
HAL Id: hal-01466667
https://inria.hal.science/hal-01466667

Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Formal Deadlock Analysis of SpecC Models Using
Satisfiability Modulo Theories

Che-Wei Chang, Rainer Dömer

To cite this version:
Che-Wei Chang, Rainer Dömer. Formal Deadlock Analysis of SpecC Models Using Satisfiability
Modulo Theories. 4th International Embedded Systems Symposium (IESS), Jun 2013, Paderborn,
Germany. pp.116-127, �10.1007/978-3-642-38853-8_11�. �hal-01466667�

https://inria.hal.science/hal-01466667
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Formal Deadlock Analysis of SpecC Models
using Satisfiability Modulo Theories

Che-Wei Chang and Rainer Dömer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

Abstract. For a system-on-chip design which may be composed of mul-
tiple processing elements running in parallel, improper execution order
and communication assignment may lead to problematic consequences,
and one of the consequences could be deadlock. In this paper, we propose
an approach to abstracting SpecC-based system models for formal anal-
ysis using satisfiability modulo theories (SMT). Based on the language
execution semantics, our approach abstracts the timing relations between
the time intervals of the behaviors in the design. We then use a SMT
solver to check if there are any conflicts among those timing relations. If
a conflict is detected, our tool will read the unsatisfiable model generated
by the SMT solver and report the cause of the conflict to the user. We
demonstrate our approach on a JPEG encoder design model.

1 Introduction

An embedded system design can be implemented in many ways, and a typi-
cal design usually consists of hardware and software components running on
one or multiple processing elements. In such a design, the partitioned compo-
nents on different processing elements are executed in parallel. To make sure the
data dependency and the execution order is correct, communication between
components synchronizes the execution of components on different processing
elements. In system-level description languages (SLDLs), like SpecC and Sys-
temC, the communication between components is implemented as channels, and
multiple types of channel are provided in the SLDLs to satisfy different kinds of
communication and synchronization requirements.

Channels provide a convenient way to communicate among multiple process-
ing elements. However, misusing the type of channel or setting incorrect buffer
size in a channel can lead to deadlock situations, and it is difficult to determine
the cause of deadlocks when the design is complex. In this paper we propose a
method to perform static analysis and detect deadlocks in the design automat-
ically. Based on the SpecC execution semantics, our approach can extract the
timing relations between behaviors in the design, and then analyse these with
Satisfiability Modulo Theories (SMT) to detect any conflicts. To accelerate the
debugging process, our approach also reports the causes of the deadlock to the
user if a deadlock situation is found.

2 Formal Deadlock Analysis of SpecC Models using SMT

This report is organized as follows: in Section 2 we list the related works in
formal validation of SLDLs. In Section 3, we briefly introduce SpecC SLDL and
Satisfiability Modulo Theories. In Section 4, we describe our proposed approach
in detail, including the assumptions and limitations at this point. Also, we il-
lustrate the conversion from SpecC model to SMT assertions. In the last two
sections, we demonstrate our approach with a JPEG encoder model and sum up
with a conclusion and future work.

2 Related Work

A lot of research has been conducted in the area of verification and validation of
system-level designs. We can see that many researchers convert the semantics or
behavioral model of the SLDL into another well-defined representation and make
use of existing tools to validate the extracted properties. In [3] and [4], a method
to generate a state machine from SystemC and using existing tools for test case
generation is proposed; in [5] and [6], a SystemC design is mapped into semantics
of UPPAAL time automata and the resulting model can be checked by using
UPPAAL model checker; [7] proposed an approach to translate SystemC models
into a Petri-net based representation for embedded systems(PRES+) which can
then be used for model checking. In [8], a SystemC design is represented in
the form of predictive synchronization dependency graph (PSDG) and extended
Petri Net, and an approach combining simulation and static analysis to detect
deadlocks is proposed. [9] focuses on translating a SystemC design into a state
transition system, i.e. the Kripke structure, so that existing symbolic model
checking techniques can be applied on SystemC.

