N

N

On the Homogeneous Multiprocessor Virtual Machine
Partitioning Problem
Stefan Groesbrink

» To cite this version:

Stefan Groesbrink. On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem. 4th
International Embedded Systems Symposium (IESS), Jun 2013, Paderborn, Germany. pp.228-237,
10.1007/978-3-642-38853-8_21 . hal-01466677

HAL Id: hal-01466677
https://inria.hal.science/hal-01466677
Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01466677
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On the Homogeneous Multiprocessor Virtual
Machine Partitioning Problem

Stefan Groesbrink

Design of Distributed Embedded Systems, Heinz Nixdorf Institute
University of Paderborn
Fuerstenallee 11, 33102 Paderborn, Germany
s.groesbrinkQupb.de, http://www.hni.uni-paderborn.de/

Abstract. This work addresses the partitioning of virtual machines
with real-time requirements onto a multi-core platform. The partition-
ing is usually done manually through interactions between subsystem
vendors and system designers. Such a proceeding is expensive, does not
guarantee to find the best solution, and does not scale with regard to
the upcoming higher complexity in terms of an increasing number of
both virtual machines and processor cores. The partitioning problem is
defined in a formal manner by the abstraction of computation time de-
mand of virtual machines and computation time supply of a shared pro-
cessor. The application of a branch-and-bound partitioning algorithm is
proposed. Combined with a generation of a feasible schedule for the vir-
tual machines mapped to a processor, it is guaranteed that the demand
of a virtual machine is satisfied, even if independently developed vir-
tual machines share a processor. The partitioning algorithm offers two
optimization goals, required number of processors and the introduced
optimization metric criticality distribution, a first step towards a parti-
tioning that considers multiple criticality levels. The different outcomes
of the two approaches are illustrated exemplarily.

1 Introduction

This work targets the hypervisor-based integration of multiple systems of mixed
criticality levels on a multicore platform. System virtualization refers to the divi-
sion of the resources of a computer system into multiple execution environments
in order to share the hardware among multiple operating system instances. Each
guest runs within a virtual machine—an isolated duplicate of the real machine.
System virtualization is a promising software architecture to meet many of the
requirements of complex embedded systems and cyber-physical systems, due to
its capabilities such as resource partitioning, consolidation with maintained iso-
lation, transparent use of multiple processor system-on-chips, and cross-platform
portability.

The rise of multi-core platforms increases the interest in virtualization, since
virtualization’s architectural abstraction eases the migration to multi-core plat-
forms [11]. The replacement of multiple hardware units by a single multi-core

2 Stefan Groesbrink

system has the potential to reduce size, weight, and power. The coexistence of
mixed criticality levels has been identified as one of the core foundational con-
cepts for cyber-physical systems [3]. System virtualization implies it in many
cases, since the applicability of virtualization is limited significantly if the inte-
gration of systems of different criticality level is not allowed.

Contribution This work addresses the partitioning of virtual machines with
real-time requirements onto a multi-core platform. We define this design prob-
lem as the homogeneous multiprocessor virtual machine partitioning problem in
a formal manner, specifying the computation time demand of virtual machines
and the computation time supply of a shared processor. A mapping of a given set
of virtual machines among a minimum number of required processors is achieved
by a branch-and-bound algorithm, such that the capacity of any individual pro-
cessor is not exceeded. This automated solution provides analytical correctness
guarantees, which can be used in system certification. An introduced optimiza-
tion metric is a first step towards a partitioning that considers multiple virtual
machine criticality levels appropriately.

2 System Model

2.1 Task Model and Virtual Machine Model

According to the periodic task model, each periodic task 7; is defined as a se-
quence of jobs and characterized by a period T;, denoting the time interval
between the activation times of consecutive jobs [16]. The worst-case execution
time (WCET) C; of a task represents an upper bound on the amount of time
required to execute the task. The utilization U(7;) is defined as the ratio of
WCET and period: U(7;) = C;/T;. A criticality level x is assigned to each task
[24]. Only two criticality levels are assumed in this work, HI and LO.

