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Abstract A core problem in robotics is the localization of a mobile robot (de-

termination of the location or pose) in its environment, since the robot’s behav-

ior depends on its position. In this work, we propose the use of a stationary 

fisheye camera for real time robot localization in indoor environments. We em-

ploy an image formation model for the fisheye camera, which is used for accel-

erating the segmentation of the robot’s top surface, as well as for calculating the 

robot’s true position in the real world frame of reference. The proposed robot 

localization algorithm does not depend on any information from the robot’s 

sensors and does not require visual landmarks in the indoor environment. Initial 

results are presented from video sequences and are compared to the ground 

truth position, obtained by the robot’s sensors. The dependence of the average 

positional error with the distance from the camera is also measured. 

Keywords: computer vision, indoor robot localization, stationary fisheye cam-

era 

1 Introduction 

Robot localization is fundamental for performing any task, such as route planning 

[1]. Most of the existing mobile robot localization and mapping algorithms are based 

on laser or sonar sensors, as vision is more processor intensive and good visual fea-

tures are more difficult to extract and match [2]. Except for input from the sensors, 

these approaches also require the existence of a map, as well as the relevant software 

module for navigation. A number of different approaches that use data from images 

acquired by a camera onboard the robot have been proposed. In [3] visual memory 

consisting of a set of views of a number of different landmarks is used for robot sim-

ultaneous localization and map construction (SLAM). In [4] robot localization is 

achieved by tracking geometric beacons (visually salient points, visible from a num-

ber of locations). Similarly, a vision-based mobile robot localization and mapping 

algorithm is proposed in [2], which uses scale-invariant image features as natural 

landmarks in unmodified environments. Specifically for indoor environments, relative 

localization (dead-reckoning) utilizes information from odometer readings [5]. This 

class of algorithms, although very fast and simple, present serious drawbacks, since 

mailto:kdelibasis@yahoo.com


factors like slippage cause incremental error. Absolute localization is often based on 

laser sensors, or image processing from an onboard camera. For instance, in [6] ceil-

ing lights and door number plates are used. 

Very few approaches have been reported that employ the concept of a non fully au-

tonomous robot. The system described in [7] uses a camera system mounted on the 

ceiling to track persons in the environment and to learn where the people usually walk 

in their workspace. The robot is tracked by the camera by means of a number of LEDs 

installed on the robot. In [8], the robot is tracked by a network of cameras, which use 

the information from a circular shape that has been installed on the robot. Fisheye 

cameras have been used onboard the robots for visual navigation [9]. 

In this work we report the use of a single stationary fisheye camera for real time robot 

localization, with extensions to robot navigation. We propose and utilize a computa-

tional model of the fisheye camera, which, in conjunction with the known robot shape 

can provide reliable location of the robot. More specifically, the top of the robot is 

segmented in each frame by means of color segmentation. The segmentation is assist-

ed by precalculating all the possible pixels in the video frame that the top of the robot 

may occupy. The central pixel of the segmented top of the robot is used to obtain the 

robot’s real location on the floor, using the model of the fisheye camera. Our ap-

proach is applicable to a very simple robot without any kind of sensors or map of the 

environment. Furthermore, the proposed approach does not require any visual land-

marks in the indoor environment.  

2 Methodology 

2.1 Block Diagram of the proposed algorithm 

In this work we present an algorithm for real time robot location in indoor environ-

ment, using one stationary fisheye camera. The main component of the proposed ro-

bot localization algorithm is the fisheye camera model that relates frame pixels with 

real world geometry. Thus, the real location of an object with known geometry (such 

as the robot) can be calculated. This model is also used to accelerate the segmentation 

of the robot from video frames. The proposed algorithm is very fast, thus the robot is 

localized in real time, without any additional information from sensors. The main 

components of the proposed algorithm are shown in Fig. 1, where the online steps are 

differentiated by the steps performed only once, during the calibration phase. 

2.2 Forward and Inverse Fisheye Camera model  

The main characteristic of the fisheye camera is the ability to cover a field of view 

of 180 degrees. The objective of this subsection is to establish an analytical tool that 

relates a point in real world coordinates with the image pixel recorded by the fisheye 

camera and inversely map every frame pixel to the direction of view in the real world. 

The direction of view is defined in spherical coordinates by its azimuth and elevation 

angles θ, φ. Thus forward fisheye modeling M can be written in the general form by  
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Fig. 1. The overall architecture of the proposed algorithm. 

    , , ,j i M x y z       (1) 

whereas inverse fisheye modeling is described as: 

    1, ,M j i   .   (2) 

Forward fisheye model  

The definition of a model for the fisheye camera is based on the physics of image 

formation, as described in [9], [10]. We consider a spherical element of arbitrary radi-

us R0 with its center at K(0,0,zsph). For any point P with real world coordinates (x,y,z), 

we determine the intersection Q of the line KP with the optical element.  

