly numerous inhabitants is the development of
systems that are relying on a much more decentralised and distributed design
that is adapting itself to dynamically changing circumstances [19]. Examples of
such future systems are electricity grids that can cope with many local electricity
producers and consumers, and a decentralised organisation of transportation and
information. Such large scale collective adaptive systems rely on the continuous
feedback between vast numbers of participants of different kinds, and, as is well-
known, can be expected to show complex dynamic and emergent behaviour or
perhaps even exploit such behaviour [8]. Also the formal analysis of such systems
poses many new research challenges.

Process algebras have been specifically designed for the compositional and
high-level modelling and analysis of distributed concurrent systems. Recently
some of them, in particular PEPA [10] and Bio-PEPA [7], have been provided
with a fluid semantics based on ordinary differential equations (ODE) [11] pro-
viding a scalable approach to the analysis of agent coordination in large collective

* Work partially supported by the project “FRA-UniTS”.



systems. In this paper we further exploit this development to study stability as-
pects of collective adaptive dynamic systems in a symbolic and numeric way.
Stability analysis provides important information about the predictability of
dynamic systems and their sensitivity to parameter values. Numeric stability
analysis is of particular interest for the analysis of distributed adaptive strate-
gies that are applied in asymmetric situations. Such situations occur naturally
in many real-world, natural or designed, systems. An analytical approach to
stability analysis in the presence of asymmetry is infeasible in most cases. To
the best of our knowledge this is the first time that a method is proposed for
stability analysis that starts from a stochastic process algebra specification of
agent coordination in a collective dynamic system. The use of a process algebra
greatly facilitates the modelling of variants of a system at a high level. Designers
can then focus on the coordination strategies instead of having to manipulate
the underlying, possibly large set of non-compositional, ODEs in ad-hoc ways.

We illustrate the approach and related tool chain by analysing a new variant
of a collective model of spontaneous self-organisation of drinking parties in the
squares of cities in Spain, also known as “El Botellén” [21]. In this variant the
parameter of the system is the level of socialisation, i.e. the average number
of friends people have, instead of the the probability to find a partner to chat
with!. The model shows a number of surprising behavioural aspects. However,
the main contribution of the paper is to illustrate and explore what stochastic
process algebra can offer to provide high-level models of coordination in large
scale collective systems, in combination with well-established numeric and sym-
bolic analysis techniques for a systematic stability analysis of such systems. In
particular in case of models showing various forms of asymmetry.

Related work can be found in several directions. In [15] the original model
of Rowe and Gomez was analysed with Bio-PEPA. Both empirical and ana-
lytical justification was provided for the good correspondence found between
stochastic simulation results and the Bio-PEPA based fluid flow approximation.
Moreover, a comparison of analytical results with those obtained numerically
via Bio-PEPA was provided. For this reason the focus was on symmetric models
that can be handled analytically. It does not include a systematic study of the
stability aspects of the model. In [5] a variant based on the socialisation level
has been analysed in an analytical and numerical way. The study addresses a
stability analysis of a symmetric model limited to three squares, but it contains
no stability analysis of asymmetric models. Recently, the use of Bio-PEPA has
also been explored in the field of swarm robotics, where it was used to model a
swarm decision making strategy [16, 17]. This collective decision-making strategy
has been used as a benchmark for the application of stochastic process algebra,
and in particular Bio-PEPA with locations, in this new field of application. It
was shown that important aspects of swarm robotics can be addressed such as
cooperation and space-time characteristics, but also emergent behaviour.

In the following we first introduce the crowd model and Bio-PEPA followed
by a description of the tool pipeline and its application.

