N

N

Transition from Process- to Product-Level Perspective
for Business Software
Nuno Ferreira, Nuno Santos, Pedro Soares, Ricardo J. Machado, Dragan

Gasevié

» To cite this version:

Nuno Ferreira, Nuno Santos, Pedro Soares, Ricardo J. Machado, Dragan Gasevi¢. Transition from
Process- to Product-Level Perspective for Business Software. 6th Conference on Research and Prac-
tical Issues in Enterprise Information Systems (CONFENIS), Sep 2012, Ghent, Belgium. pp.268-275,
10.1007/978-3-642-36611-6_ 25 . hal-01484689

HAL Id: hal-01484689
https://inria.hal.science/hal-01484689
Submitted on 7 Mar 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01484689
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Transition from Process- to Product-level Perspecte
for Business Software

Nuno Ferreird Nuno Santds Pedro SoarésRicardo J. Machadp
and Dragan Gaseyi

1125 Informatica, Sistemas e Servicos S.A., Portotugal
nuno. ferreira@ 2s. pt
2CCG - Centro de Computagéo Grafica, Campus de AzuréimaBies, Portugal
{nuno. santos, psoares}@cg. pt
3Centro ALGORITMI, Escola de Engenharia, UniversidddeMinho, Guimaraes, Portugal

rmac@lsi . um nho. pt

4School of Computing and Information Systems, Athahasniversity, Canada
dgasevi c@cm org

Abstract. When there are insufficient inputs for a prodestel approach to re-
quirements elicitation, a process-level perspectvean alternative way for
achieving the intended base requirements. We defiWeV process approach
that supports the creation of the intended requérgs) beginning in a pro-
cess-level perspective and evolving to a produat@erspective trough suc-
cessive models derivation with the purpose of angatontext for the imple-
mentation teams. The requirements are expressedgihmodels, namely logi-
cal architectural models and stereotyped sequeragrains. Those models
alongside with the entire approach are validatedguthe architecture valida-
tion method ARID.

Keywords: Enterprise logical architecture; Information Syst&aquirement
Analysis; Design; Model Derivation

1 Introduction

A typical business software development projeatasrdinated so that the resulting
product properly aligns with the business modedndied by the leading stakeholders.
The business model normally allows for eliciting tfrequirements by providing the
product’s required needs. In situations where degdions focused on software de-
velopment are not capable of properly elicitinguiegments for the software product,
due to insufficient stakeholder inputs or some uadety in defining a proper busi-
ness model, a process-level requirements elicitasoan alternative approach. The
process-level requirements assure that organiZatiousiness needs are fulfilled.
However, it is absolutely necessary to assure pghaduct-level (IT-related) require-
ments are perfectly aligned with process-level iregoents, and hence, are aligned
with the organization’s business requirements.

One of the possible representations of an infolmmagiystem is its logical architec-
ture [1], resulting from a process of transformibgsiness-level and technologi-
cal-level decisions and requirements into a repitasien (model). It is necessary to

promote an alignment between the logical architecand other supporting models,
like organizational configurations, products, prs®s, or behaviors. A logical archi-
tecture can be considered a view of a system coedpoba set of problem-specific
abstractions supporting functional requirements [2]

In order to properly support technological requiegrts that comply with the or-
ganization’s business requirements, we presentisnpgaper an approach composed
by two V-Models [3], the V+V process. The requirangeare expressed through logi-
cal architectural models and stereotyped sequeiageasns [4] in both a process- and
a product-level perspective. The first executiorttef V-Model acts in the analysis
phase and regards a process-level perspectives@dund execution of the V-Model
regards a product-level perspective and enablerdhsition from analysis to design
trough the execution of the product-level 4SRS wetf5]. Our approach assures a
proper compliance between the process- and thauprdéevel requirements through a
set of transition steps between the two perspextive

This paper is structured as follows: section 2 gmesthe V+V process; section 3
describes the method assessment through ARID clioge4 we present an overview
of the process- to product-level transition; inteet5 we compare our approach with
other related works; and in section 6 we presenttnclusions.

2 A V+V Process Approach for Information System'esign

At a macro-process level, the development of infitiom systems can be regarded as
a cascaded lifecycle, if we consider typical andpdified phases: analysis, design
and implementation. We encompass our first V-Md@¢lprocess-level) within the
analysis phase and the second V-Model (at prodwet) in the transition between
the analysis and the design. One of the outpussgfof our V-Models is the logical
architectural model for the intended system. Thagim is considered a design arti-
fact but the design itself is not restricted tot thaifact. We have to execute a V+V
process to gather enough information in the formmufdels (logical architectural
model,B-type sequence diagrams and others) to deliver, to théementation teams,
the correct specifications for product realization.

