
HAL Id: hal-01468204
https://inria.hal.science/hal-01468204

Submitted on 15 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Socio-technical Understanding of TLS Certificate
Validation

Giampaolo Bella, Rosario Giustolisi, Gabriele Lenzini

To cite this version:
Giampaolo Bella, Rosario Giustolisi, Gabriele Lenzini. A Socio-technical Understanding of TLS Cer-
tificate Validation. 7th Trust Management (TM), Jun 2013, Malaga, Spain. pp.281-288, �10.1007/978-
3-642-38323-6_23�. �hal-01468204�

https://inria.hal.science/hal-01468204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Socio-Technical Understanding of
TLS Certificate Validation

Giampaolo Bella1, Rosario Giustolisi2, and Gabriele Lenzini2

1 Dipartimento di Matematica e Informatica
Università di Catania, Italy

giamp@dmi.unict.it
2 Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg
{rosario.giustolisi, gabriele.lenzini}@uni.lu

Abstract. To authenticate a web server, modern browsers check whether
a TLS certificate is valid. This check is socio-technical because, when the
technical validation fails, it may request the user to decide, intertwining
the usual technical issues with social elements, such as trust and cultural
values. Hence the need for a methodology aimed at a socio-technical un-
derstanding of TLS certificate validation. This aim is demanding not only
due to user participation but also because browsers behave differently.
An innovative methodology is outlined and demonstrated on the four
market-leader browsers, Chrome, Internet Explorer, Firefox and Opera
Mini. It involves modelling in UML the multi-layered interactions among
servers, browsers, and users and then translating them into a formal lan-
guage amenable to model checking socio-technical security properties.

1 Introduction

The cryptographic protocol to credit for HTTPS security is TLS. It enforces con-
fidentiality and integrity by combining symmetric and asymmetric cryptography
as fully documented in the specification of TLS [4].

The implementation of authentication, the other chief security property of
TLS, is less standardised. Based on asymmetric cryptography, authentication
cannot work without TLS certificate validation, a mechanism (recalled below)
to establish the sole owner of an asymmetric key pair. Notably, the TLS specifica-
tion provided also for the case when certificate validation fails: “If the hostname
does not match the identity in the certificate, user oriented clients MUST ei-
ther notify the user (clients MAY give the user the opportunity to continue with
the connection in any case) or terminate the connection with a bad certificate
error.” [7]. The excerpt describes the scenario where a browser (a client) finds
a mismatch between the server name (hostname) that TLS transports and the
identity in the certificate, and advocates an interaction with the user without
detailing it, or termination. Today, this scenario occurs frequently, for example
when an intruder replaces the server’s certificate with his own, attempting to
masquerade as the server. Another frequent case of failed certificate validation



arises with institutions that self-sign their own certificates rather than purchase
them from accredited authorities. In consequence, as we shall see below, au-
thentication depends on technical factors such as networking, cryptography and
certification, but also on social factors such as user skills, education and trust.

Certificate validation has been studied variously, for example to avoid the
user’s oversight of warning messages [9], or to improve the readability of their
contents [3]. The most relevant existing work seems about the cognitive aspects
of human-computer interaction with the browsers. To position our work, it is
useful to note that we see the socio-technical system consisting of a web server,
a computer network, a browser, a user and possibly an intruder as a ceremony in
the sense of Ellison [5]. The various technical and social layers of a ceremony have
been recently identified [2], with a practically useful indication that certain layers
can be virtually compressed during the analysis to sharpen the analyser’s focus
on other layers. Our work complements existing human-computer interaction
studies by advancing what seems to be the first formal analysis of properties of
certificate validation that are not only logically conditioned on the technology
but also on user actions — while the details of human behaviour and human
cognitive aspects are abstracted away.

We outline TLS certificate validation (Sect. 2), and assess it from a socio-
technical standpoint. We then study four main properties over what are currently
found to be the four market-leader browsers at present [1]: Chrome, Internet
Explorer, Firefox and Opera Mini. Therefore, sixteen socio-technical properties
of modern browsers are studied, and are all related to certificate validation. In
particular, when Firefox cannot validate the certificate of an honest server, it
allows the user to store it; it is found that, even if the user stores it, if Firefox
cannot validate a different certificate for the same server in a second session,
it allows the user to store it again, remarkably, without checking that one was
already stored. This missing check allows the certificate of the second session to
come from an intruder, who could then masquerade as the server (Sect. 4).

