N
N

N

HAL

open science

P2AMEF': Predictive, Probabilistic Architecture
Modeling Framework
Pontus Johnson, Johan Ullberg, Markus Buschle, Ulrik Franke, Khurram
Shahzad

» To cite this version:

Pontus Johnson, Johan Ullberg, Markus Buschle, Ulrik Franke, Khurram Shahzad. P2AMF: Pre-
dictive, Probabilistic Architecture Modeling Framework. 5th International Working Conference on
Enterprise Interoperability (IWEI), Mar 2013, Enschede, Netherlands. pp.104-117, 10.1007/978-3-
642-36796-0_10 . hal-01474204

HAL Id: hal-01474204
https://inria.hal.science/hal-01474204
Submitted on 22 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01474204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

P2AMF: Predictive, Probabilistic
Architecture Modeling Framework

Pontus Johnson!, Johan Ullberg!, Markus Buschle!, Ulrik Franke'2, and
Khurram Shahzad!

! Industrial Information and Control Systems,
KTH Royal Institute of Technology,
Osquldas v. 12, SE-10044 Stockholm, Sweden
{pj101, johanu,markusb, khurrams}@ics.kth.se,
2 FOI - Swedish Defence Research Agency,
SE-16490 Stockholm, Sweden
ulrik.franke@foi.se,

Abstract. In the design phase of business and software system devel-
opment, it is desirable to predict the properties of the system-to-be. Ex-
isting prediction systems do, however, not allow the modeler to express
uncertainty with respect to the design of the considered system. In this
paper, we propose a formalism, the Predictive, Probabilistic Architecture
Modeling Framework (PQAMF), capable of advanced and probabilisti-
cally sound reasoning about architecture models given in the form of
UML class and object diagrams. The proposed formalism is based on
the Object Constraint Language (OCL). To OCL, P?AMF adds a prob-
abilistic inference mechanism. The paper introduces P2ZAMF, describes
its use for system property prediction and assessment, and proposes an
algorithm for probabilistic inference.

Key words: probabilistic inference, system properties, prediction, Ob-
ject Constraint Language, UML, class diagram, object diagram

1 Introduction

As an alternative to business and software service development by trial-and-
error, it is desirable to predict the properties of envisioned services already in
the early phases of the lifecycle. Such predictions may guide developers, allowing
them to explore and compare design alternatives at a low cost. Business and soft-
ware developers routinely argue for or against alternative design choices based on
the expected impact of those choices on, e.g., the future system’s efficiency, avail-
ability, security or functional capabilities. However, experience-based predictions
made by individual developers have drawbacks in terms of transparency, con-
sistency, cost and availability. Therefore, formal approaches to such predictions
are highly desirable. In addition to prediction, system property analysis meth-
ods may be employed to assess properties of existing systems that are difficult
to measure directly, e.g. in the case of information security. From an enterprise

2 Pontus Johnson et al.

interoperability perspective, one common approach to the field is the use of var-
ious forms of architecture models [1]. The abstraction in these models allows for
quantitative reasoning about various issues. Incorporating the ability to perform
quantitative analysis and prediction would further improve the reasoning. Most
current system architecture frameworks, however, lack modeling languages that
support interoperability analysis[2].

In this article, we present P2AMF, a framework for generic business and
software system analysis. P2AMF is based on the Object Constraint Language
(OCL), which is a formal language used to describe expressions on models in the
Unified Modeling Language (UML) [3]. The most prominent difference between
P2AMF and OCL is the probabilistic nature of P2ZAMF. P2AMF allows the user
to capture uncertainties in both attribute values and model structure.

1.1 OCL for system property predictions

In business and software development, many system qualities are worth predict-
ing. These include theoretically well-established non-functional properties such
as performance [4]. There are also properties where consensus on the theoretical
base has yet to materialize, e.g. in the case of security [5], and interoperability
[1]. Finally, there are many functional capabilities and non-functional properties
that are so specific to a certain context that the analysis approach needs to be
tailored for each instance, e.g. the coverage of the dictionary in a word processor
application or the acoustic faithfulness of instruments in a music production ap-
plication. The multitude of potentially interesting analyses prompts the need for
generic languages and frameworks for system property analysis. An additional
justification for such formalisms is the integrated analysis of multiple properties
that they enable. Multi-attribute analysis provides a base for structured system
quality trade-off, and the trade-off between different properties is a key element
in any design activity.

