
HAL Id: hal-01484388
https://inria.hal.science/hal-01484388

Submitted on 7 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rule Determination and Process Verification Using
Business Capabilities

Thomas Stuht, Andreas Speck, Sven Feja, Sören Witt, Elke Pulvermüller

To cite this version:
Thomas Stuht, Andreas Speck, Sven Feja, Sören Witt, Elke Pulvermüller. Rule Determination and
Process Verification Using Business Capabilities. 5th Working Conference on the Practice of Enterprise
Modeling (PoEM), Nov 2012, Rostock, Germany. pp.46-60, �10.1007/978-3-642-34549-4_4�. �hal-
01484388�

https://inria.hal.science/hal-01484388
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Rule Determination and Process Verification
Using Business Capabilities

Thomas Stuht1, Andreas Speck2, Sven Feja2, Sören Witt2, and
Elke Pulvermüller3

1 PPI AG, D-22301 Hamburg, Germany,
Thomas.Stuht@ppi.de

2 Christian-Albrechts-University of Kiel, Institute of Computer Science,
D-24098 Kiel, Germany,

{aspe,svfe,swi}@informatik.uni-kiel.de
3 University of Osnabrueck, Department of Mathematics and Computer Science,

D-49076 Osnabrück, Germany,
elke.pulvermueller@informatik.uni-osnabrueck.de

Abstract. Business architectures are an important part of any enter-
prise architecture containing business processes and business capabilities.
High quality business processes are key factors for the success of a com-
pany. Hence, the quality and the correctness or compliance have to be
verified. We propose to use the business capabilities for an efficient and
easily understandable definition of rules to perform this verification. The
rule specification is based on rule patterns to define requirements from
an operational point of view. These patterns are derived from experience
gained in projects for modeling and optimization of business processes
with extensive manual checks. For the rule validation we rely on model
checking as an established technology to cope with the dynamic prop-
erties of processes. We present a tool based approach to automate this
verification integrated in a unique system with a common user interface.

Key words: enterprise architecture, business capabilities, business pro-
cess model quality and correctness or compliance, integrating verification
technique, rule patterns

1 Introduction

In enterprise architectures process models are an essential part to document the
business processes. In that sense the business processes are besides the data
models crucial for the success of an enterprise. Business process models are the
base of the implementation of systems. This important role of business processes
(and their models) in enterprises and enterprise architectures lead to the question
of the quality and correctness or compliance.

The required checks of the business process models are often performed man-
ually by modeling experts and domain experts. This is very time-consuming and
prone to errors, if not done carefully. A more efficient way is to transform the im-
plicit knowledge used by the experts to perform the checks into rules. The rules

2 T. Stuht et al.

are suitable for automatic testing using a tool. However, common approaches
require detailed rules described at the activity level. Approaches allowing for a
higher degree of reusability would reduce the effort of rule specification.

Business architectures as part of enterprise architectures are agreed by the
responsible persons within the company. They include not only the business
processes, but also the business capabilities. These capabilities represent a har-
monized starting point for clustering activities from an operational point of view.

The proposed approach is based on the experience of process management
projects in the financial sector mainly at small and medium insurance companies.
The findings analyzing the frequent manual checks are incorporated in this paper.

The examples we present in this paper are of the financial systems domain.
Certainly, we observed similar challenges in other domains such as e-commerce
or enterprise resource planning systems.

2 Business Architecture as Base of Compliance Rules

In order to assure the conformity and correctness of business processes in en-
terprise architectures we require the specification of rules as base of the process
verification. The base of our approach is the efficient and easily understandable
definition of these rules from an operational point of view. Furthermore, the
reusability of rule specifications is a key aspect of our approach. Hence, a rule
can be used for more than one process only by abstracting from the level of the
single activities. Thus it does not depend on the actual names of the activities.
But it is still possible to use specific labels in a rule description if necessary.

We propose to use a so-called “operational architecture” representing the
business capabilities of a business architecture to support an architectural ab-
straction as used in section 3. The capabilities are an integral part of an enterprise
architecture and provide an operational structuring of business processes [1, 2].