This paper contributes well beyond the formal analysis of the sixteen prop-
erties, as it outlines an innovative methodology for the socio-technical analysis
of browser ceremonies. After trying out various graphical notations, UML ac-
tivity diagrams were found to bear the necessary flexibility (Sect. 3). Building
these diagrams was a major hallmark in our understanding of the technicalities
of the browsers. However they are only semi-formal and not directly executable,
while our aim was to leverage on automatic tools to assess properties reliably.
We then derive a CSP# model along with an linear temporal logic specification
of the properties of interest to input to the Process Analysis Toolkit (PAT) [8].
A summary of the findings and some conclusions terminate this paper (Sect. 5).

2 Basics of TLS Certificate Validation

A TLS certificate is an X509 certificate, and consists of a numbers of fields. Many
of them are irrelevant to the focus of this manuscript, and shall be ignored.
An idealised TLS certificate associates an identity with a specific public key,



and 〈ID ,PK ID , I ,SIG〉 is its custom representation. Here, ID stands for the
certificate subject, the entity to whom the certificate is issued (such as a subject
name and URL). Then, PK ID is ID ’s public key, and I is the entity who issues
the certificate. The issuer I checks ID ’s identity off-line and vouches that PK ID

is ID ’s public key by affixing I’s digital signature SIG to the certificate.

There are two main checks for certificate validation. One is trusted issuer
verification, to establish whether the certificate issuer is a trusted Certification
Authority (CA). This is done by querying a sequence of CAs (up to a root)
stored by the operating system or by the browser itself. Notably, knowing which
CAs are trusted may vary from browser to browser, so this check is browser-
dependent. Legitimate and honest servers do not always purchase certificates
signed by a trusted CA, often preferring to sign their certificates themselves.
Self-issued certificates are risky because they cannot be verified by browsers,
raising the risk of man-in-the-middle attacks. This risk is our focus.

The other check is domain name verification, to establish whether the URL
requested by the user matches the ID in the server certificate. Even when the
server certificate can be verified, it may happen that the requested URL does
not match the certificate ID . This commonly occurs when an institution needs
to secure its own sub-domain (e.g., www.my.example.com), but it does not want
to purchase a large number of certificates. Also a failure of this check may be
risky. A domain verification failure may conceal a man-in-the-middle attack. An
intruder could simply create a certificate for a domain that he owns, then get it
signed by a trusted issuer, and bundle it with the traffic for the user.

When the validation process described in the X.509 standard fails, browsers
may adopt certain mechanisms to decide whether the requested server can be au-
thenticated. There are three main such mechanisms. The first two are inherently
socio-technical due to the human intervention, the third is purely technical.

Warnings. Browsers may warn the user when they receive a certificate containing
an untrusted issuer or the domain verification fails. They warn users in various
ways, such as by pop-up windows, open padlocks or red address bars, but because
the present work is not concerned with interface layouts, no difference will be
made, but what counts here is that browsers may allow the user to abort or
continue with their requested server. How users decide is equally beyond focus.

Storing Server Certificates. When validation of a certificate fails, it may still be
the case that the user opts to trust the certificate, namely to accept its contents
as trustworthy. Browsers may support this scenario by allowing a user to store
the server certificates the user decides to trust. In consequence, when the server
is accessed next, its certificate validation will be immediate because its certificate
is found in a trusted store. It is clear that server authentication as established
in this scenario is a socio-technical property because it is mostly based on the
user’s trust in the certificate rather than on objective support provided by the
technology. Of course, storing server certificates is not always a secure choice.



Fig. 1: Activity diagram for certificate validation in Chrome

HTTP Strict Transport Security (HSTS). It is a security mechanism that was
conceived to thwart SSL stripping attacks, whereby an intruder fools a user into
an HTTP connection to a server although the server is also HTTPS compliant.
In short, HSTS compliant browsers prevent “unsecured” HTTP connections to
HSTS compliant servers. The server transmits its HSTS compliancy to a calling
browser via a special header during a secured TLS session.

3 Modelling Browsers

Our first contribution is to model how four relevant browsers implement the full
TLS certificate validation. In tackling browsers, we observe that there appears
to be no standard notation to describe them. Our choice is to use UML activity
diagrams to describe how browsers function. UML activity diagrams support an
intuitive representation of a TLS session, highlighting the validation mechanisms
of each browser. Also, they can be easily translated in a fully formal language,
with the help of their semi-formal semantics — in particular, we will translate
activity diagrams to CSP#, which is then fed to an automatic tool. A third



advantage is that they can represent parallel actions (fork/join) and multiple
choices (branching), while other notations such as Message Sequence Charts or
the Alice-and-Bob notation, cannot.