Regarding the first V-Model, we refer that it isesexted at a process-level perspec-
tive. How the ternprocess is applied in this approach can lead to inappedgrinter-
pretations. Since the terpnocess has different meanings depending on the context, i
our process-level approach we acknowledge thatrg@dlyworld activities of a busi-
ness software production process are the contethiéoproblem under analysis; (2) in
relation to a software model context [6], a sofvarocess is composed of a set of
activities related to software development, maiate®, project management and
quality assurance. For scope definition of our wankd according to the previously
exposed acknowledgments, we characterize our pdeesl perspective by: (1)
being related to real-world activities (includingdiness); (2) when related to soft-
ware, those activities encompass the typical soéwdevelopment lifecycle. Our
process-level approach is characterized by usifiigeraent (as one kind of functional
decomposition) and integration of system modeldivies and their interface in a
process can be structured or arranged in a pracelsgecture [7].

Our V-Model approach (inspired in the “Vee” proces®del [3]) suggests a
roadmap for product design based on business ndaited in an early analysis
phase. The approach requires the identificatidnusfness needs and then, by succes-
sive artifact derivation, it is possible to trarfsdm a business-level perspective to an
IT-level perspective and at the same time, alitpesrequirements with the derived IT
artifacts. Additionally, inside the analysis phages approach assures the transition
from the business needs to the requirements ¢iaita

In this section, we present our approach, basesliocessive and specific artifacts
generation. In the first V-Model (at the procesglg we useéOrganizational Config-
urations (OC) [8], A-type and B-type sequence diagrams [4], (businetke Case
models (UCshnd a process-level logical architectural modek §hnerated artifacts
and the alignment between the business needs arbittext for product design can
be inscribed into this first V-Model.

The presented approach encompasses two V-Modetafter referred as the V+V
process and depicted in Fig. 1. The first V deaith whe process-level perspective
and its vertex is supported by the process-levétSi$nethod detailed in [9]. The
process-level 4SRS method execution results irctbation of a validated architec-
tural model which allows creating context for th@guct-level requirements elicita-
tion and in the uncovering of hidden requiremeiwtsthe intended product design.
The purpose of the first execution of the V-Modeards eliciting requirements from
a high-level business level to create context fodpct design, that can be considered
a business elicitation method (like the Businessiéliog discipline of RUP).

sssss

Integration
and

Validation Validation

Specification

J

Process-Level Perspective Product-Level Perspective

Fig. 1. The V+V process approach

The second execution of the V-Model is done atcalpet-level perspective and its
vertex is supported by the product-level 4SRS nubttetailed in [5]. The prod-
uct-level V-Model gathers information from the cexit for product designQPD) in
order to create a new model referredvshed UCs. Using the information present in
the Mashed UCs model, we creaté-type sequence diagrasndetailed in [4]. These
diagrams are input for the creation of (softwadeg Case Models that have associat-
ed textual descriptions of the requirements forittended system. Using the 4SRS
method in the vertex, we derive those requiremigriésa Logical Architectural mod-
el. Using a process identical to the one used irptbeess-level V-Model, we create
B-type sequence diagrams and asses$ tigecal Architectural Model.

The V-Model representation provides a balanced gg®cepresentation and, sim-
ultaneously, ensures that each step is verifiedrbahoving into the next. As seen in
Fig. 1, the artifacts are generated based on tienade and in the information exist-
ing in previously defined artifacts, i.é;type diagrams are based on OCs, (business)
use case model is basedAiype sequence diagrams, the logical architecture isthase
on the (business) use case model, Brglpe sequence diagrams comply with the
logical architecture. The V-Model also assuresdalon of artifacts based on previ-
ously modeled artifacts (e.g., besides the logarahitecture B-type sequence dia-
grams are validated b4-type sequence diagrams). The aim of this manuscripbts n
to detail the inner execution of the V-Model, ngitito detail the rules that enable the
transition from the process- to the product-lefsek rather to present the overall V+V
process within the macro-process of informatiorieays development.

In both V-Models, the assessment is made usinglapten of ARID (presented in
the next section) and by usilgtype sequence diagrams to check if the architectural
elements present in thegical Architectural Model produced by the models are con-
tained in the scenarios depicted by Biype sequence diagrams.