There is no single definition of the term “business capability”. The follow-
ing explanation describes the term how it is used in this paper. A definition
that is consistent with our understanding is given in the architecture framework
MODAF. Capabilities “are a high level specification of the enterprise’s ability.
A capability is a classification of some ability - and can be specified regardless
of whether the enterprise is currently able to achieve it.” [3, p. 1] Therefore,
a business capability clusters of one or more actions that produce a result or
have an effect. But it does not describe how the actions take place. A business
capability abstracts from the activities at the lowest level of detail.

2.1 Operational Architecture Structure

Concrete operational architectures and business capabilities may be developed by
an association of companies (e.g. the German Insurance Association (GDV)1) or
by specific companies. Because of these different creators the key aspects of their

1 http://www.gdv.de

Rule Determination and Process Verification Using Business Capabilities 3

architectures may vary. For example, the “operational architecture” as a part
of the more comprehensive “insurance applications architecture” (in German:
“VersicherungsAnwendungsArchitektur”) of the GDV contains the characteris-
tics of business processes and business components [4]. Other descriptions we are
concerned with in projects focus also on IT aspects (e.g. systems) or workflows.

Our real-life example of business capabilities structured in an operational
architecture is the one developed by the PPI AG for the insurance sector. It has
been proven as a reference model in several projects (e.g. [5]). We now apply it
as base for checking the operational compliance of business processes.

The PPI operational architecture structures the functionality an insurance
company offers based on a three-level hierarchy. It does neither contain IT details
(software, hardware) nor business process details (sequences, events). Figure 1
shows an excerpt of the architecture and illustrates each level explained below.

Fig. 1. Excerpt from the operational architecture showing the three-level hierarchy of
the business capabilities

The top level (“Operational Domains”) contains the core business functions
of an insurance company, e.g. “Portfolio Management” and “Claims Process-
ing”. The next level (“Operational Building Blocks”) concretizes the top level
elements and contains the building blocks from an operational point of view.
For example, “Proposal Management” and “Contract Management” belong to
the top level function “Portfolio management”. This level also defines the set of
business objects that are assigned to their corresponding operational building
block, i.e. “Contract” belongs to “Contract Management”.

The third level (“Operational Cluster”) is a set of conceptual functions (i.e.
the business capabilities) the company has to perform. Examples of operational
clusters for the building block “Contract Management” are “Contract Creation”
or “Contract Alteration”. The combination of these reusable clusters visually
spoken builds a business process. A process can also be represented by an oper-
ational cluster because it is a function performed by the company.

The relevant stage for the proposed abstraction from the activity level is the
third level. As shown in figure 2 multiple activities used in one or more process
models can be conceptually connected with one operational cluster (“n:1”). Note
that an activity is always related to exactly one constant operational cluster

4 T. Stuht et al.

to guarantee uniqueness. This allows abstracting from activities with slightly
different names that represent an identical function. Besides it is possible to sum
up activities and use the abstract operational cluster instead. This abstraction
mechanism is used in section 4 to define the rule patterns.

Fig. 2. Mapping of concrete activities to operational clusters

2.2 Rules Selection Using Scopes

In addition to the clustering we propose a second mechanism for reusing rule
specifications: the definition of scopes for a rule. This allows automatically se-
lecting the relevant rules for checking as depicted in the example in section 6.

Each process model is characterized by its type and the section the process
is applied in. The type should be based on a standardized set of type names
like the third level of the operational architecture. Based on the intension of
the operational architecture an operational cluster represents a whole business
process. For example a process can have the type “Contract Creation”.

The section depends on how the company is organized. Typical sections of
German insurance companies are “personal liability” or “household contents”.
This would be a categorization using the offered classes of insurance. In addition,
supporting areas such as collections and disbursement or fraud could be used.

For each rule it may be specified for which process types the rule is applicable.
The rule is only applied if the process takes place in one of the denoted sections.

Thus it is possible to define universal rules, which can be applied to different
processes. For example a rule related to “Contract Creation” can be specified
and no individual rules for “Contract Creation for Personal Liability” or “Con-
tract Creation for Household Contents” are required. Only if there are special
requirements, a distinct rule must be specified. Another example is the inbox for
all sorts of communication (e.g. mail, e-mail, fax). A general rule can be used
for verifying all processes where the inbox is involved.