3 Preliminaries

3.1 SpecC SLDL

SpecC [1] is a SLDL and is defined as extension of the ANSI-C programming lan-
guage. It is a formal notation intended for the specification and design of digital
embedded systems, including hardware and software portions. SpecC supports
concepts essential for embedded systems design, including behavioral and struc-
tural hierarchy, concurrency, communication, synchronization, state transitions,
exception handling, and timing. The execution semantics of the SpecC language
are defined by use of a time interval formalism [2].

3.2 Satisfiability Modulo Theories

Satisfiability (SAT) is the problem of determining if an assignment of the Boolean
variables exists, that makes the outcome of a given Boolean formula true. Satisfi-
ability Modulo Theories (SMT) checks whether a given logic formula is satisfiable
over one or more theories. Unlike the formulas in Boolean SAT which are built
from Boolean variables and composed using logical operations, the satisfiability

Formal Deadlock Analysis of SpecC Models using SMT 3

of formula like (x + 2y ≤ 7) ∧ (2x − y ≤ 10) can be solved by combining a
SAT solver with a theory solver for linear arithmetic. The problem to be solved
by SMT can be described with richer language (arithmetic and inequality in
the example above), and the meaning of the formula will be captured by the
supporting theories.

Our proposed approach abstracts the timing relations among the behavior
and channel activities in the SpecC model, and then describes the relations
in the form of inequality expressed in SMT-LIB2 language. After the formulas
are generated, a SMT solver is then used to solve the formula and check if it
is satisfiable. In our implementation, we use Z3 theorem prover developed at
Microsoft Research as our SMT solver. For more detailed information about
SMT-LIB2 language and Z3 theorem prover, please refer to [11] and [10].

4 From SpecC to SMT assertions

In this section, we first introduce the supported SpecC execution types in our
approach and their execution semantics.

4.1 Execution

The basic structure of a SpecC behavior includes port declaration, a main
method, local variable and function declaration (optional), and sub-behavior
instantiation (optional). The supported SpecC behavior models in our tool can
be categorized into the following two types:
Leaf Behavior: A behavior is called leaf-behavior if it is purely composed of
local variable(s), local function(s) and a main method, and there is no sub-
behavior instantiation in the behavior. In the example shown in Figure 4, be-
havior ReadPic and Block1 are leaf behaviors.
Non-Leaf Behavior: A behavior is called non-leaf behavior if it is purely com-
posed of sub-behavior instance(s) and a main method. For non-leaf behaviors,
all statements in the main method are limited to statements specifying the exe-
cution type of the behavior and function calls to sub-behavior instances. In the
example shown in Figure 4, behavior DUT , Read, JPEG encoder and Pic2Blk
are non-leaf behaviors.

Note that for simplicity our tool does not support models which do not fit
into these two categories, and the execution types we are going to describe in
this section is for non-leaf behaviors only since sub-behavior instantiation can
only occur in non-leaf behavior.

In SpecC, the sub-behavior or sub-channel instantiation is regarded as a
statement of function call to a method of the sub-behavior or sub-channel. To
specify the execution time of a statement, for each statement s in a SpecC
program, a time interval ⟨Tstart(s), Tend(s)⟩ is defined. Tstart(s) and Tend(s)
represent the start and end times of the statement execution respectively, and
the following condition must hold: Tstart(s)< Tend(s)

4 Formal Deadlock Analysis of SpecC Models using SMT

The execution time of an instantiated behavior s Texe(s) is defined as Texe(s)
= Tend(s) - Tstart(s). For a statement S consisting of a set of sub-behavior
instances ⟨ssub 1, ssub 2, ssub 3, ...ssub n⟩, the following condition holds:

∀i ∈ {1, 2, 3, ...n},Tstart(S) ≤ Tstart(ssub i)

Tend(S) ≥ Tend(ssub i)