The first V produces a process-level logical aettiire (that can be considered the
information system logical architecture); the setdhproduces a product-level logi-
cal architecture (that can be considered the bssiseftware logical architecture).
Also, for each of the V-Models, in the descendiide f the V (left side), models
created in succession represent the refinemenéafirements and the creation of
system specifications. In the ascending side (sgle of the V), models represent the
integration of the discovered logical parts andrthevolvement in a cross-side ori-
ented validating effort contributing for the innalidation for macro-process evolu-
tion.

3 V-Model Process Assessment with ARID

In both V-Models execution, the assessments thatltrdrom comparingA- and
B-type sequence diagrams produssues documents. These documents are one of the
outputs of the Active Reviews for Intermediate @esi (ARID) method [10, 11] used
to assess each V-Model execution. The ARID metlsoal ¢ombination of Architec-
ture Tradeoff Analysis Method (ATAM) [11] with Aaté Design Review (ADR)
[11]. By its turn, ATAM can be seen as an improvedgsion of Software Architecture
Analysis Method (SAAM) [11]. These methods are ableonduct reviews regarding
architectural decisions, namely on the qualityilaates requirements and their align-
ment and satisfaction degree of specific qualitglggoThe ADR method targets archi-
tectures under development, performing evaluatmmgparts of the global architec-
ture. Those features made ARID our method of chaggarding the evaluation of the
in-progress logical architecture and in the asststao determine the need of further
refinements, improvements, or revisions before m#sy that the architecture is ready
to be delivered to the teams responsible for impletation. This delivery is called
context for product implementatioGl).

3 @ Transition Rules
roject Charter
///
/ S R
r/ Mashed UCs

0OCs v Materials Materials

pad pad
[B 1740 A O == A Oy

//(\ /' \

4 N 4 o

! / NN ! ! PN
A-type Sequence S0 [issues \\{ B-type Sequence A-type Sequence) JJ = \i B-type Sequence
=t h 1 OO N

/ s N oo , N oo
[[
I > J * * | e, S S I ™ / * * * Lo
3 , 3
Y s \ N s \

UseCases 7 \~—~»~::,/’ \ Logical Architecture Use Cases / ‘**»»*:://’ \ Logical Architecture
2L BEe elL B

== ==

Fig. 2. Assessment of the V+V execution using ARID

In Fig. 2, we present the simplified interactiortviieen the ARID-related models
in the V+V process. In this figure, we can seerttaero-process associated with both
V-Models, the transition from one to the otherdfatletailed) and the ARID models
that support the assessment of the V+V execution.

The Project Charter regards information that is necessary for the amgeproject
and relates to project management terminology amdeat [12]. This document en-
compasses information regarding the project remeérgs in terms of human and
material resources, skills, training, context foe project, stakeholder identification,
amongst others. It explicitly contains principlesdgolicies of the intended practice
with people from different perspectives in the pmj(analysis, design, implementa-
tion, etc.). It also allows having a common agreente refer to, if necessary, during
the project execution.

The Materials document contains the necessary information featang a presen-
tation of the project. It regards collected seeenacios based o®Cs (or Mashed
UCs), A-type sequence diagrams and (business or softwdse)Case Models. Parts
of the Logical Architectural model are also incorporated in the presentatian whill
be presented to the stakeholders (including soéweagineers responsible for imple-
mentation). The purpose of this presentation isriighten the team about the logical
architecture and propose the seed scenarios tasdisn and create thgtype se-
guence diagrams based on presented information.

The Issues document supports information regarding the evalnaof the present-
ed logical architecture. If the logical architeetus positively assessed, we can as-
sume that we reached consensus to proceed intmdaheo-process. If not, using the
Issues document it is possible to promote a new iteratbrthe corresponding V-
Model execution to adjust the previously resultlngical architecture to make the
necessary corrections to comply with the seed suenavain causes for this adjust-
ment are: (1) bad decisions that were made indhesponding 4SRS method execu-
tion; (2) B-type sequence diagrams not complying with all fké&ype sequence dia-
grams; (3) createB-type sequence diagranmot comprising the entirgical archi-
tecture; (4) the need to explicitly placing a design dieeign the logical architectural
model, usually done by using a common architectpattiern and injecting the neces-
sary information in the use case textual descigtitiat are input for the 4SRS.