3 Verification Technique for Business Process Models

In the previous section we present the key concepts of our approach to specify
rules for operational conformity checking. The verification requires a suitable
technique like model checking. First research concerning the verification of con-
current programs was done 30 years ago [6]. Subject of the model checking is to

Rule Determination and Process Verification Using Business Capabilities 5

verify automatically if a model fulfills a rule [7, 8]. If it does not, a counterex-
ample indicate the part which violates the rule [6, 9].

A rule can be considered as a machine-readable requirement description
about the activities and objects of a model. A rule definition based on temporal
logic (an extension of Boolean logic with temporal operators) specifies relative
statements about the temporal order of the elements [6]. One variant of the tem-
poral logic is the branching-time logic (Computation Tree Logic; CTL), which
is suitable for the verification of business processes. CTL presumes that every
point in time can be branched into multiple potential futures each specifying a
different state. Theoretically, each of these states is in a different path of the
resulting tree [10, 6, 9].

CTL is a textual formalization that contains operators and path quantifiers.
First it defines the X- (next), F- (eventually) and G-operators (globally). They
indicate that a statement should be valid in the next state/ at least in one state
in the future/ in every state in the future. Besides there exists the binary U-
operator (until) to define that a property has to be valid until a condition is met.
Additionally, the A-quantifier (all paths) means that the property must hold for
every path in the tree. The E-quantifier (at least one/ exists) means that the
property must hold for at least one path in the tree [7, 9, 11].

The textual form of CTL is an obstacle of its general use in industry. Domain
experts, i.e. people in operating departments, are in contrast to modeling experts
less trained and willing to neither reading nor writing textual rules. But they
have a clear understanding of the requirements a business process must fulfill.
A graphical notation brings together the domain and modeling experts.

[9] presented a visual notation called G-CTL. It defines graphical represen-
tations of the CTL-elements. Figure 3 shows on the left the temporal operators
for the E-quantifier (exists) and the operators for the A-quantifier (all paths) in
the middle. The Boolean operators and constants (i.e. true, false) can be used
in conjunction with these temporal operators. The operands “a” and “b” are
placeholders for concrete (process) elements. This enables to specify a process
in the well-known visual manner and the rules in the very same way.

Fig. 3. Overview of the G-CTL operators [9]

6 T. Stuht et al.

4 Rule Patterns Set for Operational Conformity Checking

This section presents a set of rule patterns for operational conformity checking.
The set is not intended to be a fully comprehensive definition of all possible types
of rules. It is rather a collection of frequently occurring structures. The patterns
result from the experience of process management projects (i.e. modeling and
optimizing processes) mainly at small and medium insurance companies.

All these projects required an extensive manual verification of the designed
processes. Applying our automated verification approach may considerably re-
duce this effort. Therefore, we aim at formalizing the implicit knowledge involved
in the manual actions to automate the verification. Due to the operational clus-
ter abstraction (cf. section 2.1) and scope (cf. section 2.2) concepts the majority
of rules are reusable. However, it is still possible to use concrete activities within
rules if necessary. The collection is not restricted to insurance companies but
can be used for business processes in general.

Each rule pattern will be described in natural language and graphically for-
malized in the G-CTL notation (extended by the concept of operational clusters).

The first part of the rules principally targets the structure of a process model.
In figure 4 the formalization of each rule pattern in G-CTL notation is shown:

RP1: Activity/ Cluster A occurs at least once at [all | one or more] paths
An activity or a cluster has to exist at least once. It has to be defined if A
has to be executed in every “computational tree path” of a model (all; A-
quantifier) or if it just has to occur on at least one path (exists; E-quantifier).

RP2: Activity/ Cluster A does not occur
An activity or a cluster must not exist in the process model.

RP3: Activity/ Cluster A is performed [before | after] activity/ cluster B
B must not be performed “before” A has been executed. Or it must apply
that A is not executed until “after” B. If A and B are activities then it
is the trivial case. But if one is a cluster there are two cases to distinguish
because a cluster can contain activities that are maybe not placed directly
behind each other. However the cluster concept simplifies the rule definition:
first occurrence: The first activity related to cluster A has to be performed

before/ after the first activity related to cluster B. A second activity of
A might be existing after/ before the first activity of B.

completion: All activities belonging to the cluster A have to be performed
before/ after the first/ last activity belonging to the cluster B.