To contain the analysis algorithms of multiple system properties, a frame-
work needs to feature an appropriate and sufficiently flexible language. Many
system property analysis approaches are based on logic, arithmetic operations
and structural aspects of the system [6][7]. The dominating notation for soft-
ware modeling today is the Unified Modeling Language (UML) [8]. Any generic
framework for quality analysis therefore benefits from UML compatibility, al-
lowing models to be shared between design and analysis.

The Object Constraint Language (OCL) [3], satisfies these requirements.
OCL incorporates predicate logic, arithmetics and set theory, making it suffi-
ciently expressive to contain most system property analysis needs. As a part of
UML, OCL is also highly interoperable.

OCL was developed with normative purposes in mind, allowing the designer
to constrain future implementation to conform not only to UML models, but
also to OCL statements. However, OCL is also suitable for the descriptive (in
particular predictive) purposes of system analysis, [5]. Still, one increasingly
important characteristic of modern business and software systems is not captured
by OCL: uncertainty.

PZAMF 3

As the business and IT-systems grows older, our knowledge of them becomes
less certain. There are several reasons for this development. Firstly, business and
software systems are rapidly increasing in complexity; they are growing in size
as well as in the complexity of the underlying technologies. Secondly, as systems
and components grow older, so do the people who developed them, and finally
they will no longer be available. Combined with the poor state of documentation
that plagues many projects, this adds to our uncertainty. Thirdly, the use of
externally developed and maintained software is increasing.

To allow for explicit consideration of uncertainty in the analysis of non-
functional properties, the framework presented in this paper, P2ZAMF, is capa-
ble of expressing and comprehensively treating uncertainty in UML models. In
P2AMF, attributes are random variables. P2ZAMF also allows the explicit mod-
eling of structural uncertainty, i.e. uncertainty regarding the existence of objects
and links. Indeed, as opposed to comparable formalisms (cf. Section 4 on re-
lated work), PZAMF features probabilistic versions of logic, arithmetic and set
operators, properly reflecting both structural uncertainty and the uncertainty of
attribute values.

This article unfolds as follows: In Section 2, P2AMF is described from the
perspective of the user; in this section, the contribution of the article is pro-
vided in its most accessible form. The section also include references to some
current applications, ranging from business aspects such as organizational struc-
ture to more IT related aspects. The most challenging part of the development of
P2AMEF was the extension of OCL to a probabilistic context. The proposed infer-
ence approach is presented in Section 3. In Section 4, related work is considered.
Finally, in Section 5 conclusions are described.

2 Introduction to P2AMF

In this section, PZAMF is described from the point of view of the user, i.e. an
analyst evaluating a system property. In the first subsection, the differences be-
tween P2AMF and the UML-OCL duo are explained. Then, an example class
diagram is introduced and subsequently instantiated. This is followed by a sub-
section where the object diagram attribute values are predicted. The final two
subsections describe the expressiveness and some current applications of PZAMF.

2.1 Differences between P2AMF and UML-OCL

The Object Constraint Language (OCL) is a formal language used to describe
expressions on UML models. These expressions typically specify invariant con-
ditions that must hold for the system being modeled, or queries over objects
described in a model [3].

From the user perspective, P2AMF has many similarities to UML-OCL; from
a syntax perspective, every valid P2AMF statement is also a valid OCL state-
ment. There are, however, also significant differences. The first and most im-
portant difference is that while OCL mainly is employed in the design phase to

4 Pontus Johnson et al.

specify constraints on a future implementation, P2ZAMF is used to reason about
existing or potential systems. P2AMF may be employed to predict the uptime of
a system while OCL is used to pose requirements on the uptime of the same sys-
tem. While OCL is normative, mandating what should be, P2AMF is descriptive
and predictive, calculating what ¢s or will be.

A second difference between UML-OCL and P2AMF is the importance of
the object diagram for PZAMF. As in standard UML, class diagrams with em-
bedded expressions may be constructed that represent a whole class of systems.
These diagrams may then be instantiated into object diagrams representing the
actual systems considered. In PZAMF, however, the object diagrams become
particularly significant as inference is performed on them.