A virtual machine Vj is modeled as a set of tasks and a scheduling algorithm
A, which is applied by the guest operating system. A criticality level x is as-
signed to each virtual machine. If a virtual machine’s task set is characterized by
multiple criticality levels, the highest criticality level determines the criticality
of the virtual machine.

2.2 Multi-core and Virtual Processor

Target platform are homogeneous multi-core systems, consisting of m identical
cores of equal computing power. This implies that each task has the same ex-
ecution speed and utilization on each processor core. Assumed is in addition a
shared memory architecture with a uniform memory access.

A virtual processor is a representation of the physical processor to the virtual
machines. A dedicated virtual processor Pé“” is created for each virtual machine
Vi.. It is in general slower than the physical processor core to allow a mapping

of multiple virtual processors onto a single physical processor core. A virtual

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 3

processor is modeled as a processor capacity reserve [18], a function I7(t): N —
{0,1} defined as follows:

= (1)

() = 0, resource not allocated
1, resource allocated

The computation capacity of a physical processor core is partitioned into a
set of reservations. Each reservation is characterized by a tuple (Qx, Y%): in every
period 7%, the reservation provides @ units of computation time. oy = Qx /7%
denotes the bandwidth of the virtual processor.

The computational service provided by a virtual processor PY"* can be an-
alyzed with its supply function Zj(t), as introduced by Mok et al. [19]. Zy(t)
returns the minimum amount of computation time (worst-case) provided by the
virtual processor in an arbitrary time interval of length ¢ > 0:

to+t
Zy(t) = min/ II(z)dx . (2)

to>0 to

2.3 Notation
The symbols in this paper are therefore defined as follows:

. 7 = (C;, Ty) : task ¢ with WCET C;, period Tj, utilization U(r;) = C;/T;
P={Py,Ps,..., Py} : set of processors (m > 2)

V ={V1,Va,...;V,} : set of virtual machines (n > 2)

7; € Vi, : task 7; is executed in Vj,

U(Vik) = >, cv, U(mi) : utilization of Vj,

x(Vi) € {LO, HI} : criticality level of Vj

prirt = [pyirt ppirt | PVt : virtual processors, Vi is mapped to Py
. (Qk, T) : resource reservation with bandwidth ay = Qx/7%

. Zj(t) : minimum amount of computation time provided by Pt

. I'(P;) : subset of virtual processors allocated to P;

© 0N D N

—
o

All parameters of the system—mnumber of processors and computing capacity,
number of virtual machines and parameters of all virtual machines, number of
tasks and parameters of all tasks—are a priori known.

3 The Homogeneous Multiprocessor Virtual Machine
Partitioning Problem

The scheduling problem for system virtualization on multi-core platforms con-
sists of two sub-problems:

(i) partitioning: mapping of the virtual machines to processor cores
(ii) uniprocessor hierarchical scheduling on each processor core

4 Stefan Groesbrink

Sub-problem (ii) is well-understood and many solutions are available, e.g.
[15]. This work focuses on sub-problem (i) and refer to it as the homogeneous
multiprocessor virtual machine partitioning problem. More precisely, the virtual
processors Pt executing the virtual machines V have to be mapped to the
physical processors P:

v pert /3 p (3)
f1 is a bijective function: each virtual machine V}, is mapped to a dedicated
virtual processor PP, fy maps 0 to n = |PV""| virtual processors to each

element of P. A solution to the problem is a partition I", defined as:
Ir= (F(Pl)vp(PQ)a-"vF(Pnl)) (4)

Such a mapping of virtual machines (equivalent to virtual processors) to
physical processors is correct, if and only if the computation capacity require-
ments of all virtual processors are met; and by consequence the schedulability
of the associated virtual machines is guaranteed.

The partitioning problem is equivalent to a bin-packing problem, as for ex-
ample Baruah [2] has shown for the task partitioning problem by transformation
from 3-Partition. The virtual machines are the objects to pack with size deter-
mined by their utilization factors. The bins are processors with a computation
capacity value that is dependent on the applied virtual machine scheduler of this
processor. The bin-packing problem is known to be intractable (NP-hard in the
strong sense) [10] and the research focused on approximation algorithms [6].