The adjustment of the logical architectural mofl iterating the same V-Model)
suggests the construction of a new use case model the case of a new scenario,
the construction of nev-type sequence diagrams. The new use case model captures
user requirements of the revised system under nlesigthe same time, through the
application of the 4SRS method, it is possible évivéé the corresponding logical
architectural model.

Our application of common architectural pattemdude business, analysis, archi-
tectural and design patterns as defined in [13]aBplying them as early as possible
in the development (in early analysis and designr} possible to incorporate busi-
ness requirements into the logical architecturadlehand at the same time assure that
the resulting model is aligned with the organizatieeds and also complies with the
established non-functional requirements. The desaiterns are used when there is a
need to detail or refine parts of the logical aetture and, by itself, to promote a
new iteration of the V-Model.

In the second V, after being positively assessethé ARID method, the business
software logical architectural model is considesefinal design artifact that must be
divided into products (applications) for latter ilmmentation by the software teams.

4 Process- to Product-level Transition

As stated before, a process-level V-Model can lezgbed for business requirements
elicitation purposes, followed by a product-leveMédel for defining the software
functional requirements. The V+V process is uséulboth stakeholders, organiza-
tions and technicians, but it is necessary to asthat they properly reflect the same
system. In order to assure an aligned transitidwdsen the process- and product-level
perspectives in the V+V process we propose theutigrof a set of transition steps
whose execution is required to create Mashed UC model referred in Fig. 1 and in
Fig. 2. The detail of the transition rules is sabjef future publications.

Like in [2, 14], we propose the usage of the 4SR$ebursive executions with the
purpose of deriving a new logical architecture. Titamsition steps are structured as
follows: (1) Architecture Partitioning, where theoBess-level Architectural Elements
(AEpc’s) under analysis are classified by their patation execution context with the
purpose of defining software boundaries to be faansed into Product-level (soft-
ware) Use Cases (UCpt's.); (2) Use Case Transféematvhere AEpc’s are trans-
formed into software use cases and actors thaesept the system under analysis
through a set of transition patterns that mustgyied as rules; (3) Original Actors
Inclusion, where the original actors that weretealao the use cases from which the
architectural elements of the process-level petameare derived (in the first V exe-
cution) must be included in the representation;wgre the model is analyzed for
redundancies; and (5) Gap Filling; where the neggsmformation of any require-
ment that is intended to be part of the designthaatlis not yet represented, is added,
in the form of use cases.

By defining these transition steps, we assureghaduct-level (software) use cases
(UCpt) are aligned with the architectural elemefntsn the process-level logical ar-
chitectural model (AEpc); i.e., software use casgmiams are reflecting the needs of

the information system logical architecture. Thplaation of these transition rules to
all the partitions of an information system logieathitecture gives origin to a set of
Mashed UC models.

5 Comparison with Related Work

An important view considered in our approach regahg architecture. What is archi-
tecture? In the literature there is a plethoraeadinitions but most agree that an archi-
tecture concerns both structure and behavior, avitbvel of abstraction that only re-
gards significant decisions and may be in confogeanith an architectural style, is
influenced by its stakeholders and the environmeédre it is intended to be instanti-
ated and also encompasses decisions based onatonale or method.

It is acknowledged in software engineering thatoanpglete system architecture
cannot be represented using a single perspectdjelf]. Using multiple viewpoints,
like logical diagrams, sequence diagrams or othégaets, contributes to a better rep-
resentation of the system and, as a consequenaehdtter understanding of the sys-
tem. Our stereotyped usage of sequence diagranssnaaick representativeness value
to the specific model than, for instance, the presein Krutchen's 4+1 perspective
[16]. This kind of representation also enablesrtigstequences of system actions that
are meaningful at the software architecture led&l].[Additionally, the use of this
kind of stereotyped sequence diagrams at the dtegje of analysis phase (user re-
guirements modeling and validation) provides anfilieer perspective to most stake-
holders, easing them to establish a direct corredgrace between what they initially
stated as functional requirements and what the hadd=dy describes.

6 Conclusions and Outlook

We presented an approach to create context foméssisoftware implementation
teams in contexts where requirements cannot beegyoplicited. Our approach is
based on successive models construction and reeuwsrivation of logical architec-
tures, and makes use of model derivation for angatise cases, based on high-level
representations of desired system interactions. dgproach assures that validation
tasks are performed continuously along the modegdnogess. It allows for validating:
(1) the final software solution according to thdtiah expressed business require-
ments; (2) theB-type sequence diagrams accordingfAtdype sequence diagrams; (3)
the logical architectures by traversing it wigktype sequence diagrams. These valida-
tion tasks, specific to the V-Model, are subjecadiiture publication.