Furthermore, P2AMF takes uncertainty into consideration. In particular, two
kinds of uncertainty are introduced. Firstly, attributes may be stochastic. For
instance, when classes are instantiated, the initial values of their attributes may
be expressed as probability distributions. As will be described later, the values
may subsequently be individualized for each instance.

Secondly, the existence of objects and links may be uncertain. It may, for
instance, be the case that we no longer know whether a specific server is still
in service or whether it has been retired. This is a case of object existence un-
certainty. Such uncertainty is specified using an existence attribute that is
mandatory for all classes. We may also be unsure of whether a server is still
in the cluster servicing a specific application. This is an example of associa-
tion uncertainty. Similarly, this is specified with an existence attribute on the
association, implemented using association classes.

The introduction of two mandatory existence attributes and the specifica-
tion of attribute values by means of probability distributions thus constitute the
only changes to OCL as perceived by the user. These modest changes, however,
allow for a comprehensive probabilistic treatment of the affected class and ob-
ject diagrams, including both attribute uncertainty and structural uncertainty,
enabling proper probabilistic inference over OCL expressions.

2.2 An example class diagram

To illustrate the usage of P2ZAMF, consider the simple example of a cloud ser-
vice. This is a case where the probabilistic nature of P2ZAMF is relevant; in cloud
computing, the sheer complexity of the cloud mandate for an architecture, and
architecture analysis, approach. Furthermore, there is a fundamental uncertainty
about such things as the number of servers currently providing a given service,
about the characteristics of these particular servers, etc. Nevertheless, these as-
pects influence the properties of the service at hand. From an interoperability
perspective, properties such as response time and availability are important to
consider. Although these are only a small part of aspects important for interop-
erability, they serve as an well-sized and self-contained example for illustrating
P2AMF.

The class diagram for the example is given in Fig. 1. It contains three classes:
Service, Cloud and Server. In the present example, we assume that the service

Service

responseTime:REAL
existence:BOOLEAN

min(REAL[*]) : REAL

1.
provision
1

Clouc

responseTime:REAL
existence:BOOLEAN

[X
execution
1.

Server

responseTime:REAL
available:BOOLEAN
responseTimeWhenAvailable:REAL
timeToRepair:REAL
existence:BOOLEAN

Fig. 1. An example class diagram.

PZAMF

5

provider, in order to commit to a feasible service level agreement, would like to
predict the future response time of the provided service. Thus, responseTime is
an attribute of each of the three classes. Furthermore, every server can be up or
down, thus prompting the attribute available. If a server is down, the time to
repair is given by the attribute timeToRepair. Some of the attributes are given
initial values while the rest are derived from other attributes. There is also a
helper operation, min, returning the minimum of the provided values. Below,
the model’s P2ZAMF expressions are provided.

context Service:
derive: cloud.responseTime + min(cloud.server

context Service:

body: values—>

:responseTime : Real

:min(values:Bag(Real)): Real
iterate (x:Real;

acc:Real=maxVal|x.min(acc))

context Service::

init: Bernoulli

existence : Boolean
(0.98)

context Provision::existence:Boolean

init: Bernoulli

context Cloud:

(0.98)

:responseTime: Real

init: Normal(0.05, 0.01)

context Cloud ::
init: Bernoulli

existence: Boolean
(1.0)

context Execution:: existence:Boolean

init: Bernoulli

context Server ::

(0.70)

responseTime: Real

derive: if available
then responseTimeWA
else timeToRepair

endif

context Server

::responseTimeWA : Real

init: Normal(0.1, 0.02)

context Server ::

timeToRepair: Real

init: Normal(3600, 900)

context Server::

available:Boolean

.responseTime)

6 Pontus Johnson et al.

init: Bernoulli (0.95)

context Server ::existence:Boolean
init: Bernoulli(0.97)

Going from the bottom and up in the PZAMF expressions above, first con-
sider the Boolean server existence attribute. The probability that a given server
exists is given by a Bernoulli distribution of 97%. Since the running example
concerns a future state, this probability distribution represents the belief that a
server will in fact be installed as planned, and will be dependent on the modeler’s
or other expert’s knowledge . Continuing to the attribute available, the distri-
bution specifies a 95% probability that a given server is up and running at any
given moment. For the attributes timeToRepair and responseTimeWA, normal
distributions specify the expected time (in seconds) before a server is up and
running again after a failure and the response time for the case of a server that
has not failed respectively. So far, we have considered four attributes assigned
initial probability distributions on the class level. They thus represent the whole
population of considered servers. Later, as the class diagram is instantiated,
these estimates can be updated with system-specific data.