4 Scheduling Scheme

It is an important observation that the hypervisor-based integration of inde-
pendently developed and validated systems implies partitioned scheduling. As
a coarse-grained approach, it consolidates entire software stacks including an
operating system, resulting in scheduling decisions on two levels (hierarchical
scheduling). The hypervisor schedules the virtual machines and the hosted guest
operating systems schedule their tasks according to their own local scheduling
policies. This is irreconcilable with a scheduling based on a global ready queue.

Virtual Machine Scheduling In the context of this work, n virtual machines
are statically assigned to m < n processors. Although a dynamic mapping is
conceptually and technically possible, a static solution eases certification signif-
icantly, due to the lower run-time complexity, the higher predictability, and the
wider experience of system designer and certification authority with uniproces-
sor scheduling. Run-time scheduling can be performed efficiently in such systems
and the overhead of a complex virtual machine scheduler is avoided.

For each processor, the virtual machine scheduling is implemented based on
fixed time slices. Execution time windows within a repetitive major cycle are
assigned to the virtual machines based on the required utilization and the maxi-
mum blackout time. As a formal model, the Single Time Slot Periodic Partitions

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 5

model by Mok et al. [20] is applied. A resource partition is defined as N disjunct
time intervals {(S1, E1), ..., (Sn, En)} and a partition period Ppgrtition, SO that a
virtual machine V; is executed during intervals (S;+7- Ppartition, Ei+J- Ppartition)
with j > 0. Kerstan et al. [13] presented an approach to calculate such time in-
tervals for virtual machines scheduled by either earliest deadline first (EDF) or
rate-monotonic (RM), with Sp =0 and S; = E;_:

E Si +U(V;) - Ppartition in case of EDF -
s WU(VJ - Ppartition in case of RM , with
1
Ullftéw(‘/?) = Ntasks * (2"fa5k5 — 1) (6)

In case of RM, a scaling relative to the least upper bound U, lﬁé\/f is required. If the
partition period is chosen as Pparsition = ged({Tx|me € U?:l Vi}), no deadline
will be missed [13].

The virtual machine schedule is computed offline and stored in a dispatching
table, similar to the cyclic executive scheduling approach [1]. The size of this
table is bounded, since the schedule repeats itself after Pygrtition- Such a highly
predictable and at design time analyzable scheduling scheme is the de facto
standard for scheduling high-criticality workloads [21].

In the terms of the resource reservation model of the virtual processor, the
bandwidth ay, of the virtual processor PP that executes virtual machine Vj,
is equal to (Ex — Sk)/Ppartition, With Y = Ppartition and Qr = a - 1. Note
that this abstraction of the computation time demand of a virtual machine to
a recurring time slot that is serviced by a virtual processor (Qx, k) allows to
regard the virtual machine as a periodic task and transforms the virtual machine
partitioning problem to the task partitioning problem.

Task Scheduling Any scheduling algorithm can be applied as task scheduler,
as long as it allows to abstract the computation time requirements of the task
set in terms of a demand-bound function dbf(V;,t), which bounds the compu-
tation time demand that the virtual machine could request to meet the timing
requirements of its tasks within a specific time interval of length ¢ [23]. As a
task set cannot possibly be schedulable according to any algorithm if the total
execution that is released in an interval and must also complete in that interval
exceeds the available processing capacity, the processor load provides a simple
necessary condition for taskset feasibility:

A virtual machine Vi, applying A as local scheduler and executed by a virtual
processor P,fm characterized by the supply function Z, is schedulable if and
only if V¢ > 0: dbfa(Vi,t) < Zp(t) (compare [23]).