! Studied in the original work by Row and Gomez [21] and in [15]



2 A Socialisation Level Based Crowd Dynamics Model

Rowe and Gomez [21] analyse the movement of crowds between four city squares,
connected in a ring by streets, using an agent based approach. The movement
of individual people is simulated by agents following a simple set of rules. At
every step each agent tries to find a partner to chat with. If this succeeds it stays
where it is; else, it moves randomly to an adjacent square. It is assumed that the
probability of the latter is (1 — ¢)Pi~! when this agent is at square i, and p; > 0
is the number of agents currently at square i. The parameter ¢ (representing the
chat probability, 0 < ¢ < 1) is the probability that an agent finds a partner to talk
to and thus remains in the square. Rowe and Gomez showed that the emergence
of crowds in their model is directly linked to a critical threshold value of the chat
probability. If the value is below the threshold, the population remains evenly
distributed over the squares, while walking around. If the value is above the
threshold, the population tends to gather into one or a few squares. However,
the probability to meet a friend in a crowded city is in general not the same
as the probability to find a friend when it is less crowded. People tend to have
a fixed number of friends given a city population, and the larger the number
of people walking around, the more of them will turn out not to be one of
your friends. This consideration leads to an alternative crowd model, introduced
in [5], in which the chat probability is defined as ¢ = s/N, where N is the size
of the population and s is the level of socialisation of the population, i.e. the
average number of friends that people have. Using this alternative definition of
c and an n X n routing matrix @ for n squares, i.e. ); ; is the probability that
a person moves to square j, given that she decided to leave square i, the ODE
for population level N of this model is:

dx i
dt

= —z;(1 —s/N)No—l 4 Z%‘(l —s/N)NTLQ (1)

J

where z; denotes the fraction of the population that is in location i. Here we
assume that @ is symmetric, i.e. Q;; = @, so @ is a stochastic and symmetric
matrix. It is further assumed that @ is irreducible (this is not a limitation since
otherwise the city can be split into its connected components.) The above ODE
is also the fluid flow interpretation of a Bio-PEPA model of this scenario that
will be presented in Section 4 with the only difference that the latter is defined
directly on the population sizes itself and not on their fractions. The basic sym-
metric model has also an interesting fluid limit, i.e. an ODE model resulting
from letting N — oo. For N going to co one obtains (see [5] for an analytical
derivation):

dl‘i

dt

= —xie_sx" + Z.Z’je_sxj Qj,i (2)
J

This is a non linear ODE, that has all its solutions in the unit simplex A, =
{x eR":2; > 0and ), x; = 1} if the initial condition is in A,,.



3 Bio-PEPA and Fluid Flow Analysis

Before presenting a process algebra model of the crowd scenario we briefly recall
Bio-PEPA [7], a language that has originally been developed for the modelling
and analysis of biochemical systems. The main components of a Bio-PEPA sys-
tem are the “species” components, describing the behaviour of individual entities
of a species, and the model component, describing the interactions between the
various species. The initial amounts of each type of entity or species are given in
the model component. The syntax of the Bio-PEPA components is defined as:

Su= (k) opS|S+S8[Cwithop=][1|®]|O|®and Pu=PBIP|S(z)

where S is a species component and P is a model component. In the prefix term
(a, k) op S, Kk specifies the multiples of an entity of species S involved in an
occurring action o?. The prefiz combinator “op” represents the role of S in the
action, or conversely the impact that the action has on the species. Specifically,
J indicates a reduction of the population involved in the action, 1 indicates an
increase as a result of the action. The operators @, © and ® play a role in an
action without leading to increments or decrements in the involved populations
and have a defined meaning in the biochemical context. Except from ®, that will
play a role in the shorthand notation introduced below, we will not need these
operators in this paper. The operator “+” expresses the choice between possible
actions, and the constant C' is defined by an equation C'=S. The process P Df] Q
denotes synchronisation between components P and @, the set £ determines
those actions on which the components P and @ are forced to synchronise, with
DI denoting a synchronisation on all common actions. In .S (x), the parameter
z € IR represents the initial amount of the species. The frequency with which
an action occurs is defined by its (functional) rate. This rate is the parameter
of a negative exponential distribution. Its value may be a function of the size of
the populations involved in the interaction.