The top-most attribute of the Server class differs from the previously pre-
sented as it is derived. The derivation states that the response time of the server
depends on whether it is available or not. If it is available, responseTimeWA
gives the response time while timeToRepair returns the relevant value when the
server is down. The Execution association connects the Server to the Cloud
class. As there is uncertainty about whether a given server is connected to the
Cloud, its existence attribute is assigned a probability of 70%.

The Cloud class has two attributes: its existence, which is similar to the
existence attribute of the server class except that we are certain that the Cloud
exists; and a real attribute with an initial probability distribution specifying
the expected response time of the networking infrastructure. The Provision
association class connects Service to the Cloud. Its features are similar to the
Execution association class.

Finally, the class Service contains one derived attribute, responseTime, one
operation, min, and the mandatory existence attribute. The service response time
is given as a sum of the Cloud networking infrastructure response time on the
one hand, and the minimum response time of the set of providing servers on the
other. The min operation simply returns the minimum value of a set of values.
The existence attribute is similar to those of the other classes.

2.3 An example object diagram

The class diagram captures the general type of system and the causal effects that
such systems are subject to. In order to make specific predictions, however, object
diagrams detailing actual system instances are required. Instantiation follows
the same rules as in object orientation in general. Classes are instantiated into
objects, associations into links, multiplicities must be respected, and attributes

PZAMF 7

may be assigned values (in the case of P2AMF, either deterministic values or
probability distributions).

There is, however, one interesting and useful difference. In ordinary UML/OCL,
values may not be assigned to derived attributes since those attributes are in-
ferred from the derivation expression. Assignment of a different value than the
one resulting from the derivation rule would lead to an inconsistent model. The
probabilistic inference algorithm presented in Section 3, however, does allow the
assignment of values to derived attributes, as long as attributes are assigned
values within the ranges specified by the probability distributions, on the class
level. The most useful consequence of this capability is the possibility to infer
backwards in the causal chain. In our running example, we can therefore gain
knowledge about the availability of the servers merely by observing the response
time of the service. This capacity for backwards reasoning is not available in
standard OCL/UML. As an example, consider a model where x =y + z. If x is
assigned a value, OCL can tell us nothing of the value of y. P2AMF, however,
can. Therefore, in P2AMF, all information that is provided in the object diagram
is used to improve the predictions of attribute values.

Returning to the running example, consider the object diagram of Fig. 2. In
this instance of the class diagram, the calculator — an instance of the Service
class — uses theCloud, which is the single instance of the Cloud class. Three
redundant Server instances are present in the Cloud, calcServA, calcServB
and calcServC.

calculator

: Service
responseTime
existence

prO\Ision
theCloud

: Cloug
responseTime
existence

onA executionB ex ionC

calcServA calcServB calcServC

: Server

: Server

: Server

responseTime

available
responseTimeWhenAvailable
timeToRepair

existence

responseTime

available
responseTimeWhenAvailable
timeToRepair

existence

responseTime

available
responseTimeWhenAvailable
timeToRepair

existence

Fig. 2. Instantiation of the example class diagram.

We assume that the service provider estimates the attribute values as pre-
sented in Table 2.Note that attributes may be assigned either deterministic val-
ues, as theCloud.existence, or stochastic ones, as e.g. calcServC.timeToRepair.

Pontus Johnson et al.