We select the four browsers that are presently market leaders: Chrome, In-
ternet Explorer, Firefox and Opera Mini. They expose a variety of combinations
of the mechanisms seen in the previous Section. For example, Chrome declares
HSTS support, Internet Explorer uses warnings extensively, Firefox may seem
most complete, and Opera Mini clearly aims at being lightweight. We have built
an activity diagram per browser. Every diagram features three entities: User,
Browser, and Server. Browser is in turn divided into User Interface and Engine.
There is no room to present all diagrams, but Figure 1 shows the one for Chrome.
Entities have a begin circle that points to their own first activity. Thick arrows
depict the flow of activities among different entities, while thin arrows stand
for the internal entity flow. Arrow labels define the objects that are exchanged
between activities. Some activities need to access datastores, which are linked to
activities via dashed arrows. Most activities are self-explanatory and common to
all browser diagrams, such as Display Webpage and Type/Click URL. To keep the
focus on the browser, the server activities are reduced to Init. TLS, whereby the
server starts the TLS handshake on its side, and Finish TLS, where it concludes
the handshake. For example, Figure 1 shows that Chrome supports HSTS and
adopts different certificate stores depending on the underlying operating system.

4 Socio-Technical Security Analysis

We refer to socio-technical analysis since we focus on the technical aspects of
TLS certificate validation as well as the role of the user. Our UML models show
that browsers validate TLS certificates differently. As analysers, we question
whether such differences entail different security, and addressing this question is
the focus of this and the next section.

4.1 A Prototype Methodology

Activity diagrams are only semi-formal, hence are not practical for formal ver-
ification. Aiming at automatic analysis, it is appropriate to use them to then
write a formal model on which a formal encoding of the properties of interest
can be verified quickly. Also, as it can be expected, the formal browser model
shall be augmented with models for the other relevant actors, that is an intruder
and a user. We have taken advantage of the user-friendliness of CSP#, a for-
mal modelling language based on the process algebra Communicating Sequential
Processes (CSP) [6], and of the flexibility of Linear Temporal Logic (LTL) to
formulate the relevant properties. These form the input to the Process Anal-
ysis Toolkit (PAT), which over our experiments has computed outputs within
seconds. The full specification is omitted here. Our prototype methodology for
the socio-technical security analysis of how browsers treat certificate validation
is as follows: (i) describe the browser under study as UML activity diagrams;



(ii) use these diagrams to write a formal model; (iii) extend it with additional
models, respectively for an honest server, a user and an intruder; (iv) encode
the properties of interest in a formal language; (v) execute the extended formal
model and the encoded properties in PAT to assess the validity of the properties.

Additional models, for an honest server, a user and an intruder, are omitted
for brevity. In particular, the server can opt for self-issued certificates; the user
is modelled expressively as a non-deterministic process; the intruder, in line
with a Dolev-Yao one, owns another server, controls the network, and can fake
certificates at will but not tamper with encryption.

4.2 Socio-Technical Security Properties

We describe four different security properties. Each property binds elements like
TLS session, certificates and, notably, user choices.

Property 1 (Warning Users) A user whose browser receives an invalid cer-
tificate on a TLS session is warned about this by the browser before the browser
completes the session.

As explained above, a certificate is invalid if either trusted issuer verification
or domain name verification fail. We remarked that this can be the case in a
variety of scenarios, more ore less risky for the user. For example, some scenarios
conceal an intruder who attempts a man-in-the-middle attack inserting a fake
certificate of his own; others see a server self-issue a certificate for itself. By this
property, we set out to assess whether browsers warn the user that certificate
validation was not smooth.

Property 2 (Storing Server Certificates) A user who stores a certificate
that associates an honest server to its public key on a TLS session via a browser
is protected from man-in-the-middle attacks on future sessions with the same
server via the same browser.

When browsers receive an invalid certificate, they may still allow the user to store
it. If one assumes that a certificate in fact is trustworthy because it contains a
correct association between an honest server and the public key that legitimately
belongs to it, one could expect that future sessions with the same server will be
protected from man-in-the-middle attacks. We shall see in the discussion that
follows that this is not true for all browsers.

Property 3 (Applying HSTS User Security) A user who accesses a server
that sends an HSTS header on a TLS session via a browser that receives a valid
certificate about the server is protected from man-in-the-middle attacks on future
sessions with the same server via the same browser.

This property stands on a different scenario from that of the previous one, al-
though their conclusions are equal. This scenario sees an HSTS compliant server
who sends a valid certificate to the browser that the user is using. However, it
remains to be checked whether the browser is HSTS compliant too, in which
case it whitelists the server because its certificate is validated once.



