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Abstract. In many supervised learning applications, the existence of
additional information in training data is very common. Recently, Vap-
nik introduced a new method called LUPI which provides a learning
paradigm under privileged (or additional) information. It describes the
SVM+ technique to process this information in batch mode. Following
this method, we apply the approach to deal with additional information
by conformal predictors. An application to a medical diagnostic problem
is considered and the results are reported.

Keywords: LUPI, additional information, conformal predictor

1 Introduction

In machine learning classification problems, in batch setting, we usually work
with a set of training and testing examples. In a data-rich world, there often
exist some “pieces” of information about the data that we can add and use it.
But, this information may be available at a training stage and not for the new
examples at the testing stage. For example, usually doctors try to make diag-
nosis using all available information, but if at the end of an investigation the
diagnosis is still unclear, they may send the patient for some additional tests
such as pathological reports, blood test, MRI scans, etc. This is additional or
privileged information and can be used to improve the quality of training set and
hence, the decision rules. However, the same additional information may not be
available for new patients. The question is: can this additional information at
the training stage improve the accuracy of diagnosis for the new patients? Tradi-
tional learning methods cannot use the additional information directly when it is
not available in test set – it is summarised Table 1. Recently, Vapnik proposed a

Table 1. Data set with additional information

Data Set Content
’Usual’ information Additional information Label

Training examples Known Known Known

Test examples Known Unknown To be predicted
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general approach to deal with this problem, known as Learning Using Privileged
Information (LUPI) [10]. However, LUPI approach does not allow us to esti-
mate confidence in the prediction. This paper extends the Conformal Predictors
method [2] to include some additional information available in the training set
in order to make prediction, estimate confidence of the prediction and apply it
in batch and on-line mode.

2 Learning using privileged information

Learning using privileged information (LUPI) is a recently proposed learning
paradigm and the aim is to incorporate that type of information into learn-
ing [10]. An example of privileged information, according to Vapnik, is when
teachers provide students with extra knowledge which exists in explanation,
comments, comparisons and so on. There is no formal definition of “privileged”
information, but we shall interpret it as information that exists only in the train-
ing set.

Let’s consider a sequence of examples x with their labels y:

(x1, x
∗
1, y1), (x2, x

∗
2, y2), ..., (xn−1, x

∗
n−1, yn−1), xi ∈ X, x∗i ∈ X∗, yi ∈ Y.

Here xi ∈ X is an example i that is a vector of attributes of ”usual” or ”available”
information and x∗i ∈ X∗ is a vector of additional (or ”privileged”) attributes;
yi is a corresponding label.

In the classical SVM a prediction for the new example xn can be calculated
by the following equation:

ŷn =
n−1∑
i=1

αiyi(xi · xn)

where weighting coefficients αi are calculated on the basis of the examples
x1, . . . , xn−1 and xn is a new example from the test set. A new method, SVM+
is an extension of SVM and Lagrange multipliers αi are replaced with α∗i calcu-
lated from x∗1, . . . , x

∗
n−1, while the dot product (xi ·xn) is not changed to (x∗i ·x∗n)

because x∗n is unavailable.

3 Conformal approach

3.1 Conformal Predictors

Conformal predictor is a general learning framework to make well-calibrated pre-
dictions, and provides predictions with reliable measures of confidence. The pre-
diction is based on the statistical p-value, which is derived from the strangeness
(or non-conformity) measure αi, that indicates how “strange” a particular exam-
ple is. Any strangeness measure can be used, as long as it holds the exchange-
ability property. Strangeness measures may be constructed from almost any



Learning by Conformal Predictors with Additional Information 3

existing learning algorithms, such as Neural Networks [3], Random Forests [6]
and SVMs [11]. In this paper, we consider the Nearest Centroid method [8] to
derive the strangeness measure. In general, given a strangeness measure A, the
corresponding values are computed for each hypothetic label y ∈ |Y | as

αi = A(o(x1, y1), ..., (xi−1, yi−1), (xi+1, yi+1), ...(xn, y)o, zi), i = 1, ..., n− 1

Given a strangeness measure we can compute p-values:

p(y) =
#{i = 1, ..., n : αi ≥ αn}

n

Obviously, 0 < py ≤ 1. The lower p-value is, the more “strange” the example
is in relation to the entire training set.

3.2 Learning with Additional Information

Let’s consider a sequence of independent and identical examples x with addi-
tional information x∗ and their labels y. For the prediction of new object xn, we
firstly assign it an hypothetic label (y) and hypothetic values (x∗) of additional
attributes and then measure how ”strange” the new example is by calculating
p(y, x∗). The more likely the hypothetic label is, the higher extended p-value
p(y, x∗) is. However, the number of possible combinations will affect the speed
of the processing.

The advantage of Conformal Predictors is its validity, which means:

Prob{p(y) ≤ ε} ≤ ε

for any 0 < ε < 1. Therefore, our next task is how to combine a number of
extended p-value p(y, x∗) into p(y) and to maintain the validity property. Since
only one of the hypotheses is true, selecting the maximum extended p-values is
the only way to hold the validity:

max
x∗

p(y, x∗) ≥ p(y, xtrue), y ∈ Y, x∗ ∈ X∗

Thus:
Prob{max

x∗
p(y, x∗) ≤ ε} ≤ Prob{p(y, x∗true) ≤ ε}

So:
Prob{max

x∗
p(y, x∗) ≤ ε} ≤ ε

Excluding x∗ from it we would get a standard conformal predictor that ig-
nores additional information. Algorithm 1 summarises the procedure:

This method could be applied both in the on-line mode and the off-line
mode. In the on-line mode, the examples are presented one by one. Each time,
we observe the object and predict its label. We could assume that after the pre-
diction is done, both the label yi and the attribute value x∗i will be revealed,
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Algorithm 1 Learning With Additional Information
Require: training example sequence z1 = (x1, x