5 Partitioning Algorithm

Common task set partitioning schemes apply Bin-Packing Heuristics or Integer-
Linear-Programming (ILP) approaches in order to provide an efficient algorithm

6 Stefan Groesbrink

[5][7]. In the context of this work, however, the number of virtual machines
is comparatively small and the partitioning algorithm is to be run offline and
does not have to be executed on the embedded processor. Therefore, the algo-
rithm performs a systematic enumeration of all candidate solutions following the
branch-and-bound paradigm [14]. The depth of the search tree is equal to the
number of virtual machines n.

Two optimization goals are considered, according to which candidates are
compared. Minimizing the number of processors is the basic optimization goal.
In addition, the goal can be set to maximize the CriticalityDistribution, a
metric defined as follows:

Definition. The Criticality Distribution Z denotes for a partitioning I" the
distribution of the n..;; < n Hl-critical virtual machines among the m processors:

m
Z(I) = M with

)

(7)

Nerit

s virt .) —
(P = {1, it 3P; e Ir'(P): x(V;) = HI,)
0, otherwise.

For example, assumed that n..;; = 4 and m = 4, Z equals 1 if there is at
least one HI-critical virtual machine mapped to all processors; and Z equals
0.75 if one processor does not host a HI-critical virtual machine. This results, if
the maximum number of processors is not limited, to a mapping of each cirtical
virtual machine to a dedicated processor, which is potentially shared with LO-
critical virtual machines, but not with other Hl-critical virtual machines.

The motivation of the optimization goal criticality distribution is the Critical-
ity Inversion Problem, defined by de Niz et al. [8]. Transferred to virtual machine
scheduling, criticality inversion occurs if a Hl-critical virtual machine overruns
its execution time budget and is stopped to allow a LO-critical virtual machine
to run, resulting in a deadline miss for a task of the HI-critical virtual machine.
By definition of criticality, it is more appropriate to continue the execution of
the Hl-critical virtual machine, which can be done for highly utilized processors
by stealing execution time from the budget of LO-critical virtual machines. It
is in general easier to avoid criticality inversion, if virtual machines of differing
criticality share a processor. If the number of virtual machines does not exceed
the number of physical processors, all critical virtual machine are mapped to
different physical processors. The partitioning algorithm either minimizes the
number of processors or maximizes the criticality distribution, while minimizing
the number of processors among partitions of same criticality distribution.

Before generating the search tree, the set of virtual machines V is sorted
according to decreasing utilization. This is motivated by a pruning condition:
if at some node, the bandwidth assigned to a processor is greater than 1, the
computational capacity of the processor is overrun and the whole subtree can
be pruned. Such a subtree pruning tends to occur earlier, if the virtual machines
are ordered according to decreasing utilization.

We introduce that a virtual machine is termed to be heavy, if certification
requires that this virtual machine is exclusively mapped to a dedicated processor

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 7

or if other virtual machines can only be scheduled in background, i.e. the heavy
virtual machine is executed immediately whenever it is has a computation de-
mand. By consequence, a heavy virtual machine cannot be mapped to the same
processor as other Hl-critical virtual machines.

6 Example

The different outcome dependent on the optimization goal of the algorithm is
illustrated with the examplary virtual machine set of Table 1. EDF is assumed
for all virtual machines, so that a scaling is not required and «y = U (V).

Table 1. Example: Set of Virtual Machines

Vi Va Va3 Vi Vs Ve Vi Vs Vo Vig

x LO HI LO LO HI HI HI LO LO HI
U 06 05 05 03 025 02 02 02 02 0.15

Figure 1 depicts the virtual machine to processor mapping for three differ-
ent goals, with a red virtual machine identifier denoting a HlI-critical virtual
machine. Subfigure (a) depicts the outcome for the optimization of the num-
ber of processors. The virtual machine set is not schedulable on less than four
processors. The average utilization per processor is 0.775 and the criticality dis-
tribution Z is 3/5 = 0.6. Subfigure (b) depicts the outcome for the optimization
of the criticality distribution, however with a maximum number of m,,q, = 4
processors allowed. The allocation is therefore still characterized by the mini-
mum number of processors. The criticality distribution Z improves to 4/5 = 0.8.
From a criticality point of view, this mapping is more suitable, since the options
to avoid criticality inversion on processor P3 are very limited in the first solution.
Subfigure (c) depicts an unrestricted optimization of the criticality distribution,
resulting in an additional processor. The optimal criticality distribution Z =1 is
achieved, however at the cost of exceeding the minimum number of processors,
which leads to a decrease of the average utilization per processor to 0.62. The
last mapping is the correct choice, if the five Hl-critical virtual machines are
heavy.