The type of execution defines the relation between the Tstart and Tend of
the behavior instance under the current behavior, and it is specified in the main
method of the behavior. In the following, four types of supported execution
are described, which are Sequential, Parallel, Pipelined, and Loop execution.
Figure 1 shows an example of specifying Sequential, Parallel and Pipelined
execution in a SpecC behavior. Loop execution is not a explicitly defined be-
havioral execution in SpecC, but we can regard it as a special case of Pipelined
execution with only one instance inside.

behavior B_seq

{

 B b1, b2, b3;

void main(void)

 {

 b1.main();

 b2.main();

 b3.main();

 }

} ;

behavior B_par

{

 B_seq A, B;

void main(void)

 { par {

 A.main();

 B.main();

 }

 }

} ;

behavior B_pipe

{

 B b1, b2, b3;

void main(void)

 { pipe(i=0; i<N; i++){

 b1.main();

 b2.main();

 b3.main(); }

 }

} ;

behavior B_loop

{

 B b1;

void main(void)

 { pipe(i=0; i<N; i++){

 b1.main(); }

 }

} ;

Fig. 1. Four Supported Execution Types

Sequential Execution Sequential execution of statements is defined by or-
dered time intervals that do not overlap. Formally, for a statement S consisting
of a sequence of sub-statements ⟨s1, s2, ...sn⟩, the time interval of statement S
includes all time intervals of the sub-statements, and the following conditions
hold:

∀i ∈ {1, 2, ..., n},Tstart(S) ≤ Tstart(si)

Tstart(si) < Tend(si)

Tend(si) ≤ Tend(S)

∀i ∈ {1, 2, ..., n− 1},Tend(si) ≤ Tstart(si+1)

Note that sequential statements are not necessarily executed continuously. Gaps
may exist between Tend and Tstart of two consecutive statements, as well as
between the Tstart (Tend) of the sub-statement and the Tstart (Tend) of the
statement in which the sub-statement is called. Figure 2 shows an example of
the time interval for the sequential execution in Figure 1.

Formal Deadlock Analysis of SpecC Models using SMT 5

Tstart(B_seq) Tend(B_seq)

Tstart(b1) Tend(b1) Tstart(b1) Tend(b1) Tstart(b3) Tend(b3)

B_seq

b2b1 b3

Fig. 2. Time interval for sequential execution

Parallel Execution Parallel execution of statements can be specified by par or
pipe statements. In particular, the time intervals of the sub-statements invoked
by a par statement are the same. Formally, for a statement S consisting of
concurrent sub-statements ⟨s1, s2, ...sn⟩, the following conditions hold:

∀i ∈ {1, 2, ..., n},Tstart(S) = Tstart(si)

Tend(S) = Tend(si)

Tstart(si) < Tend(si)

Figure 3 shows an example of the time interval for the parallel execution in
Figure 1.

Tstart(B_par) Tend(B_par)

Tstart(A.b1)

A.b1

B.b1

B_par

Tend(A.b1)

Tstart(B.b1) Tend(B.b1)

A.b2

B.b2

A.b3

B.b3

Tstart(A.b2) Tend(A.b2)

Tstart(B.b2) Tend(B.b2) Tstart(B.b3) Tend(B.b3)

Tstart(A.b3) Tend(A.b3)

Fig. 3. Time interval for parallel execution

Pipelined & Loop Execution Pipelined execution of statements is a special
form of concurrent execution. The syntax of pipe statement in SpecC is illus-
trated in Figure 1, where N in the example specifies the number of iterations.
Formally, for a statement S consisting of sub-statements ⟨s1, s2, ...sn⟩ executed
for m iterations in pipelined manner, let si.j represents the j-th iteration of the

6 Formal Deadlock Analysis of SpecC Models using SMT

execution of statement si. Then the following conditions hold:

∀i, x ∈ {1, 2, ..., n}, j, y ∈ {1, 2, ...,m} :

Tstart(si.j) < Tend(si.j),

Tstart(si.j) = Tstart(sx.y), if i + j = x + y

Tend(si.j) = Tend(sx.y), if i + j = x + y

Tend(si.j) ≤ Tstart(sx.y), if i + j < x + y

Loop execution is not defined explicitly in the behavioral execution semantics of
SpecC, but it can be regarded as a special case of Pipelined execution with only
one sub-statement.