∗
1, y1), z2 = (x2, x

∗
2, y2), ..., zn−1 =

(xn−1, x
∗
n−1, yn−1)

Require: new example xn

Require: strangeness measure A
for y ∈ Y do

for x∗ ∈ X∗ do
zn = (xn, x∗, y)
for i in 1, 2, ..., n do

αi = A(oz1, z2...., zi−1, zi+1, ...zno, zi)
end for
p(y, x∗) = #{i=1,...,n:αi≥αn}

n

end for
p(y) = maxx∗ p(y, x∗)

end for

see in the following description of the on-line prediction with additional infor-
mation protocol. At the n-th step, we have observed the previous examples
(x1, x

∗
1, y1), ..., (xn−1, x

∗
n−1, yn−1) and new object xn and our task is to predict

yn without x∗n. The new example will be added to the training examples and
used to generate a new rule for next prediction. On-line mode is a simple form
of the slow learning from [11] where the feedback is given with a delay. In this
protocol we assume that some symptoms may also come with a delay. For ex-
ample, if a prediction algorithm is designed to classify whether a patient has a
disease or not by some symptoms and blood test in on-line mode, but the blood
test result is not available (will be given, maybe, one day later).

On-line prediction with additional information Protocol:
FOR n = 1, 2....;
Reality outputs xn ∈ X;
Predictor outputs Γ ε

n ⊆ Y for all ε ∈ (0, 1);
Reality outputs x∗n ∈ X∗, yn ∈ Y ;
END FOR

4 Applications and Experiments

The conformal prediction method with additional information has been applied
to Abdominal Pain dataset [1]. The data set consists of 6387 patient records with
9 categories of diseases and 135 symptoms [1, 4, 5]. The 9 diseases for diagno-
sis are: Appendicitis (APP, 844 examples), Diverticulitis (DIV, 143 examples),
Perforated Peptic Ulcer (PPU, 130 examples), Non-Specific Abdominal Pain
(NAP, 2835 examples), Cholecystitis (CHO, 572 examples), Intestinal Obstruc-
tion(INO, 417 examples), Pancreatitis(PAN, 96 examples), Renal Colic(RCO,
473 examples) and Dyspepsia(DYS, 877 examples).

Each symptom has two values, 1 and 0: either the patient has the symptom
or not. For each disease group, experts suggest a sequence of symptoms which
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are more relevant for its diagnosis. Suppose that some of these symptoms are
known for the collected training data but are unknown for a testing example,
then they play the role of privileged information in this paper.

If we now choose, for example, the Nearest Centroid algorithm as an under-
lying algorithm to derive the corresponding strangeness measure, by using the
ratio of distances as a strangeness measure:

αi =
{D(xi, µy)|yi = y}

min{D(xi, µi)|yi 6= y}

where D is the Euclidean distance measure and µi is the centroid (the averaged
example) of the class i. Then, we can label a new example the same way as the
examples of the nearest class.

Table 2. Single prediction by Conformal Predictor on Abdominal Pain dataset

Diagnostic With additional information No additional information Size of additional
Group Average accuracy Average accuracy attributes

APP 0.89±0.014 0.85±0.042 3
DIV 0.97±0.004 0.93±0.052 3
PPU 0.98±0.014 0.96±0.045 8
CHO 0.97±0.038 0.93±0.014 4
INO 0.95±0.016 0.91±0.009 3
RCO 0.94±0.022 0.93±0.016 6
DYS 0.89±0.080 0.86±0.029 2

Table 3. Predictions by SVM+ and SVM on Abdominal Pain dataset

Diagnostic SVM+ SVM
Group Average accuracy Average accuracy

APP 0.88±0.009 0.86±0.021
DIV 0.63±0.015 0.60±0.019
PPU 0.54±0.010 0.53±0.013
CHO 0.82±0.005 0.79±0.028
INO 0.69±0.022 0.62±0.027
RCO 0.68±0.033 0.68±0.041
DYS 0.78±0.005 0.75±0.016

Experimental results are given in Table 2 where the binary classification is
performed in one against all other classes. In batch learning mode, we only care
about accuracies of predictions. To avoid the influence of redundant attributes,
we use some selected symptoms here. For each disease group, we use 5 most
relevant symptoms selected in [7] as “usual” attributes because these 5 selected
symptoms could provide the similar confidence level as whole set of symptoms.
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The features provided by experts in [1] are used as privileged attributes. The
dataset is randomly divided into training set (4387 examples) and test set (2000
examples). The average accuracy and the corresponding standard deviation are
shown for 7 diagnostic groups as the experts do not give any relevant informa-
tion for the other two diagnostic groups (NAP and PAN). We then apply SVM
and SVM+ on the same data, results are shown in Table 3. The kernel used here
is Radial Basis Function(RBF), K(xi, xj) = exp(−γ||xi − xj ||2), γ ≥ 0. Cross-
validation is applied on the training examples to find the optimal parameters.
We can see that both SVM+ and our approach utilize additional information to
improve classification accuracy. Due to the unbalance size of classes for predic-
tion, accuracies of SVM and SVM+ are not as good as that of the conformal
prediction approach.

5 Conclusion and Discussion

In this paper, we extend Conformal Predictors to deal with additional informa-
tion. Experiments show that our approach successfully utilize additional infor-
mation to improve the performance of classification as we expected. However,
some more work need to be completed in the future.

We only used the Abdominal Pain dataset in this paper. Further experiments
need be carried out on various databases. It would be interesting to consider and
apply on-line predictions and slow learning where the feedback is given with an
n-step delay. We would like to find out what kind of information could be defined
as privileged.
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