In cases when A or B is a single activity, the explanation applies accordingly.
RP4: Activity/ Cluster A is performed [first of all | last]

An activity A or the first activity of cluster A respectively has to be the first
activity right after the start event (“first of all”). Vice versa, an activity A
or the last activity of cluster A respectively has to be the last activity right
before the end event (“last”).

RP5: Cluster C [does | does not] contain the activity A
If the cluster C exists in the process model, then it has to contain the activity
A (“need to”) or the activity A has to be absent (“must not”) respectively.

Rule Determination and Process Verification Using Business Capabilities 7

Fig. 4. Formalization of the rule patterns targeting the structure (G-CTL notation)

The second part targets the accomplishment of a process element from an
operational point of view. Figure 5 shows the formalization using G-CTL:

RP6: Activity/ Cluster A uses the system S
It has to be modeled that the activity/ cluster uses the defined system.

RP7: Position P takes responsibility for the activity/ cluster A
This rule specifies that position P have to be responsible for performing A.

RP8: Activity A is executed [manually | semi-automatically | script-based |
service-based]
This rule refers to the types of BPMN tasks. It has to be assumed that the
activity is represented by an adequate task in the model.

RP9: Activity/ Cluster A needs to [read | write] the business object O
An activity or a cluster has to use the business object (e.g. contract) as an
input (“read”) or it has to create/ modify the object (“write”).

RP10: Activity/ Cluster A needs to [read | write] the business object O before
the object is [read | written] by activity/ cluster B
This rule specifies that a business object has to be first read/ written by
the activity/ cluster A before the activity/ cluster B can use it either for
reading or writing. This is to ensure the correct operating sequence, e.g. that
the object needed by B has been created by A.

8 T. Stuht et al.

Fig. 5. Formalization of the rule patterns in G-CTL targeting the accomplishment

5 Integrated Platform for Modeling and Verification

The tool “Business Application Modeler” (BAM) is an integrated platform for
business process modeling plus the specification of rules using G-CTL and veri-
fication of the models. It is based on Eclipse2 and provides extension points to
enhance the functionality by using plug-ins [12]. BAM supports EPCs besides the
presented BPMN notation for process modeling and the G-CTL for rule specifi-
cation. Elements of process models may be directly inserted within the rules. The
new BPMN meta model specifies the elements and connections allowed in pro-
cess models and rules. It uses slightly modified graphics compared to the default
BPMN ones to improve readability as depicted in figure 9. To reduce complex-
ity regarding the usability and understanding we decide to use only a subset of
all BPMN 2.0 [13] elements. This subset contains tasks (manual, user, service,
script, business rule, send, receive, abstract), subprocesses, gateways (xor, and),
untyped events (start, intermediate, end), the data object and flows (sequence,
data). Moreover, a special element called “operational cluster” (see figure 7 in
the example) has been added to the rule editor. The corresponding operational
cluster, based on the operational architecture, is stored as an attribute of this
element (cf. section 2.1). Also the systems used by an activity or the position
responsible are stored as an element’s attribute. One feature supported by BAM
is using a wildcard instead of assigning a concrete label to the element’s name
value [12]. This allows checking if the cluster (i.e. an arbitrarily named element
with exactly defined attributes) exists within the verified process model. For
performing the model checking, a plugin has been developed which uses the ex-
tension points offered by BAM. The verification is done automatically and only
the process model and the rules have to be chosen manually. On the basis of our
scope mechanism (cf. section 2.2) the plugin automatically uses only the rules
that are relevant to the actual process model. First the business process model
and the visually specified rules are transformed into a machine-readable textual
form for the model checker. Then the model checker performs the verification.
This plugin gets back the result (“true” or counterexample) and uses the given

2 http://www.eclipse.org

Rule Determination and Process Verification Using Business Capabilities 9

handling of counterexamples that occur if the process model does not fulfill a
certain rule (cf. section 3). BAM retranslates the counterexample and highlights
the path which causes the failure [12]. This counterexample is displayed so that
the domain expert can identify the affected part of the model.