Bio-PEPA comes with a notion of discrete locations that may contain species.
A Bio-PEPA system with locations consists of a set of species components, also
called sequential processes, a model component, and a context (locations, func-
tional rates, parameters, etc.). The prefix term (a, k) op S@I is used to specify
that the action is performed by S in location I. The notation [l — J] ® S is
a shorthand for the pair of interactions («,1)].S@QI and («,1)1S@QJ that syn-
chronise on action «. This shorthand is very convenient when modelling agents
migrating from one location to another as we will see in the next section. Bio-
PEPA is given an operational semantics, based on Continuous Time Markov
Chains (CTMCs), and a fluid semantics, based on ordinary differential equa-
tions (ODE) [7]. The Bio-PEPA language is supported by a suite of software
tools which automatically process Bio-PEPA models and generate internal rep-
resentations suitable for different types of analysis [7,6]. These tools include
mappings from Bio-PEPA to differential equations (supporting a fluid flow ap-
proximation), stochastic simulation models [9], and PRISM models [14].

2 The default value of & is 1 in which case we simply write a instead of (a, ).



4 Bio-PEPA Crowd Model

In this section we define a Bio-PEPA specification of the crowds scenario pre-
sented in Section 2. Let us consider a small ring topology with 4 city squares in a
2 x 2 grid, denoting them by 00, 01, 10 and 11, allowing bi-directional movement
between squares. In Bio-PEPA the city squares are modelled as locations called
5q00, sq01, sq10 and sqll. Parameter ¢ defines the chat-probability and param-
eter d the degree or number of streets connected to a square. In the symmetric
topology d = 2 for each square. The chat-probability is defined as the fraction of
the socialisation factor s w.r.t. the total population N, i.e. ¢ = s/N. The actions
modelling agents moving from square X to square Y are denoted by fXtY. The
associated functional rate for f00t01 with PQsq00 denoting the population in
5q00 at time t is defined as:

f00t01 = (PQsq00 * (1 — ¢)(F@sa00-1)) /q;

the other rates are defined similarly. The behaviour of a typical agent moving be-
tween squares is modelled by sequential component P. For example, f00t01[sq00 —
5q01] ® P models that an agent present in sg00 moves to sq01 according to the
functional rate defined for the action f00t01.

P = f00t01[sq00 — sq01
f00t10[sq00 — sq10
f01t11[sq01 — sq11
f01t11[sq10 — sql1

® P + f01t00
® P + f10t00
® P + f11t01
® P+ f11t10

© P+
© P+
® P+
© P;

sq01 — sq00
sq10 — sq00
sqll — sq01
sqll — sq10

Finally, the model component defines the initial conditions of the system,
i.e. in which squares the agents are located initially, and the relative synchro-
nisation pattern. If, initially, there are 1000 agents in sq00 this is expressed by
P@sq00[1000]. The fact that moving agents need to synchronise follows from the
definition of the shorthand operator —.

((P@sq00[1000] =] P@sq01[0]) I (P@sq10[0])) B (P@sq11[0])

The total number of agents PQsq00+ PQsql0+ PQsq01+ P@sgql1 is invariant and
amounts to 1000 in this specific case. The occupancy measure, i.e. the fraction
of the population in sq00 can be defined as Psq00 = PQsq00/N and similarly
for the other squares. The fluid semantics of Bio-PEPA leads to an ODE that
is very similar to Eq. (1) except that it is defined on the actual population sizes
rather than their fractions:

dPQsg;

= —PQsq;(1 — s/N)POsai=1 4 Z P@sq;(1—s/N)P*571Q;, (3)

J

Using the Bio-PEPA plugin tool suite a first insight in the behaviour of the above
model for different values of the socialisation factor s can be obtained using
e.g. stochastic simulation [9] or one of the built-in ODE solvers. For example,
for s = 5 an interesting so called ‘metastable’ behaviour can be observed in



ODE trajectories such as the one shown in Fig. 2(a), where the fractions of
the population present in squares sq00 through sqll, are denoted by z;, for
i € {1,..,4}. Until time 150 just over 40% of the population is in each of the non-
adjacent squares x1 and w3, and slightly less than 10% in each of the remaining
squares. Then suddenly this situation changes and square x; gets almost all of
the population. This is just one example of the typical kind of behaviours that
may occur in non-linear systems such as these.