Note that in the definition of pipelined statements the iteration number
could be infinity if the number is not specified, i.e. no range specification after
the statement pipe. However, to simplify the static analysis in this proposed
method, at this point, the number of iterations has to be a finite integer and
explicitly specified in the model.

Please be aware that for now our proposed method does not support all types
of execution and communication defined in SpecC. Full support of SpecC is part
of our future work.

4.2 Communication

In SpecC, the communication between two behaviors can be implemented by
port variable, channel communication, or by accessing global variables. Since
right now the goal of our approach is to detect deadlocks in the design, the
communication implemented with port variables and global variables are not
taken into consideration because they will not lead to deadlock situation in the
design.

Multiple types of channels are defined in SpecC. These include semaphore,
mutex, barrier, token, queue, handshake, and double handshake. In this paper,
we use queue channel with different buffer sizes to model the supported channel
communication in our approach. For example, to model the blocking characteris-
tics of handshake channels, we use a queue channel with one element buffer and
zero element buffer to implement the handshake and double handshake channel.

To clearly identify the communication between behaviors, we also impose
some limitations on the communication between behaviors. First, to make the
data dependency between behaviors clear, we limit the communication between
behaviors to point-to-point, i.e. every instantiated channel in the design is ded-
icated to the communication between a pair of sender and receiver. Second, to
abstract the channel activity without looking into too much detail of the be-
havior model, the function call of the sending (receiving) function to (from) a
certain channel can only be executed once in the main method of a behavior, i.e.
a function call to channel communication in any type of iteration (for or while
loop) in the main method of a behavior model is not supported. For the case
that the output of a behavior has to be separated into multiple parts and sent

Formal Deadlock Analysis of SpecC Models using SMT 7

to another behavior, the sending (receiving) function calls have to be wrapped
in a behavior and executed in loop execution by using pipe statements.

Figure 4 shows an example of the situation described above. In this example,
a small picture of size 24-by-16 pixels is read and encoded into a JPEG file.
Since the input image block size for a JPEG encoding process is eight-by-eight
pixels, the picture has to be separated into 6 sub-blocks. The raw picture is read
into the topmost behavior DUT by sub-behavior Read, then behavior Pic2Blk
divides the picture into six 8-by-8-pixel blocks and sends the blocks to JPEG
encoder model. Inside behavior Pic2Blk, behavior Block1 is instantiated in a
loop execution. Behavor Block1 fetches the block from the raw picture according
to the current iteration number, and calls the sending function to send the data
to JPEG encoder through channel Q. In this example, channel Q is a queue
channel with two buffers and each buffer is an integer array of size 64.

Read i_Read

blkout.

send(blk)

ReadPic i_R

Block1 i_B

6

24x16

Pic2Blk i_S

blkout

Q{2}Q{2}

JPEG Encoder

DUT

DCT

Fig. 4. Behavior Read in the JPEG encoder SpecC model

Similar to the time interval ⟨Tstart,Tend⟩ defined for the execution of a state-
ment, a time stamp set ⟨Tsent(Q),Trcvd(Q)⟩ is also defined for each channel com-
munication activity between behaviors, where Tsent represents the time stamp
when the the execution of sending a data to the channel finishes, and Trcvd rep-
resents the time stamp when the execution of receiving data from the channel
finishes. Based on the definition of Tsent and Trcvd, for a queue channel Q com-
munication through which m data items are transferred, the relation between
time stamps Tsent(Qi) and Trcvd(Qi), where Qi represents the i-th data transfer
through channel Q, should hold:

∀i ∈ {0, 1, 2, ...,m− 1},Tsent(Qi) ≤ Trcvd(Qi)

∀i ∈ {0, 1, 2, ...,m− 2},Tsent(Qi) < Tsent(Qi+1)

Trcvd(Qi) < Trcvd(Qi+1)

∀i ∈ {0, 1, 2, ...,m− n− 1},Trcvd(Qi) ≤ Tsent(Qi+n)

where n is the buffer depth of channel Q.