Attribute type|Class.Attribute Assigned value
Real calculator.responseTime

Boolean calculator.existence Bernoulli(0.997)
Boolean provision.existence True

Real theCloud.responseTime Normal (0.05, 0.005)
Boolean theCloud.existence True

Boolean executionA.existence Bernoulli(0.85)
Real calcServA.responseTime

Real calcServA.responseTimeWA |Normal(0.08, 0.01)
Real calcServA.timeToRepair |Normal(6000, 2000)
Boolean calcServA.available Bernoulli(0.94)
Boolean calcServA.existence Bernoulli(0.975)
Boolean executionB.existence Bernoulli(0.85)
Real calcServB.responseTime

Real calcServB.responseTimeWA|Normal(0.03, 0.005)
Real calcServB.timeToRepair Normal (9000, 3000)
Boolean calcServB.available Bernoulli(0.91)
Boolean calcServB.existence Bernoulli(0.975)
Boolean executionC.existence Bernoulli(0.92)
Real calcServC.responseTime

Real calcServC.responseTimeWA |Normal(0.12, 0.015)
Real calcServC.timeToRepair |Normal (6000, 2000)
Boolean calcServC.available

Boolean calcServC.existence Bernoulli(0.975)

Table 2. Attributes are assigned either probability distributions or deterministic values
in the object diagram.

Some are not assigned any values at all. These will instead be inferred as part of
the prediction. Again, note that unlike standard UML/OCL, any attribute may
be assigned a value and any attribute may be unassigned; inference will still be
possible. A modeler can therefore obtain predictions based on the current state
of knowledge, however poor that knowledge is. Of course, high uncertainties in
the object diagram will generally lead to high uncertainties in the predictions.

2.4 Inference in the object diagram

With support of a tool [9], the analyst can perform predictive inference on the ob-
ject diagram described above with the click of a button. The details of the under-
lying algorithms are presented in Section 3. The results of the inference are new
probability distributions assigned to the attributes. As these are typically non-
parametric, they are most easily presented in the form of diagrams. Fig 3 displays
the distribution of the most interesting attribute, calculator.responseTime.
We note that the most probable response time is 80ms. This is the sum of the
most probable response times of theCloud and calcServB, as calcServB is the
fastest server and it is probably available. However, there is a certain probability
(24%) that calcServB is down (i.e. that available is false) or that it is not in
service (that existence is false). In this case, calcServA will most probably
(83%) be available, and the response time will increase to 130 ms on average.
If calcServA also fails or if it is not in service, calcServC will provide a mean
response time of 170 ms. Despite the tripled redundancy, there is a small prob-
ability (1.2%) that none of the servers are available. In that case, the response

PZAMF 9

time depends on the installed server with the shortest time to repair, i.e. either
calcServA or calcServC, with a mean of 1:40h (6000 s) each. Finally, although
quite unlikely, there is the risk (0,3%) that none of the servers will exist as mod-
eled; they could have been taken out of service or were perhaps never installed
in the first place. In this case, the response time will be so high that the exact
value no longer matters.

calcServB.responseTime

0,08
006 / calcServA.timeToRepair
calcServA responseTime calcServC.timeToRepair

0,06 0,08 01 0,12 0,14 ‘1000 6000 11000 16000

Fig. 3. calculator.responseTime probability distribution.

As mentioned, backward inference is an important capability of probabilistic
reasoning. As an example, suppose that when the system has been installed,
an end user of the calculator service measures its response time to 130 ms.
From this information, the prediction system automatically infers that both
calcServA and calcServB must be either unavailable (90% probability) or
non-existent (e.g. retired) (10% probability) while calcServC must be providing
the service. This conclusion is reached automatically, but it can be understood
intuitively as follows: Provided by redundant servers, the calculator service
response time is given by the fastest available server. Since the measured service
response time (taking the Cloud into account) is slower than those of calcServA
and calcServB, they are surely down. Since the measured response time fits the
probability distribution of calcServC when it is up and running, this must be
the providing server.

2.5 Expressiveness of P2ZAMF

A set of expressive characteristics makes P2AMF particularly well suited for
specifying predictive system property models. These include object orientation,
support for first-order logic, arithmetics, set theory and support for expressing
both class and instance level uncertainty, as described in this section.

P2AMF operates on class and object diagrams. The object-oriented fea-
tures of such diagrams may therefore be leveraged by the predictive systems
in P2AMF. These features are well known and include class instantiation, in-
heritance, polymorphism, etc. Secondly, P2AMF is able to express first-order
logical relations. The predictive benefits of predicate logic are undisputed and
used as a base for many deductive formalisms [10]. Furthermore, arithmetics, the
oldest branch of mathematics, is used for prediction of properties ranging from

10 Pontus Johnson et al.

hardware-related ones such as reliability [11] to organizational and economic
ones, e.g. efficiency [12].