To get a more complete overview of potential emergent behaviour of a collec-
tive dynamic system it may be useful to construct a bifurcation diagram of the
system. This is a diagram that shows for each value of a selected parameter of
the model its stationary points for that value. For each stationary point it also
shows whether it is stable or unstable, i.e. whether a system would remain in
a state forever once it is reached, or whether it could still move on from there
reaching other states. The selected parameter of interest in our case is the so-
cialisation value s. Fig. 1 shows the bifurcation diagram for square x; of the
crowds model with four squares and for s ranging from 2.75 to 6. For example,
for s = 3 we see that the model has one stable stationary point with value 0.25.
This means that for s = 3 the system ends up in a stable state in which 25% of
the population is expected to be in square z;.

In fact, the model has a stationary point at 0.25 for all values of s considered,
i.e. the vector of four squares Xgym = (i, %, i, i) is always a stationary point,
but it is not stable for all values of s; its stability changes at s = 4. The stability
of this equilibrium has been analysed in an analytical way in [5] for a model
with an arbitrary number n of squares, but with symmetric routing matrix Q.
There it was proven that the stability status of this stationary point changes
from stable into unstable when s becomes equal to n. It is stable for models in
which s < n and unstable for those in which s > n. However, in [5] no analytic
results have been given for the other stationary points, due to the difficulty
in identifying them in general. Stability of all fixed points has been discussed
in [5] only for a symmetric, fully connected, model with three squares. Such
difficulties are also common for models that show irregular structure or other
forms of asymmetry. When investigating the behaviour of the model in more
detail using stochastic simulation (not shown) it turns out that in the model
with 4 squares and s < 3.25 the population is migrating between squares in
such a way that it is evenly distributed over the squares. This means that at
any point in time one would see approximately 25% of the population in each of
the squares. However, this situation changes for s > 3.25. Stochastic simulation
shows that in that case most of the population eventually gathers at random in
one of the squares.

In the following we propose an analysis pipeline, starting from a Bio-PEPA
specification, that can be used to compute the stationary points numerically
instead of analytically for various values of s, such that a bifurcation diagram of
the kind shown in Fig. 1 can be generated. As we can see in the figure, the change
of stability of Xy, is correctly identified by the numerical method, which also
predicts other stationary points, corresponding to three different configurations:



1. Most agents in a single square. This is the top branch in the diagram. These
are stable stationary points, but emerge for s greater than 3.5, approximately.
For instance, for s = 5, in this case 98% of agents are in a single square.

2. Agents evenly split between two opposite squares. This is an unstable sta-
tionary point, emerging for s > 4, which is in fact a saddle node 3. For s = 5,
this configuration corresponds to 43% of agents in two opposite squares (for
instance, sq00 and sqll), and 7% in the remaining ones. Notice that this
information can be deduced by observing the numeric values of fixed points.

3. Agents evenly split between three adjacent squares. This is again an unstable
equilibrium of the system. for s = 5, we have 29% of agents in each of the
three adjacent squares and 0.13% in the remaining one.

% unstable
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Fig. 1. Bifurcation diagram for the symmetric 4 square model.