8 Formal Deadlock Analysis of SpecC Models using SMT

SpecC Design

SC2SIR

SIR File

SIR2SMT

SMT File

Index to

Statements

index
0

Informations
statement

statement

line

line

Z3 SMT Solver

SAT UNSAT

statement

statement
statement

1

2

line

line
line

line statement

Index of

problematic

assertion(s)

Problematic

statement(s)

and

corresponding

line number

Fig. 5. The flow of converting a SpecC model into SMT assertions and deadlock anal-
ysis with the Z3 SMT solver

4.3 From Time Stamps to SMT Assertions

Figure 5 shows the flow of our proposed method. First, the SpecC model is
converted into a design representation called SpecC internal representation(SIR).
The next step is to traverse the internal representation structure and generate
the assertions corresponding to the statements in the design. At the same time,
an index-to-statement record is created which links the generated assertions to
the statements in the design. After the assertions and records are generated,
we use the Z3 theorem prover to check if there is any conflict in the set that
makes the equations unsatisfiable. If there are any, Z3 will report the indices of
assertions leading to the conflict, and our tool can use the indices to access the
record and report the problem information to the user. In the following part of
this section, we use the model shown in Figure 4 as an example, and illustrate
the corresponding assertions for the model.

Execution to SMT assertions: In our proposed method, we use uninterpreted
functions in SMT-LIB2 language to represent every time stamp in the model,
and convert the timing relations between those stamps into assertions. For an
uninterpreted function, the user can define the number of arguments, the data
type of argument, the data type of the return value, and its interpretation. In
our method, the return value of an uninterpreted function is seen as the value
of a time stamp, and the argument(s) of the function is (are) used to specify the
number of times a behavior instance is executed in a pipelined structure or a
loop. For a behavior instance, which is not in a pipelined or loop execution, the
time stamps of this instance are represented as uninterpreted functions with no
argument since the behavior will only be executed once.

Formal Deadlock Analysis of SpecC Models using SMT 9

For example, for instance i S in behavior Read in Figure 4, the following
assertions will be generated:

(declare− fun TstartDUT.i Read.i S () Int)

(declare− fun TendDUT.i Read.i S () Int)

(assert (<= TstartDUT.i Read TstartDUT.i Read.i S))

(assert (<= TendDUT.i Read.i S TendDUT.i Read))

(assert (< TstartDUT.i Read.i S TendDUT.i Read.i S))

(assert (<= TendDUT.i Read.i R TstartDUT.i Read.i S))

For a behavior instance, which is executed in a pipelined or loop for multiple
times, the time stamps of this instance are represented as uninterpreted functions
with one or multiple arguments. The input value of the argument is the number
of execution times of this instance.

For example, for instance S1 in behavior Sender in Figure 4, the following
assertions will be generated:

(declare− fun TstartDUT.i Read.i S.i B (Int) Int)

(declare− fun TendDUT.i Reae.i S.i B (Int) Int)

(assert (forall ((I0 Int)) (=> (and (>= I0 0) (<= I0 5))

(<= TstartDUT.i Read.i S

(TstartDUT.i Read.i S.i B I0)))))

(assert (forall ((I0 Int)) (=> (and (>= I0 0) (<= I0 4))

(<= (TendDUT.i Read.i S.i B I0)

(TstartDUT.i Read.i S.i B (+ I0 1))))))

Communication to SMT assertions: In our approach, the time stamp of
every channel activity is represented as an uninterpreted function with one ar-
gument, and the input value of the argument is the number of execution times
of channel activity. For example, for channel Q in behavior DUT in Figure 4,
the following assertions will be generated:

∀i ∈ {0, 1, ..., 5}, TsentDUT.Q(i) ≤ TrcvdDUT.Q(i)
∀i ∈ {0, 1, ..., 3}, TrcvdDUT.Q(i) ≤ TsentDUT.Q(i+ 2)

Our tool will also generate the equality for the time stamp of the channel activity
and the time stamp of the function call to the interface of the corresponding
channel. For example, the following assertion will be generated for the channel
accessing function call blkout in Figure 4:

∀i ∈ {0, 1, ..., 5},
TsentDUT.q(i) = TsentDUT.i Read.i S.i B.blkout(i)

TstartDUT.i Read.i S.i B(i) ≤ TsentDUT.i Read.i S.i B.blkout(i)

TsentDUT.i Read.i S.i B.blkout(i) ≤ TendDUT.i Read.i S.i B(i)

10 Formal Deadlock Analysis of SpecC Models using SMT

For space limitations, we can only list a portion of the assertions as examples.
Other assertions are generated based on the timing relations we described in
Section 4.1 and Section 4.2.

During the assertion creation, a table named index-to-statement will also be
generated. For every assertion generated by our tool, an identical index is given
to the assertion and the information about the corresponding statement that is
stored in the entry addressed by that index. Take assertion TrcvdDUT.Q(i) ≤
TsentDUT.Q(i+ 2) listed above as an example. This assertion is generated be-
cause channel Q is instantiated in behavior DUT and its depth is set to two.
Therefore, in the entry addressed by the index of this assertion, the information
of the statement specifying the depth of the channel is stored.

5 Experiments

In this section, we demonstrate our proposed method with a JPEG encoder
SpecC model. In this example, the JPEG encoder is asked to encode five sub-
frames of size eight-by-eight pixels from a raw picture. Figure 6 shows two
different implementations of the SpecC JPEG encoder model.

In the JPEG encoder, every subframe will be encoded in three steps, two-
dimensional discrete cosine transform (DCT), quantization, and Huffman en-
coding. For every subframe, these three encoding steps have to be executed in
order. In our SpecC model, three behaviorsD, Q, andH are implemented to per-
form the discrete cosine transform, quantization, and Huffman coding of JPEG
encoding, respectively.

quan huff

6 6

dct

6

quan huff

6 6

dct

6

QD HQD H

Quantize_Huffman

JPEG EncoderJPEG Encoder

(A) (B)

qh{1}

dq{1}

qh{1}

dq{1}

Fig. 6. Two examples of JPEG encoder SpecC model. Example(A) is a design without
deadlock, while Example(B) will incur a deadlock situation

As shown in Figure 6(A), behavior D, Q, and H are executed in parallel
fashion. To make sure these three steps are executed in correct order, two queue
channels are used to transfer the intermediate encoding data between these three
behaviors, instead of using port variable connections. In model (B), sub-behavior
Q and H are wrapped into a behavior Quantize Huff and executed in sequen-
tial manner. The problem in model (B) is that behavior Q will halt forever after
the first two iterations of its sub-behavior quan. In this composition, behavior
quan will be executed six times before the execution of behavior Q finishes, but

Formal Deadlock Analysis of SpecC Models using SMT 11

the execution will stop because the queue channel between behavior quan and
behavior huff becomes full after the first two data sets are generated. Since
behavior H can only be executed after the execution of behavior Q finishes, the
sub-behavior huff cannot be executed to empty the queue channel qh.

We have used our tool to analyse both models. Table 1 shows the analysis
results of the two models.

Table 1. Static SMT analysis results for model (A) and (B)

Design #ofAssertions T ime Satisfiability Error Report

Model-(A) 187 4.94s SAT N/A

Model-(B) 192 1.39s UNSAT Type: QUEUE
Line[16]: Channel[qh]
Type: SEQ
Line[23]: Instance[Q]
Line[24]: Instance[H]
Type: LOOP
Line[58]: Behavior[Q]
Line[60]: Instance[quan]
...