6 Exemplary Illustration of the Approach

This section presents a typical example taken from a project to describe our
approach to automate the verification of the operational conformity. The goal
of the project was to assimilate and optimize the processes of different sections.
The manual verification was very time-consuming because it has to be done
carefully to ensure that all requirements are fulfilled. In the following we focus
on the process type “Contract Creation” in the section “personal liability”.

The personal liability insurance is very common in Germany. It protects the
policyholder and co-insured persons from paying for any damages they cause with
respect to the civil law. Therefore, the policyholder pays an insurance premium
and the insurance company will pay in case of damage to compensate it [14].

Imagine that the process model is given and the activities are already an-
notated with their clusters. Figure 6 shows it in terms of the slightly modified
BPMN notation. For convenience the operational clusters (cf. section 2.1) are
highlighted in this paper. Then the process model has to be imported into BAM.
In BAM the membership to a cluster is denoted as an attribute like mentioned
before. Also the process type and the section may be specified in BAM for using
the automatic rule selection based on the scope (cf. section 2.2).

The process starts with a subprocess for incoming communications. This han-
dles all operations until passing the proposal to a responsible employee. Then a
partner record will be created in the system if the inquirer has been no customer
yet. Otherwise the existing data record is used. In both cases the proposal is
used. After this the data for debt collection is created or the existing data is
used. Thereafter the contract is created and the initial contract information is
entered. The proposal is the input and a contract data object is the output.
Optionally a discount can be granted. After that the provision of an involved
insurance agent may be modified. If required it is possible to enter additional
conditions and/ or contractual terms. Then the risk object to be insured and the
desired scope of cover will be documented in the system. Finally the creation is
completed and the insurance policy will be sent to the policyholder (subprocess).

In the following, two rules are illustrated which have to be checked in fact.
They correspondents to the rule patterns in section 4.

The first rule is: “Subprocess Incoming Communication needs to write the
business object Proposal before the object is read by the cluster Partner In-
formation” (RP10). The cluster “Partner Information” can only perform its
operations if the proposal has been created. The rule only applies to processes
of type “Contract Creation”. The sections are not limited. Figure 7 shows the
rule in G-CTL. The model illustrated in figure 6 trivially fulfills this rule.

10 T. Stuht et al.

Fig. 6. Example process “Contract Creation” in the section “personal liability” with
highlighted operational clusters

The second rule is: “Cluster Contract Creation Specifics is performed before
the cluster Management of Amending Clauses” (RP3 - b (completion)). Assume
that this rule only applies to processes of type “Contract Creation” and section
“personal liability”. Any other process of type “Contract Creation”, e.g. sec-
tion “household contents”, does not have to fulfill this rule. Figure 8 shows the
formalization of the rule. We choose the second interpretation of the rule pat-
tern (“completion”). All activities of the first cluster thus have to be performed
before the first activity of second cluster is executed. As to be seen in figure
6, the process model does not fulfill this requirement. Not all activities of the
cluster “Contract Creation Specifics” are performed before the first activity of
the cluster “Management of Amending Clauses”.

Fig. 7. First example of an operational
rule (RP10)

Fig. 8. Second example of an operational
rule (RP3 - b (completion))

After importing the process model and specifying the rules the user can start
the verification. BAM takes only the rules into account which in this case apply

Rule Determination and Process Verification Using Business Capabilities 11

to all process types or to those of type “Contract Creation”. As a second criterion
it will be checked if the section is not restricted or is valid for “personal liability”.
After that, BAM transforms the model and the rules into an appropriate form
for the model checker which performs the checking (cf. section 5).