It is a common fact that domain-specific needs, elgrhusiness needs, are a fast
changing concern that must be tackled. Process$-#ehitectures must be in a way
that potentially changing domain-specific needslacal in the architecture represen-
tation. Our proposed V+V process encompasses theatlen of a logical architec-
ture representation that is aligned with domaincBgeneeds and any change made to
those domain-specific needs is reflected in thecigarchitectural model through
successive derivation of the supporting models (3 €sand B-type sequence dia-
grams, and use cases). Additionally, traceabiléymeen those models is built-in by
construction, and intrinsically integrated in ourW process.

Acknowledgments
This work has been supported by project ISOFIN (QRB10/013837).

References

1. Castro, J., Kolp, M., Mylopoulos, J.: Towards uegments-driven information systems
engineering: the Tropos project. Information Syst¢2002)

2. Azevedo, S., Machado, R.J., Muthig, D., Ribeira, Refinement of Software Product Line
Architectures through Recursive Modeling Techniques Meersman, R., Herrero, P.,
Dillon, T. (eds.) On the Move to Meaningful Inteti®&/stems: OTM 2009 Workshops, vol.
5872, pp. 411-422. Springer Berlin / Heidelberg @00

3. Haskins, C., Forsberg, K.: Systems Engineeringddeok: A Guide for System Life Cycle
Processes and Activities; INCOSE-TP-2003-002-03.INCOSE (2011)

4. Machado, R., Lassen, K., Oliveira, S., Couto, Rinto, P.: Requirements Validation:
Execution of UML Models with CPN Tools. InternatidrBournal on Software Tools for
Technology Transfer (STTT) 853-369 (2007)

5. Machado, R.J., Fernandes, J.M., Monteiro, P., iBoés, H.: Transformation of UML
Models for Service-Oriented Software Architecturézoceedings of the 12th IEEE ECBS
2005, pp. 173-182. IEEE Computer Society (2005)

6. Conradi, R., Jaccheri, M.: Process Modelling Lawggps. Software Process: Principles,
Methodology, and Technology, vol. 1500, pp. 27-S@ringer US (1999)

7. Browning, T.R., Eppinger, S.D.: Modeling impacts pocess architecture on cost and
schedule risk in product development. IEEE Tran&ng Management 4428-442 (2002)

8. Evan, W.M.: Toward a theory of inter-organizatibrelations. Management Science 217-
230 (1965)

9. Ferreira, N., Santos, N., Machado, R.J., Gas&vid)erivation of Process-Oriented Logical
Architectures: An Elicitation Approach for Cloud Dgis. PROFES 2012, vol. LNCS 7343,
pp. 44-58. Springer-Verlag, Berlin Heidelberg, Gamyniladrid, Spain (2012)

10.Clements, P.C.: Active Reviews for Intermediatsi@es., Technical Note CMU/SEI-2000-
TN-009. (2000)

11.Clements, P., Kazman, R., Klein, M.: Evaluatinffvgare architectures: methods and case
studies. Addison-Wesley (2002)

12.Project Management Institute: A Guide to thejédt Management Body of Knowledge
(PMBOK® Guide) (2008)

13.Azevedo, S., Machado, R.J., Braganca, A., Ribdito Systematic Use of Software
Development Patterns through a Multilevel and Mtdtje Classification. Model-Driven
Domain Analysis and Software Development: Architees and Functions 304 (2010)

14.Machado, R.J., Fernandes, J., Monteiro, P., Boesi H.: Refinement of Software
Architectures by Recursive Model Transformations. Miinch, J., Vierimaa, M. (eds.)
Product-Focused Software Process Improvement 4084, pp. 422-428. Springer Berlin /
Heidelberg (2006)

15.Sungwon, K., Yoonseok, C.. Designing logical hitactures of software systems.
SNPD/SAWN 2005. , pp. 330-337 (2005)

16.Kruchten, P.: The 4+1 View Model of Archite&utEEE Softw. 1242-50 (1995)

17.Bertolino, A., Inverardi, P., Muccini, H.: An ghorative journey from architectural tests
definition down to code tests execution. Procegsliof the 23rd International Conference
on Software Engineering, pp. 211-220. IEEE CS, mtwrpOntario, Canada (2001)