In order to efficiently make predictions on models such as the ones exem-
plified above, set theory is indispensable. The ability to speak of the number
of components in a certain system, the qualities of a set of objects following a
given navigation path in an object diagram, etc. are important for predictions
on most systems with varying structure [10].

As previously discussed, for many real-world systems and situations, perfect
information is rare. On the contrary, the available information is often incomplete
or otherwise uncertain [13]. In P2AMF, attributes of objects may be expressed
by probability distributions. For many systems, not only the attribute values
are associated with uncertainty, but also the system structure, e.g. does cloud
service Z have double servers as the specification claims, or was one retired last
month? The introduction of the existence attribute on classes and associations
allows the specification of structural uncertainty in P2ZAMF.

The object-oriented separation of theoretical prediction laws on the class
level and the particulars about a specific system on the object level also pertains
to the specification of uncertainty. The class-level modeler may need to express
uncertainties about e.g. the strengths of attribute relations. For instance, to what
extent a certain category of firewalls reduces the success rate of cyber attacks
is rarely known precisely. Similarly as for the instance level, P2AMF allows for
specification of attribute uncertainty as well as structural uncertainty on the
class level.

2.6 Applications of P2ZAMF

P2AMF has been used in class diagrams predicting such diverse properties as
interoperability [1], availability [14], and the effects of changes to the organiza-
tional structure of an enterprise [15]. It has also been used for multi-property
analysis [16]. These applications can be seen as evaluations of P2AMF, in par-
ticular of the expressiveness of the formalism, as well as examples of the wide
variety of properties that can be evaluated using PZAMF. Furthermore, a soft-
ware tool supporting modeling and prediction using P2AMF has been developed,
see [3] for a description of an early version of this tool.

3 Probabilistic Inference

In this section, we explain how inference is performed in P2AMF models. A
Monte Carlo approach is employed, where the probabilistic P2AMF object di-
agram is sampled to create a set of deterministic UML/OCL object diagrams.
For each of these sample diagrams, standard OCL inference is performed, thus
generating sample values for all model attributes. For each attribute, the sample
set collected from all sampled OCL models is used to characterize the posterior
distribution.

PZAMF 11

Several Monte Carlo methods may be employed for probabilistic inference in
P2AMF models, including forward sampling, rejection sampling and Metropolis-
Hastings sampling [17]. Of these, rejection and Metropolis-Hastings sampling
allow the specification of evidence on any attribute in the object models while
forward sampling only allows evidence on root attributes!.

In this section, we will only present rejection sampling as it is the simplest
method that allows evidence on all attributes. Let OP denote a P2AMF object
diagram, let X1, ..., X,, be the set of Boolean existence attributes X in such a
diagram and let Y7, ...,Y,, be a topological ordering of the remaining attributes
Y in the diagram. A topological ordering requires that causal parent attributes
appear earlier in the sequence than their children®. The parents of Y;, Pay,,
are those attributes that are independent variables in the OCL definition of
the child attributes, Y; = fy,(Pay,), where fy, is the OCL expression defining
Y;. Furthermore, let Y" represent the subset of Y that are root attributes,
Payr = (), i.e. they are defined by probability distributions rather than by
OCL expressions, P(Y"). Let YT represent the subset of Y that are not root
attributes, Y” = Y \ Y", i.e. that are defined by OCL statements rather than
by probability distributions, Y;" = fy=(Pay~).

The objective of the rejection samf)ling aigorithm is to generate samples from
the posterior probability distribution P(X,Y|e), where e = eX U e¥ denotes
the evidence of existence attributes as well as the remaining attributes. The
objective is thus to approximate the probability distributions of all attributes,
given that we have observations on the actual values of some attributes, and
prior probability distributions representing our beliefs about the values of all
attributes prior to observing any evidence.