Both rules are relevant for the verification. BAM will display the counterex-
ample returned by the model checker according to the violated rule and high-
lights the affected tasks on the path leading to the violation. A detail of this is
shown in figure 9. It has to be analyzed if the model is still valid and just the
rule is incorrect or how the model can be modified to meet the requirement. In
our case the model needs to be modified according to the correct order specified
in the rule. It is a requirement to perform the tasks “Document Risk Object”
and “Document Scope of Cover” of the cluster “Contract Creation Specifics” be-
fore any task of the cluster “Management of Amending Clauses”. Hence, BAM
highlights the task “Document Risk Object” as illustrated because the tasks
“Enter Additional Conditions” and “Enter Additional Contractual Terms” are
each placed before the cluster “Contract Creation Specifics” represented by the
task “Document Risk Object” which is the first violation of the rule.

Fig. 9. Screenshot of BAM showing the counterexample of the violated second rule
(RP3 - b (completion))

The advantage of the automatic checking is that a repeated verification (“re-
gression testing”) is quickly done and ensures that all previous tested rules are
checked again. A manual test would be time-consuming and probably miss a
newly created error.

12 T. Stuht et al.

7 Related Work

The verification of the correctness or compliance of business processes and their
models is a key problem of enterprise architecture management in general and
business process management in particular.

A common technique to perform the verification is model checking. It has
been proven to be applicable to software models (e.g. [15] or [16]) as well as
to business processes (e.g. [17] or [18]). A common base for the checking is the
semantic of the process metamodel [19].

There exist different approaches to check a business process model. One pos-
sibility is to use process reference models as a basis. For example, [20] takes a
given reference model and tests if logs produced by systems conforms to this
model. An algorithm to measure if a process model is compliant to a reference
model is described in [21]. Therefore, both approaches need an assured reference
model that has been modeled and agreed before.

Further approaches use rules to specify requirements about properties to be
checked. The authors in [22] specify the control objectives in a normative way (i.e.
the effect of an action on an object after execution). That is different to the use
of temporal logic. The rules in [23] focus on elements of the lowest level of detail,
i.e. an activity, without providing an abstraction mechanism. Another example is
[24]. This approach limits the rule specification to predefined graphical patterns
based on temporal logic. [25] also provides a visual notation for rule specifications
but it differs from the process model notation. A similarity to our approach is the
idea of abstraction levels in the rule definitions not assuming that all activities
of similar models must have the same labels.

Rules may also be used to drive the transformation process from models to
concrete systems and thus limiting the errors [26]. Here errors in the model,
which are the focus of our work, may be not detected.

[27] also abstract from the names of the activities by using higher level con-
cepts (i.e. superordinate terms) of an ontology (like [28]). However, the textual
notation does not support unambiguous rule specifications because there is no
unique assignment from activities to one superordinate term.

A generic approach is the workflow pattern approach presented in [29]
(control-flow patterns) and [30] (data patterns). It demonstrates that patterns
are a suitable mechanism to define the quality of processes and workflows. This
work and [31] are a base for our rule patterns which are by far more domain
specific while not being applicable to only one domain. Another approach is de-
scribed in [32]. The authors use one visual notation (UML Activities) for business
process modeling and rule specification. The proposed patterns to verify the pro-
cess quality are rather technical. Similar to our approach the authors use model
checking for verification.

These papers are a motivation for our work as they indicate the general
applicability of patterns to define requirements. One key aspect for us is the
integration of specifying process models and rules. Another key aspect is bridging
the gap between domain experts and modeling experts based on using available
parts of an enterprise architecture - the business capabilities.

Rule Determination and Process Verification Using Business Capabilities 13

8 Conclusion

An essential part of any enterprise architecture is a business architecture con-
taining the business processes and the business capabilities the company aims
for. These capabilities provide an operational structuring of the business pro-
cesses and may be represented in a hierarchy called “operational architecture”
like our real world example with the operational clusters on the third level.

Using operational clusters is a key aspect of the efficient and easy understand-
able rule definition from an operational point of view. The rules define statements
about the quality and correctness or compliance of business processes. Ensuring
high quality and correct processes is crucial for the success of an enterprise and
therefore a main activity in any enterprise architecture management.

Our approach uses the operational clusters within rule specification to ab-
stract from the activity level. This allows specifying more general rules, which
can be reused for many processes. Hence, a rule repository can be created with
relatively little effort. But it possible to use activities in combination with the
operational clusters where considered necessary. Furthermore, we propose the
use of a meaningful graphical notation for specifying rules like the G-CTL which
is suitable for the verification of business processes with their dynamic struc-
ture. This can bring together domain and modeling experts because the domain
experts can model the rules based on their understanding of the requirements.
G-CTL is a visual notation for the CTL, a variant of the temporal logic.