7 Related Work

The related problem of partitioning a periodic task set upon homogeneous mul-
tiprocessor platforms has been extensively studied, both theoretically and em-
pirically [5][7]. Lopez et al. observed that ordering tasks according to decreasing
utilization prior to the partitioning proves helpful [17], a technique applied in
this work as well. Buttazzo et al. proposed a branch-and-bound algorithm for

8 Stefan Groesbrink

U= U= V0
1 V4 V3 V8 1 V3
V7 V1 V8
Vi1 V2 V6 V2 V4 V9
V5 V9 V5 V6 V7
P4 P2 P3 P4 P4 P2 P3 P4
(a) Minimize Bandwidth (b) Minimize Criticality Distribution

(maximum of 4 processors)

1 V3
V1 V8
V2 V4 V9
V5 V6 V7 [Vio 1]
P1 P2 P3 P4 P5

(c) Minimize Criticality Distribution

Fig. 1. Mappings for different Optimization Goals

partitioning a task set with precedence constraints, in order to minimize the re-
quired overall computational bandwidth [4]. Peng and Shin presented a branch-
and-bound algorithm in order to partition a set of communicating tasks in a
distributed system [22].

Kelly at al. proposed bin-packing algorithms for the partitioning of mixed-
criticality real-time task sets [12]. Using a common mixed-criticality task model
(characterized by an assignment of multiple WCET values, one per each criti-
cality level in the system), they experimentally compare different kinds of task
ordering according to utilization and criticality and observed that the latter solu-
tions results in a higher percentage of finding a feasible schedule for a randomly
generated task set.

Shin and Lee introduced a formal description of the component abstraction
problem (abstract the real-time requirements of a component) and the com-
ponent composition model (compose independently analyzed locally scheduled
components into a global system)[23]. Easwaran et al. introduced compositional
analysis techniques for automated scheduling of partitions and processes in the
specific context of the ARINC-653 standard for distributed avionics systems [9],
however, did not tackle the mapping of partions to processors. As required by
the ARINC specification and as done in this work, a static partition schedule is
generated at design time. Both the partitions and the tasks within the partitions
are scheduled by a deadline-monotonic scheduler.

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 9

8 Conclusion and Future Work

This work defined the partitioning problem of mapping virtual machines with
real-time constraints to a homogeneous multiprocessor architecture in a formal
manner. This is the prerequisite for an algorithmic solution. Formal models were
adapted to abstract and specify the computation time demand of a virtual ma-
chine and the computation time supply of a shared processor, in order to analyt-
ically evaluate whether it is guaranteed that the demand of a virtual machine is
satisfied. The application of a branch-and-bound algorithm is proposed with two
optimization metrics. A brief introduction on how to generate a feasible virtual
machine schedule after the partitioning was given. A highly predictable and at
design time analyzable scheduling scheme based on fixed time slices was chosen
as this is the de facto standard for scheduling high-criticality systems.

Partitioning and schedule generation together guarantee that all virtual ma-
chines obtain a sufficient amount of computation capacity and obtain it in time,
so that the hosted guest systems never miss a deadline. This automated solution
provides analytical correctness guarantees, which can help with system certifi-
cation. In contrast to a manual partitioning, it guarantees to find the optimal
solution and scales well with regard to an increasing number of both virtual
machines and processor cores. The optimization metric criticality distribution
is a first step towards a partitioning that considers multiple criticality levels
appropriately. The different outcomes of the two approaches were illustrated
exemplarily.