Interestingly, configuration (2) above, despite being a saddle node, hence
unstable, has a quite strong stable manifold. The effect is that solutions starting
nearby the stable manifold (e.g. close to the plane zy = x3) remain for some time
close to it, before escaping to one of the stable fixed points. This gives rise to the
typical metastable behaviour that is shown in the ODE trajectory in Fig. 2(a).
As could be expected, the higher the socialisation coefficient s, the more intense
is the attractive behaviour of the stable manifold, hence the longer solutions of
the ODE of the model, that start from initial values in the neighbourhood of
such a point, remain attracted to it. This can be seen in Figure 2(b), where the
time spent nearby the stable manifold is shown as a function of s. In Section 6 we
will apply the analysis pipeline proposed in the next section to several variants
of the crowd model. Each of these variants is characterised by a different form of
asymmetry e.g. caused by squares with different attractivity, or by asymmetry
in topology.

3 Unstable stationary points come in different kinds. One of these kinds is called a
‘saddle node’, informally it is attracting from two opposite sides and repellent from
the two other sides of the point.
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Fig. 2. (2(a)) A trajectory for s = 5 showing metastable behaviour. The initial con-
ditions are x1 = 0.4+ 0, z2 = 0.1, z3 = 0.4 — ¢, x4 = 0.1, with § small. (2(b)) Time
spent close to the metastable equilibrium, as a function of s. Initial conditions are as
above, with § = 107",

5 Numeric/Symbolic Stability Analysis

Before discussing the tool pipeline, we briefly sketch the methods we are using
in Octave/Matlab to investigate the stability behaviour of fixed points and to
generate bifurcation diagrams for different asymmetric variants of the crowd
model that will be presented in next section. The idea, as discussed previously,
is to combine the features of stochastic process algebras as modelling languages,
Bio-PEPA specifically, with the numerical algorithms and analysis routines of a
platform like Matlab [18] or Octave [1].

Assume that we have obtained an ODE function in the input format of
Matlab or Octave, i.e. an m-file. Such an ODE function models the changes in
the behaviour of the system over time. The idea is then to use numerical routines
to look for the set of zeros of this function, i.e. points for which the system is
stationary, for a fixed set of parameters (e.g. in our case for the socialisation
coefficient s). More precisely, we can use the Octave/Matlab method fsolve which
looks for zeros of non-linear equations and which incorporates different solvers (in
our case we used the Levenberg-Marquardt algorithm [20]). As fsolve finds one
zero, depending on the initial values, we run the algorithm many times to look for
more zeros, starting from random initial coordinates (and from some predefined
fixed points, like the unit vectors). In order to avoid considering all possible
symmetric solutions of the problem, we post-process the set of zeros found in
this way, to keep only one zero among those equivalent under symmetry. For
instance, in a fully symmetric model with ring topology as the one in Section 4,
there is a zero which puts almost all the population in one square, for each square.
The post-processing then removes all but one of those zeros. Finally, for each
such stationary point, we investigate its stability by computing numerically the
Jacobian matrix and its eigenvalues, according to standard methods in dynamic
systems theory [22,13]. After discarding one zero eigenvalue (which is always
present due to the conservation of the total number of agents), we check whether



the real part of the remaining ones is positive or negative. If all eigenvalues
have a negative real part (and are sufficiently far away from zero to account for
numerical errors), we declare the point stable, otherwise we mark it unstable. If
there is an eigenvalue too close to zero, we mark its status as unknown. In order
to generate bifurcation diagrams, we perform this operation for a range of values
of the parameter of interest, e.g. in this case the socialisation coefficient s.

Tool Pipeline. In order to link the above described procedure to Bio-PEPA, we
export the model in the SBML format [4]. Such an export is already available
via the Bio-PEPA plugin tool suite [6]. Both Matlab and Octave have a toolbox
importing from SBML files [12], generating an m-file computing the vector field
(ODE) corresponding to the fluid semantics of Bio-PEPA [7]. Once an m-file has
been obtained, it can be used within the routines explained above by creating
a function handle. However, following the above procedure, we have not yet
obtained the limit model discussed in Section 2, as from Bio-PEPA we export
the N-dependent model (see Sect. 4). Even if the two sets of ODE will produce
very similar solutions when N is large enough, working with the limit model
would be preferable, as this seems to reduce the numerical errors caused by
the exponentiation. A limit model can be obtained by exploiting a computer
algebra system such as the symbolic toolbox in Matlab [2] or the open source
software Maxima [3]. This requires that the Bio-PEPA specification is exported
to an m-file containing a symbolic definition of the ODE equations in Matlab or
an equivalent format suitable for use with Maxima. This is not very difficult to
automatise. Once this operation is performed, the symbolic calculus routines can
be exploited to compute the limit of the vector field and to compute the Jacobian
matrix symbolically, increasing the precision of the method and speeding up the
numerical analysis phase. The resulting functions can be either exported from
Maxima to Matlab/Octave by a suitable script that generates an appropriate
m-file, or by converting a symbolic function into a numerical one in Matlab.