In addition, we presented a set of rule patterns based on the experience of
industrial projects. This set reflects the implicit knowledge involved in order to
automate the verification. The first five rules patterns target the structure of a
process model and the next five rules target the accomplishment.

The tool BAM integrates the business process modeling and rule specifica-
tion. Moreover, it provides the automatic verification of the models that saves
time and costs. All relevant rules can be checked iteratively while creating new
versions of a business process (“regression testing”). This rule selection is done
on the basis of our approach of scope definition. Each rule can be augmented
with corresponding process types and optional section restrictions.

The application of the approach is illustrated by a real-life example that has
been taken from a project. This demonstrates the effectiveness for verifying the
operational conformity of business process models using the described approach
based on elements of a business architecture.

Further work will focus on the application of the approach in other domains
of the financial sector. It is planned to extend BAM by offering templates to
simplify rule definitions while enabling the specification of arbitrary (complex)
rules at the same time. Moreover, it has to be evaluated how the definition of
the operational architecture, which has to be done outside of BAM yet, could
be integrated in BAM. In addition to that it has to be analyzed how the user
can be better supported in case of errors in the model.

14 T. Stuht et al.

References

1. Barkow, R.: Grundlagen von EAM. In Keuntje, J.H., Barkow, R., eds.: Enterprise
Architecture Management in der Praxis: Wandel, Komplexität und IT-Kosten im
Unternehmen beherrschen, Düsseldorf, Symposion Publishing GmbH (2011) 15–47

2. BITKOM: Enterprise Architecture Management - neue Disziplin für die
ganzheitliche Unternehmensentwicklung. http://www.bitkom.org/files/

documents/EAM_Enterprise_Architecture_Management_-_BITKOM_Leitfaden.

pdf (2011)
3. Crown/Ministry of Defence (UK): MODAF Glossary v1.2. http:

//www.mod.uk/NR/rdonlyres/D4CEF7F5-B008-4734-9D05-7DD746B0F166/0/

20090304_MODAF01_2Glossary_V1_0__1.pdf (July 2008)
4. AK-VAA: VAA Final Edition. Managementsummary. Version 2.1 prozedu-

ral, Version 2.0 objektorientiert. http://www.gdv-online.de/vaa/vaafe_html/

dokument/asummary.pdf (2001)
5. Kleinert, H., van Megen, H., Kohl, T.: Integration von Prozess- und IT-

Architekturmanagement. In Gensch, C., Moormann, J., Wehn, R., eds.: Prozess-
management in der Assekuranz. Frankfurt-School-Verlag, Frankfurt am Main
(2011) 221–234

6. Clarke, E.: The Birth of Model Checking. In Grumberg, O., Veith, H., eds.: 25
Years of Model Checking. Volume 5000 of LNCS. Springer, Heidelberg (2008) 1–26

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8 (April 1986) 244–263

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
9. Feja, S., Fötsch, D.: Model Checking with Graphical Validation Rules. 15th IEEE

Intern. Conf. on the Engineering of Computer-Based Systems (ECBS 2008), Belfast
(2008) 117–125

10. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In: Logic of Programs, Workshop, London,
Springer-Verlag (1982) 52–71

11. Pulvermüller, E., Feja, S., Speck, A.: Developer-friendly verification of process-
based systems. Knowledge-Based Systems 23(7) (2010) 667 – 676 Special issue on
”Intelligent Formal Techniques for Software Design: IFTSD”.