The presented algorithm serves as a groundwork for a research of the parti-
tioning problem. In particularly, we are going to include the overhead of virtual
machine context switching, since it is for most real implementations extensive
enough to not be neglected. The partitioning directly influences the virtual ma-
chine scheduling, which in turn heavily influences the number of virtual machine
context switches. In addition, communication between virtual machines should
be included, since the communication latency depends on the fact whether two
virtual machines share a core or not. A further interesting question is whether a
more detailled analysis of the timing characteristics of the virtual machines, in
order to map guests with similar characteristics to the same processor, leads to
better results.

Acknowledgments. This work was funded within the project ARAMIS by
the German Federal Ministry for Education and Research with the funding IDs
01IS11035. The responsibility for the content remains with the authors.

References

1. Baker, T., Shaw, A.: The cyclic executive model and ada. Real-Time Systems
(1989)

2. Baruah, S.: Task partitioning upon heterogeneous multiprocessor platforms. In:
Real-Time and Embedded Technology and Applications Symposium (2004)

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Stefan Groesbrink

Baruah, S., Li, H., Stougie, L.: Towards the design of certifiable mixed-criticality
systems. In: Real-Time and Embedded Technology and Applications Symposium
(2010)

Buttazzo, G., Bini, E., Wu, Y.: Partitioning real-time applications over multi-core
reservations. In: IEEE Transactions on Industrial Informatics. vol. 7, pp. 302-315
(2011)

Carpenter, J. et al.: A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In: Handbook on Scheduling Algorithms, Methods, and Mod-
els (2004)

Coffman, E., Garey, M., Johnson, D.: Approximation algorithms for bin packing:
a survey. In: Approximation algorithms for NP-hard problems. pp. 46—93 (1996)
Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. In: ACM Computing Surveys (2010)

de Niz, D. et al.: On the scheduling of mixed-criticality real-time task sets. In:
Real-Time Systems Symposium (2009)

Easwaran, A. et al.: A compositional scheduling framework for digital avionics
systems. In: Real-Time Computing Systems and Applications (2009)

Garey, M., Johnson, D.: Computers and Intractability. W.H. Freman, New York

(1979)
Intel Corporation (White paper): Applying multi-core and
virtualization to industrial and safety-related applications.

http://download.intel.com/platforms/applied /indpc/321410.pdf (2009)

Kelly, O., Aydin, H., Zhao, B.: On partitioned scheduling of fixed-priority mixed-
criticality task sets. In: IEEE 10th International Conference on Trust, Security and
Privacy in Computing and Communications (2011)

Kerstan, T., Baldin, D., Groesbrink, S.: Full virtualization of real-time systems by
temporal partitioning. In: Workshop on Operating Systems Platforms for Embed-
ded Real-Time Applications (2010)

Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497—520 (1960)

Lipari, G., Bini, E.: Resource partitioning among real-time applications. In: Eu-
romicro Conference on Real-Time Systems (2003)

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. In: Journal of the ACM (1973)

Lopez, J., Garcia, M., Diaz, J., Garcia, D.: Utilization bounds for multiprocessor
rate-monotonic systems. Real-Time Systems (2003)

Mercer, C. et al.: Processor capacity reserves: Operating system support for mul-
timedia applications. In: Multimedia Computing and Systems (1994)

Mok, A., Feng, A.: Real-time virtual resource: A timely abstraction for embedded
systems. In: Lecture Notes in Computer Science. vol. 2491, pp. 182-196 (2002)
Mok, A., Feng, X., Chen, D.: Resource partition for real-time systems. In: Real-
Time Technology and Applications Symposium (2001)

Mollison, M. et al.: Mixed-criticality real-time scheduling for multicore systems.
In: International Conference on Computer and Information Technology (2010)
Peng, D., Shin, K.: Assignment and scheduling communicating periodic tasks in
distributed real-time systems. IEEE Transactions on Software Engineering (1997)
Shin, I., Lee, I.. Compositional real-time scheduling framework with periodic
model. In: ACM Transactions on Embedded Computing Systems. vol. 7 (2008)
Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proc. of the Real-Time Systems Symposium (2007)