In Table 1, the value in Line represents the line number of the statement in
the SpecC model, and Type shows the type of information stored in the entry.
For example, the Type : SEQ in this table shows that behavior instance Q and
H are executed in sequential manner, and Q is executed before H. Though for
now the error report might not be intuitive for the unfamiliar user to understand
what led to the deadlock, the model designer who developed the model will easily
recognize the deadlock situation.

6 Conclusion

In this paper we have proposed an approach to statically analyze deadlocks in
SpecC models using a SMT solver. After the introduction of four supported ex-
ecution types and queue channel communication in our tool, we have described
our approach in detail by showing how to extract timing relations between time
stamps according to SpecC execution semantics, and have illustrated the con-
version from timing relations to SMT-LIB2 assertions. Finally we demonstrated
our implementation with a JPEG encoder model, and showed that our approach
is capable of detecting the deadlock in the model and reporting useful diagnostic
information to the user.

At this point, this research is still far from complete and there is a lot of future
work to do. Future work includes expanding the support for larger models, and
extending our research to cover more design verification problems. For now our
implementation only supports a confined set of SpecC models and leaves some

12 Formal Deadlock Analysis of SpecC Models using SMT

important features of SpecC unsupported, such as FSM composition. In the
future we will improve our tool so that it can extract the timing relations from a
control-flow graph and represent the relations with SMT-LIB2 assertions. Except
for the deadlock analysis, we also found that SMT solver might be suitable for
time constraint analysis. We will keep exploring possible applications and make
this approach more general in the future.

Acknowledgment. This work has been supported in part by funding from the
National Science Foundation (NSF) under research grant NSF Award #0747523.
The authors thank the NSF for the valuable support. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation.

References

1. Rainer Dömer, Andreas Gerstlauer, and Daniel Gajski ”SpecC Language Reference
Manual Version 2.0” http\://www.cecs.uci.edu/∼specc/reference/SpecC LRM

20.pdf

2. M. Fujita, H. Nakamura. ”The Standard SpecC Language” Proceedings of the
International Symposium on System Synthesis, Montreal, October 2001.

3. A. Habibi, H. Moinudeen, and S. Tahar. ”Generating Finite State Machines from
SystemC”, In Design, Automation and Test in Europe, pages 76-81, 2006.

4. A. Habibi and S. Tahar. ”An Approach for the Verification of SystemC Designs
Using AsmL”, In Automated Technology for Verification and Analysis, pages 6983,
2005.

5. P. Herber, J. Fellmuth, and S. Glesner ”Model Checking SystemC Designs Using
Timed Automata”, In Int. Conf. on HW/SW Codesign and System Synthesis. ACM,
press, 2008.

6. P. Herber, M. Pockrandt, and S. Glesner ”Transforming SystemC Transaction Level
Models into UPPAAL timed automata”, In 2011 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign (MEMOCODE), pages
161-170, 2011.

7. D. Karlsson, P. Eles, and Z. Peng. ”Formal verification of SystemC Designs using
a Petri-Net based Representation”, In DATE, pages 12281233, 2006.

8. Chun-Nan Chou, Yen-Sheng Ho, Chiao Hsiehand Chung-Yang Huan ”Formal Dead-
lock Checking on High-Level SystemC Designs” In 2010 2010 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 794-799, 2010.

9. Chun-Nan Chou, Yen-Sheng Ho, Chiao Hsiehand Chung-Yang Huan ”Symbolic
Model Checking on SystemC Design” In DAC ’12 Proceedings of the 49th Annual
Design Automation Conference, pages 327-333, 2012.

10. ”Z3 theorem prover” http://z3.codeplex.com/

11. David R. Cok. ”The SMT-LIB v2 Language and Tools: A Tutorial” http://www.

grammatech.com/resources/smt/SMTLIBTutorial.pdf