The first step in the algorithm is to generate random samples from the exis-
tence attributes’ probability distribution P(X): x[1], ..., x[M]. For each sample,
x[i], and based on the P2AMF object diagram OP, a reduced object diagram,
N; € N, containing only those objects and links whose existence attributes, Xj,
were assigned the value true, is created. Some object diagrams generated in
this manner will not conform to the constraints of UML. In particular, object
diagrams may appear where a link is connected to only one or even zero objects.
Such samples are rejected. Other generated object diagrams will violate e.g. the
multiplicity constraints of the class diagram. Such samples are also rejected.
Finally, some OCL expressions are undefined for certain object diagrams, for
instance a summation expression over an empty set of attributes. Remains a set
of traditional UML/OCL object diagrams, & C N, whose structures vary but
are syntactically correct, and whose attributes are not yet assigned values.

In the second step, for each of the remaining object diagrams, =;, the proba-
bility distribution of the root attributes, P(Y") is sampled, thus producing the
sample set y"[1], ..., y"[size(E)]. If there is evidence on a root attribute, the sam-
ple is assigned the evidence value. Based on the samples of the root attributes,

! Root attributes have no causal parents.
2 That it is possible to order the attributes topologically requires the absence of cycles.
Acyclicity is therefore a requirement for P2AMF, just as for e.g. Bayesian networks.

12 Pontus Johnson et al.

the OCL expressions are calculated in topological order for each remaining at-
tribute in the object diagram, yI = fyf(PayT)' The result is a set of deterministic
UML/OCL object diagrams, A C E, where in each diagram, all attributes are
assigned values.

The third step of the sampling algorithm rejects those object diagrams that
contain attributes which do not conform to the evidence. The sampling process
ensures that root attributes always do conform, but this is not the case for OCL-
defined attributes. The final set of object diagrams, O C A, contains attribute
samples from the posterior probability distribution P(X,Yle). These samples
may thus be used to approximate the posterior. The algorithm is presented in
pseudo code below.

for(int i=1; i<M; i++) {
X = sampleExistenceAttributes();
x = sampleExistenceAttributes();
N = extractObjectDiagram(O?, x);
if (syntacticallyCorrect(N)) {
y = sampleRemainingAttributes();
A = assignAttributesToDiagram(y, N);
if (conformsToEvidence(A)) {
0O.add(A);
}
}
}

4 Related work

There are three categories of work that in different ways are similar to P2AMF.
The first category includes variants of first-order probabilistic models. Among
other proposals, these include Bayesian Logic (BLOG) [18] and Probabilistic
Relational Models (PRM) [19]. These are similar to P2AMF in their use of
object-based templates which may be instantiated into structures amenable to
probabilistic inference. However, they do not consider how logic and arithmetic
operators are affected by structural uncertainty.

The second category of related work comprises query and constraint lan-
guages such as SQL [20] and OCL [3]. Similarly to P2AMF, these languages
allow logical and arithmetic queries of object or entity models. They are, how-
ever, deterministic rather than probabilistic.

The third and most important category of related work is work on stochastic
quality prediction for software architecture. These include MARTE [4], KLAPER
[21] and the Palladio component model for model-driven performance prediction
[22], where two of them have opted for UML or MOF based modeling formalisms.
However, common to all of these contributions is their focus on the analysis of
particular properties. P2ZAMF differs from these, as it does not propose specific

PZAMF 13

analyses but rather provides a general language for expressing them. The closest
match is probably the work by Ferrer et al. on multiple non-functional property
evaluation [23], using the Dempster-Shafer approach to probabilistic reasoning.
However, P2ZAMF is more general still; aiming to offer not just a toolbox but a
unified language where the best practice of e.g. reliability or performance mod-
eling can be expressed. Within this third category, there are also generic frame-
works for system quality analysis, such as ATAM [24]. These typically provide
different support than P2AMF, and are not based on probabilistic foundations.

5 Conclusions

Prediction and assessment of the expected quality and behavior of business and
software systems already in the design stage is a desirable capability. With the
frequent re-configurations of services in a complex and uncertain environment,
the need for such analyses to deal with uncertainty grows.