Property 4 (Learning from Server Certificate History) A user who com-
pletes a TLS session with a server via a browser receiving an invalid certificate,
and then completes another session with the same server via the same browser
receiving a valid certificate is warned by the browser about the risk of man-in-
the-middle attack.

This property aims at checking whether the browser informs the user that a
man-in-the-middle attack might have occurred in a previous TLS session. For
example, let us consider a session where the browser receives an invalid certificate
from an intruder who is shading the required server; the browser may warn the
user about this (according to Property 1). If in a subsequent session the browser
receives a valid certificate about the same server, it may be taken as an additional
indication that something went wrong in the former session — hence the check
on whether the browser reinforces the warning to the user that she risked a
man-in-the-middle attack in the former session.

5 Summary of the Findings and Conclusions

We have translated all previous properties as LTL formulas and checked their
satisfiability with PAT model checker on CSP# models representing our browsers
extended with server, intruder and user model. We have run the tool on each
of our four browsers, and on each of our four target properties, reaching sixteen
interesting findings. The properties are encoded in such a way that the tool never
incurs into state explosion. Interpreting the tool output required some effort, and
the following table summarises the findings.

Browser Property 1 Property 2 Property 3 Property 4

Firefox × × X ×
Chrome X X X ×

Internet Explorer X X × ×
Opera Mini × X × ×

Property 1 is found valid over Chrome and Internet Explorer. By contrast,
the model checker shows traces that falsify it over Firefox and Opera Mini. With
Firefox, the trace reports a sequence of two TLS sessions both with a man-in-
the-middle attack. In the first session, Firefox warns the user, who chooses to
store the intruder certificate anyway. In the second session, the user tries to
access the same server, but this time Firefox has the intruder server certificate
stored, and completes the session without warning the user. This is due to the
drawbacks of storing server certificates, which Firefox allows its users to do. The
trace that falsifies the property with Opera Mini is rather trivial because this
browser does not offer any choice to the user at all. Opera Mini in fact shows
a padlock when the certificate is valid, but even if the certificate is invalid, the
browser completes the TLS session anyway, and without informing the user.

Property 2 turns out the most tricky. The outcome of our experiments may
seem surprising. It is found that all browsers verify the property except Firefox,



although Firefox is the only one that allows a user to store server certificates. The
outcome is easy to explain in logical terms. The property is a logical implication
whose precondition is that a user stores a server certificate. Because no browser
except Firefox allows this, the property is trivially verified of all these three
browsers, which falsify that precondition. Most surprisingly, the property does
not hold of Firefox, which does not falsify the precondition. The user can in fact
replace a server certificate as many times as she wishes to, while Firefox does
not inform her that a server certificate was already stored.

Property 3 is found to be valid with the browsers that support HSTS, whereas
the tool outputs counterexamples with the others. Finally, checking Property
4 fails on all browsers, denouncing the stateless philosophy whereby browsers
do not record warnings they may have given in the past, hence they cannot
leverage upon them at present. This seems suggesting that, if browsers stored
and processed past warnings, they could help users estimate the trustworthiness
of current, yet invalid, certificates.

The socio-technical analysis of the security of modern browsers combines
traditional analysis of the underlying technologies with elements of user par-
ticipation. By doing so, it is oriented at characterising security properties also
in terms of what the user may accomplish, with the ultimate aim of building
browsers that are secure in the presence of humans. Our work pertains to various
properties related to TLS certificate validation as carried out by four market-
leader browsers. It also outlines a general methodology that is being extended
towards the socio-technical analysis of browser ceremonies.

References

1. http://gs.statcounter.com/#browser-ww-monthly-201211-201301

2. Bella, G., Coles-Kemp, L.: Layered Analysis of Security Ceremonies. In: Information
Security and Privacy Resevarch SE-23, IFIP Advances in Inf. and Communication
Technology, vol. 376, pp. 273–286. Springer-Verlag (2012)

3. Biddle, R., van Oorschot, P.C., Patrick, A.S., Sobey, J., Whalen, T.: Browser inter-
faces and extended validation SSL certificates: an empirical study. In: Proc. of the
ACM CCSW’09. pp. 19–30. ACM, New York, NY, USA (2009)

4. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (2008)

5. Ellison, C.: Ceremony design and analysis. IACR eprint archive pp. 1–17 (2007)
6. Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21(8), 666–

677 (1978)
7. Rescorla, E.: HTTP Over TLS. RFC 2818 (2000)
8. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under

Fairness. In: Proc. of CAV’09. LNCS, vol. 5643, pp. 709–714. Springer (2009)
9. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: An

empirical study of SSL warning effectiveness. In: Proc. of USENIX’09 (2009)