6 Results

In this section we present some results for variants of the basic crowd model
enriching it either by adding new behaviours or by breaking the symmetry be-
tween squares. Due to space limitations, we will mainly report on results for a
model with four squares connected in a ring topology. However, we have also
obtained interesting results for a larger a model with 9 squares disposed in a 3
x 3 grid-like topology. The modifications in the basic model are essentially of
four types:

— Breaking the symmetry between squares (in a symmetric topology like the
ring one) by assigning to each square an uneven attractiveness coefficient.
Each agent then chooses the next square to go according to their relative
attractiveness.
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— Breaking the symmetry in the routing, by assuming that certain connections
between squares can be crossed only in a given direction, i.e. by introduc-
ing one way pedestrian streets (which can be enforced for instance by the
presence of police).

— Breaking the symmetry in the topology, by having different degrees of con-
nection between different squares, e.g. the 9 squares model (not shown).

— Breaking the symmetry in the behaviour of agents, assuming that an agent
first decides if she wants either to leave the square or look for somebody to
chat to. In this second case, we assume that she leaves the square with the
same probability as in the standard model.

In particular, in each of these cases, we will discuss the stability of stationary
points as a function of the socialisation parameter s, or of other parameters, like
attractiveness or the probability to leave.

As discussed in Section 5, the results always consider the limit fluid model
(see Eq.(2)), for a population going to infinity. Due to convergence of vector
fields, the results for the limit model can be expected to be the same as those of
the ODE with explicit dependence on N, if N is reasonably large. In particular,
we have seen basically no differences between results for the limit model and
those for a model with a total population of N = 1000.

4 square model with attractive squares The first kind of asymmetric model
we consider is one in which an attractiveness coefficient is assigned to each
square. Higher attractiveness is modelled by a higher value of the coefficient.
When agents decide to leave a square, their decision to which of the adjacent
squares to go is now proportional to the relative attractiveness of the adjacent
squares. In particular, we consider a situation in which only one square (by
convention, square sg00), has a higher attractiveness than the others. Hence, the
attractiveness coefficient of square sq00 is equal to a > 1, while that of the other
squares is set to 1. In Bio-PEPA this is modeled by replacing the transition rates
in the symmetric model of Sect. 4 by the following ones, assuming attractiveness
coefficients a00 for square sq00, a0l for square sq01 and so on, e.g.:

f00t01 = (P@sq00 * (1 — ¢)(F@sa90-1)) & (q01/(a01 + a10));

In Fig. 3 we show a bifurcation diagram as a function of the socialisation
factor s, for the fraction of people in the first square, x;, for a model with
a = 3. As we can see, the solution in which the more attractive sq00 gets the
larger amount of people is always stable. However, for s around 3.5, a new set
of stationary points appears, with a stable and an unstable branch. The stable
branch corresponds to situations in which most of the people stay in one of
the two squares adjacent to the attractive one. This stable equilibrium is quite
surprising, as one would expect that people always move towards the attractive
square. Note that this happens for s < 4, i.e. the predicted threshold for s in the
symmetric model.