12. Feja, S., Witt, S., Speck, A.: BAM: A Requirements Validation and Verification
Framework for Business Process Models. 11th Intern. Conf. On Quality Software
(2011) 186–191

13. OMG: Business Process Model and Notation (BPMN) Version 2.0, formal/2011-
01-03. http://www.omg.org/spec/BPMN/2.0/PDF (January 2011)

14. Wagner, F., ed.: Gabler Versicherungslexikon. Gabler, Wiesbaden (2011)
15. Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Parallel

Programs Using Fixpoints. In: ICALP 1980, Automata, Languages and Program-
ming, 7th Colloquium, Springer LNCS 85 (1980) 169–181

16. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
17. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process

Chains. Information and Software Technology 41(10) (1999) 639–650
18. Anderson, B.B., Hansen, J.V., Lowry, P.B., Summers, S.L.: Model checking for

design and assurance of e-Business processes. Decision Support Systems 39(3)
(2005) 333–344

Rule Determination and Process Verification Using Business Capabilities 15

19. Decker, G., Mendling, J.: Instantiation Semantics for Process Models. In: Business
Process Management, 6th International Conference, (BPM 2008). Volume 5240 of
Lecture Notes in Computer Science., Springer (2008) 164–179

20. van der Aalst, W.: Process Discovery: Capturing the Invisible. Computational
Intelligence Magazine, IEEE 5(1) (feb. 2010) 28 –41

21. Gerke, K., Cardoso, J., Claus, A.: Measuring the Compliance of Processes with
Reference Models. In: Proceedings of the Confederated International Conferences,
CoopIS, DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet
Systems: Part I. OTM ’09, Berlin, Heidelberg, Springer-Verlag (2009) 76–93

22. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting Regulatory Compli-
ance for Business Process Models through Semantic Annotations. In Ardagna,
D., Mecella, M., Yang, J., Aalst, W., Mylopoulos, J., Rosemann, M., Shaw,
M.J., Szyperski, C., eds.: Business Process Management Workshops. Volume 17
of LNBIP. Springer, Heidelberg (2009) 5–17

23. Becker, J., Bergener, P., Delfmann, P., Eggert, M., Weiß, B.: Supporting Business
Process Compliance in Financial Institutions - A Model-Driven Approach. In: 10th
Intern. Conf. on Wirtschaftsinformatik (WI 2011), Zürich (2011) 355–364

24. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and
explaining their violations for business processes. JVLC 22(1) (2011) 30 – 55
Special Issue on Visual Languages and Logic.

25. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable
compliance rule graphs in process-aware information systems. In: Proc 22nd in-
tern. conf. on Advanced information systems engineering. CAiSE’10, Heidelberg,
Springer (2010) 9–23

26. Vasilecas, O., Smaizys, A.: Business Rule Model Integration into the Model of
Transformation Driven Software Development. In: Advances in Databases and
Information Systems, 13th East European Conference, ADBIS 2009. Volume 5968
of Lecture Notes in Computer Science., Springer (2009) 153–160

27. Medeiros, A.D., Karla, A., Aalst, V.D.: Semantic Process Mining Tools: Core
Building Blocks. In: In 16th European Conference on Information Systems. (2008)

28. Opdahl, A.L., Berio, G., Harzallah, M., Matulevicius, R.: An ontology for enter-
prise and information systems modelling. Applied Ontology 7(1) (2012) 49–92

29. Russell, N., ter Hofstede, A.H., van der Aalst, W.M., Mulyar, N.: Work-
flow Control-Flow Patterns: A Revised View; BPM Center Report BPM-
06-22, BPMcenter.org. http://www.workflowpatterns.com/documentation/

documents/BPM-06-22.pdf (2006)
30. Russell, N., ter Hofstede, A.H., Edmond, D., van der Aalst, W.M.: Workflow

Data Patterns; QUT Technical report, FIT-TR-2004-01, Queensland University
of Technology, Brisbane. http://www.workflowpatterns.com/documentation/

documents/data_patterns%20BETA%20TR.pdf (2004)
31. Sandkuhl, K.: Validation and Use of Information Demand Patterns in Higher

Education. In: Business Information Systems Workshops - BIS 2010 Interna-
tional Workshops. Volume 57 of Lecture Notes in Business Information Processing.,
Springer (2010) 204–213

32. Förster, A., Engels, G., Schattkowsky, T., Van Der Straeten, R.: Verification
of Business Process Quality Constraints Based on Visual Process Patterns. In:
Proceedings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering. TASE ’07, Washington, DC, USA, IEEE Computer Society
(2007) 197–208

