%0 Conference Proceedings
%T Analyzing Stability of Algorithmic Systems Using Algebraic Constructs
%+ Gyeongsang National University
%A Bagchi, Susmit
%Z Part 1: Information and Communication Technology- Eurasia Conference (ICT-EurAsia)
%< avec comitÃ© de lecture
%( Lecture Notes in Computer Science
%B 1st International Conference on Information and Communication Technology (ICT-EurAsia)
%C Yogyakarta, Indonesia
%Y David Hutchison
%Y Takeo Kanade
%Y Madhu Sudan
%Y Demetri Terzopoulos
%Y Doug Tygar
%Y Moshe Y. Vardi
%Y Gerhard Weikum
%Y Khabib Mustofa
%Y Erich J. Neuhold
%Y A Min Tjoa
%Y Edgar Weippl
%Y Ilsun You
%Y Josef Kittler
%Y Jon M. Kleinberg
%Y Friedemann Mattern
%Y John C. Mitchell
%Y Moni Naor
%Y Oscar Nierstrasz
%Y C. Pandu Rangan
%Y Bernhard Steffen
%I Springer
%3 Information and Communicatiaon Technology
%V LNCS-7804
%P 81-90
%8 2013-03-25
%D 2013
%R 10.1007/978-3-642-36818-9_9
%K recursive algorithms
%K z-domain
%K stochastic
%K control theory
%K perturbation
%Z Computer Science [cs]
%Z Humanities and Social Sciences/Library and information sciencesConference papers
%X In general, the modeling and analysis of algorithmic systems involve discrete structural elements. However, the modeling and analysis of recursive algorithmic systems can be done in the form of differential equation following control theoretic approaches. In this paper, the modeling and analysis of generalized algorithmic systems are proposed based on heuristics along with z-domain formulation in order to determine the stability of the systems. The recursive algorithmic systems are analyzed in the form of differential equation for asymptotic analysis. The biplane structure is employed for determining the boundary of the recursions, stability and, oscillatory behaviour. This paper illustrates that biplane structural model can compute the convergence of complex recursive algorithmic systems through periodic perturbation.
%G English
%Z TC 5
%Z TC 8
%2 https://inria.hal.science/hal-01480216/document
%2 https://inria.hal.science/hal-01480216/file/978-3-642-36818-9_9_Chapter.pdf
%L hal-01480216
%U https://inria.hal.science/hal-01480216
%~ SHS
%~ IFIP-LNCS
%~ IFIP
%~ IFIP-TC
%~ IFIP-TC5
%~ IFIP-TC8
%~ IFIP-ICT-EURASIA
%~ IFIP-LNCS-7804