The other stable equilibrium that emerges around s = 4.5 corresponds to the
situation in which all agents are in the square opposite to the attractive one.
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Hence, even in the presence of asymmetric attractiveness, we may still obtain
a pattern of emergent behaviour in which all people are gathered at a random
single square. So, contrary to intuition, for sufficiently large values of s, people
may concentrate also in non-attractive squares. Furthermore, as expected, we
loose the symmetric equilibrium in which agents are uniformly distributed over
the squares and find no replacement for it.

4 square model with one-way streets In this model we assume that streets
between squares are unidirectional rather than bi-directional. In particular, we
assume that the ring can be traversed only clockwise, with no square having a
higher attractiveness than others. This model is still ergodic, and moreover the
four squares still behave symmetrically. However, the routing matrix is no longer
symmetric. In the Bio-PEPA model this can be easily obtained by removing the
related directions of movement and their corresponding rate definitions.

The pattern of the bifurcation diagram we obtain is very similar to the one
for the symmetric model in Fig. 1. Indeed, the only difference is that now some
eigenvalues of the Jacobian in steady states have imaginary values, suggesting
that we may in fact have stable and unstable foci rather than single nodes [22],
i.e. convergence to the fixed point happens by damped oscillations. In any case,
this effect is very weak, and cannot be observed at the resolution scale at which
we plot trajectories.

4 square model with independent leaving probability In this model we
change the behaviour of single agents. In particular, we assume that each agent
first chooses if it wants to leave the square (with a “boredom” probability p)
or look for another one to chat with. In the latter case, it behaves like in the
original model. In Bio-PEPA this is modeled by replacing the transition rates in
the model with attractiveness by:

f00t01 = (1 — p) * (PQ@sq00 * (1 — ¢)F®*1°°=1) & (a01/(a01 + al0)) 4 p * (PQsq00);
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Fig. 3. Bifurcation diagram for the 4 square model with asymmetric attractiveness, as
a function of s, holding a fixed to 3 .
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Note that in case all squares have an attractiveness coefficient equal to 1 we
can study the effect of the boredom probability separately from the effect of
attractiveness of squares. This is what is assumed in the following.

The model with independent leaving probability has a second parameter in
addition to s, namely the boredom probability p. Intuitively, this probability
should influence the overall behaviour of the model quite radically. If it is large
enough (maybe in case of a meeting of eremites), then we do not expect people
to gather in a single square, but rather to see them uniformly distributed over
the four squares while moving between them. This indeed happens for p = 0.15
and for any value of s considered. On the other hand, for small values of p, the
behaviour manifested by the system becomes much more complicated, as shown
in Fig. 4. In this case, for p = 0.05, we can observe a frequent change in the sta-
bility status of fixed points, due to bifurcation events in which stationary points
split, change stability status, and move towards other fixed points, generating a
cascade of bifurcations.

The most interesting feature is the stability of the symmetric equilibrium.
Initially it is stable, but then, as s increases, it undergoes a bifurcation event and
becomes unstable (for s around 5 here), as in the original model. At the same
time, a new stable branch emerges, corresponding to the emergent behaviour in
which most people are concentrated in a single square. However, for s around 12,
this stable behaviour undergoes a new bifurcation event and becomes unstable.
Furthermore, as s increases further, this unstable equilibrium approaches the
symmetric one and hits it around s = 16. When this happens, the unstable
symmetric equilibrium becomes stable again, and as s increases even further,
it becomes the only (stable) fixed point. This is a counter-intuitive behaviour
of the model: as the socialisation factor increases, instead of obtaining a higher
probability of people concentrating in a single square, exactly the opposite effect
emerges.

The assumption that agents can leave a square with a small fixed probability,
no matter whether friends are present or not, is quite reasonable. For example one
may receive a text message from a friend in another square or have other things
to do. The behaviour of this model shows that, when the socialisation coefficient
is large enough (in reality, for a population of a few thousand people, we can
expect a value of s well above 30), the chat probability mechanism is not able to
fully explain the emergent behaviour of ‘El Botellon’. Other mechanisms have
to be taken into account and also their potential interference. Among these are
most likely some asymmetry breaking phenomena such as the different degrees
of attractiveness of the squares.