In this paper, we have reported on a language and tool for probabilistic pre-
diction and assessment of system properties. The formalism, P2AMF, supports
automatic probabilistic reasoning based on set theory, first-order logic and al-
gebra. With class and object diagrams as a base, P2AMF is compatible with
UML. This paper has introduced P2AMF and exemplified it for a simple analy-
sis case, pointed out other areas where PZAMF is being employed and described
the algorithm for performing the required probabilistic inference.

References

[1] Ullberg, J., Johnson, P., Buschle, M.: A language for interoperability mod-
eling and prediction. Computers in Industry (2012)

[2] Chen, D., Doumeingts, G., Vernadat, F.: Architectures for enterprise inte-
gration and interoperability: Past, present and future. Computers in Indus-
try 59(7) (2008) 647659

[3] Object Management Group: Object Constraint Language. (2010) Version
2.3.

[4] Object Management Group: UML Profile for MARTE: Modeling and Anal-
ysis of Real-Time Embedded Systems. (2009) Version 1.0.

[5] Lodderstedt, T., Basin, D., Doser, J.: SecuretUML: A UML-Based Modeling
Language for Model-Driven Security. Lecture Notes in Computer Science
2460/2002 (2002) 426-441

[6] Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing 6(5) (1994) 512-535

[7] Ritchey, R., Ammann, P.: Using model checking to analyze network vulner-
abilities. In: Security and Privacy, 2000. S P 2000. Proceedings. 2000 IEEE
Symposium on, IEEE (2000) 156 — 165

[8] Object Management Group: OMG Unified Modeling Language (OMG
UML), Superstructure. (2011) Version 2.4.

14

[9]

[10]

Pontus Johnson et al.

Ullberg, J., Franke, U., Buschle, M., Johnson, P.: A tool for interoper-
ability analysis of enterprise architecture models using pi-ocl. Enterprise
Interoperability IV (2010) 81-90

Spivey, J.M.: The Z notation: a reference manual. Prentice Hall Interna-
tional (UK) Ltd. (1992)

Lyu, M.R.: Handbook of Software Reliability Engineering. Mcgraw-Hill
(1996)

Mason-Jones, R., Towill, D.R.: Total cycle time compression and the agile
supply chain. International Journal of Production Economics 62(1-2) (1999)
Aier, S., Buckl, S., Franke, U., Gleichauf, B., Johnson, P., Narman, P.,
Schweda, C.M., Ullberg, J.: A survival analysis of application life spans
based on enterprise architecture models. In: Lecture Notes in Informatics.
(2009) 141-154 Proc. 3rd International Workshop on Enterprise Modelling
and Information Systems Architectures (EMISA 2009).

Franke, U., Johnson, P., Kénig, J.: An architecture framework for enter-
prise IT service availability analysis. Software & Systems Modeling (2012)
Forthcomming.

Gustafsson, P., Hook, D., Franke, U., Johnson, P.: Modeling the IT im-
pact on organizational structure. In: Proc. 13th IEEE International EDOC
Conference (EDOC 2009). (2009)

Néarman, P., Buschle, M., Ekstedt, M.: An integrated enterprise architecture
framework for information systems quality analysis. Submitted (2011)
Walsh, B.: Markov Chain Monte Carlo and Gibbs Sampling (2004)

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: Blog:
probabilistic models with unknown objects. In: Proceedings of the 19th
international joint conference on Artificial intelligence. IJCAIT’05, Morgan
Kaufmann Publishers Inc. (2005) 1352-1359

Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic
relational models. In: Proceedings of the 16th international joint confer-
ence on Artificial intelligence - Volume 2, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc. (1999) 1300-1307

Melton, J., Simon, A.: Understanding the new SQL: a complete guide.
Morgan Kaufmann Publishers (1993)

Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An In-
termediate Language for Model-Driven Predictive Analysis of Performance
and Reliability. In: The Common Component Modeling Example. Volume
5153 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2008) 327-356 DOI: 10.1007,/978-3-540-85289-6_13.

Becker, S., Koziolek, H., Reussner, R.: The palladio component model for
model-driven performance prediction. Journal of Systems and Software
82(1) (2009) 322

Ferrer, A.J.: Optimis: A holistic approach to cloud service provisioning.
Future Generation Computer Systems 28(1) (2012) 66 — 77

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. 2
edn. Addison-Wesley Longman Publishing Co., Inc. (2003)