To obtain deeper insight in why we observe the effect shown in Fig. 4, we
can compare the total exit rate of an agent from a square for the symmetric
model and the model with boredom probabilities. In particular, we compare
these rates as a function of s, for a fixed fraction a of the total population
in the square. In the symmetric case, we obtain e~®° (see Eq.(2)), which is a
decreasing function of s, exponentially approaching zero for large values of s.
Hence, for a sufficiently large value of s, the rate of leaving a square becomes
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Fig. 4. Bifurcation diagram for the 4 square model with boredom probability p = 0.05.

very small: if there are many agents in the square (« close to 1), then we can
expect nobody will move, as the exit rate from the crowded square will be much
smaller than the exit rate of the other squares. On the other hand, for the model
with boredom probability, the probability at which a single agent leaves a square
is p+ (1 — p)e~**, which for large s converges to p. This means that for large
s, the effect of the chat probability to remain in a square is negligible compared
to the effect of the boredom probability with which agents leave a square. This,
in turn, implies that the ODE we obtain for large s is essentially a set of linear
ODE with a small non-linear perturbation term, hence they converge to the
unique equilibrium of the linear system, which is the symmetric one in which
the population is uniformly distributed over the squares.

In order to break this effect, we may want to find out whether the introduction
of asymmetric attractiveness can counterbalance the disruptive effect of boredom
probability on the emergent behaviour of the model. Fig. 6 (left) shows the
bifurcation diagram for the model which sq00 is three times as attractive as
the other squares, a = 3, and boredom probability with p = 0.05. We observe
the same pattern as in the symmetric model: for large enough values of s, the
system converges to the perturbed symmetric equilibrium (due to asymmetric
attractiveness). An additional variation can be to consider a boredom probability
which is inversely proportional to the attractiveness of squares, for instance equal
to p/a?, in order to take into account the effect that it is more unlikely that
people just leave a square where interesting events are going on. In this case, in
the presence of the compensating effect of boredom probability for large s, we
can enlarge the range of s for which we observe an emergent party (see Fig. 6
(right)). So, a combination of effects of the attractiveness on the choice of the
next square and on the boredom probability can still be used to explain the
emergent behaviour of ‘El Botellon’.
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Fig. 5. Bifurcation diagram for the attractive square in 4 square model with bore-
dom probability. for p = 0.05 and attractiveness equal to 3 (left), and attractiveness
dependent p (right).

7 Discussion and Further Work

The engineering of large scale collective dynamic systems is a relatively new
domain of software engineering and requires effective and scalable formal analy-
sis methods. We illustrated how the exploitation of the combination of process
algebras, designed specifically for concurrent systems, and techniques typical
of dynamic systems analysis, such as stability analysis, could provide valuable
tools for such engineering approaches. In this paper we proposed a tool pipeline
that, starting from a Bio-PEPA specification of non-linear asymmetric collective
coordination, can produce bifurcation diagrams. These can be used to analyse
the effect of potentially interfering coordination mechanisms on the stability
properties of a system. We have illustrated the combined numeric and symbolic
approach on a number of variants of a model of crowd dynamics that represents
various kinds of asymmetry. The automatisation of the approach is feasible and
part of future work. An issue that needs further investigation is the scalability of
the method. Fluid ODEs are independent on the population size, but not on the
number of states of the agents. Finding numerically all the zeros of a vector field
can be challenging in large dimensions. One approach would be to parallelise
the code and use more efficient zero finding numerical routines. An alternative
and more promising direction is to exploit the formal nature of process algebras
to reduce the agent’s state space by using behavioural equivalences or abstract
interpretation. Furthermore we plan to integrate the approach with the other
already available analysis tools for Bio-PEPA, such as fluid flow analysis and
stochastic simulation, via the Bio-PEPA tool suite.
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