The point P (as well as ny point on the KP line of view) is imaged at the central 

projection  ,im imx y  of Q on the image plane with equation z=zplane, using the 

O(0,0,0) as center of projection. The KP line is uniquely defined by its azimuth and 

elevation angles, θ, φ respectively. 

We set zplane to an arbitrary value, less than R0 and define 
sph planez pz , where p is 

the primary parameter of the fisheye model that defines the formation of the image. 

To account for possible lens misalignments with respect to the camera sensor that 

could induce imaging deformations on the imaged frame [11], we introduce two extra 

model parameters: the X and Y position of the center of spherical lens K(xsph, ysph, zsph) 

with respect to the optical axis of the camera. Now the camera model parameters con-

sist of , ,sph sphp x y . Figure 2 shows the geometry of the fisheye camera model for 

0sphx  and 0sphy  . 
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Fig. 2. The geometry of the proposed fisheye camera model.  

The position of Q is given by  

         , , , ,x y z sph sph sphQ Q Q x x y y z z          (3) 

where the parameter λ is obtained by inserting (3) this into the equation of the spheri-

cal optical element and requiring λ  [0,1]: 

         
2 2 2

2

0 0.sph sph sph sph sph sphx x x y y y z z z R             (4) 

Finally, we calculate the central projection  ,im imx y  of Q on the image plane: 

    , ,
plane

im im x y

sph

z
x y Q Q

z
  (5) 

Thus, any point P with real world coordinate z>zsph, will be imaged on the image 

plane at position  ,im imx y , which is bounded by the radius of the virtual spherical 

optical element R0: 0 0im sphR x x R    . When x    then   0im sphx x R   (the 

same holds for the y coordinate as well). In order to calculate the pixel of the video 

frame, we need to introduce the concept of the center of distortion CoD pixel located 

as the center of the circular field-of-view, (corresponding to elevation φ=π/2) [12] and 

the radius RFoV of the field of view. The CoD and RFoV are calculated only once, using 

user-input and a simple least squares optimization. Now, the image pixel position (i,j) 

that corresponds to the projection on the image plane (xim, yim) is calculated by a sim-

ple linear transform: 



      
0

, , ,FoV

im im x y

R
j i x y CoD CoD

R
      (6) 

Calibration of Fisheye camera model.  

In order to utilize the fisheye camera model, we need to calibrate the model, i.e. 

determine the values of the unknown , sphp x and 
sphy  parameters. Initially, the user 

provides the position of Np=18 landmark points   , , 1,2,...,i i

im im pX Y i N  on any 

video frame. The real world coordinates of these landmark points were also measured 

  , , ,i i i

real real realx y z with respect to the reference system, (superscripts do not indicate 

powers). The position of the landmark points  ,i i

im imx y  on the video frame are calcu-

lated using (1). The values of the model parameters are obtained by minimizing the 

error between the expected and the observed frame coordinates of the landmark 

points. This minimization is performed using exhaustive search. If we allow p to vary 

from 0.5 to 1.5 with a step of 0.01 and ,sph sphx y  to vary from in the range of [–R0/4, 

R0/4] with a step of R0/32, the model parameters are obtained in just few minutes us-

ing the Matlab programming environment in an average laptop computer. The result-

ing calibration of the fisheye model is shown in Figure 3, where a virtual grid of 

points is laid on the floor and on the two walls of the imaged room. 

It has to be emphasized that this operation is only performed once after the initial 

installation of the fisheye camera and it does not need to be repeated in real time. 

 

 
Fig. 3. Visualization of the resulting fisheye model calibration. The landmark 

points defined by the user are shown as circles and their rendered position on the 

frame marked by stars. 

Inverse model of the fisheye camera - azimuth and elevation Look-up Tables.  

To use the model of the fisheye camera to refine the video segmentation, we need 

to utilize the elevation θ and azimuth φ of the line of view for each segmented pixel. 



Given the (j,i) coordinates of a pixel of the video frame, the θ and φ angles are calcu-

lated as following. Using equation (6), the position of the pixel on the camera sensor 

is calculated: 

       0, , ,im im x y

FOV

R
x y j i CoD CoD

R
        (7) 

The intersection Q of the spherical optical element with line defined by O(0,0,0) and (xim,yim) is 

determined, as  

 
   , , , ,x y z im im planeQ Q Q m x y z

    (8) 

where the parameter m is determined by requiring Q to lie on the spherical optical 

element: 

    2 2 2 2 2 2 2 2

02 0.im im plane im sph im sph plane sph sph sph sphm x y z x x y y z z m x y z R           (9) 

 The required θ and φ are obtained by converting the Cartesian  , ,x y zQ Q Q  to 

spherical coordinates: 
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0
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 

 (10) 

The above process is executed only once, after the calibration of the fisheye cam-

era model and the resulting values for the θ and φ parameters for each frame pixel are 

stored in two look-up tables, of size equal to a single video frame. The look-up tables 

for the azimuth θ and the elevation φ are shown in Fig. 4(a) and 4(b), respectively. As 

expected, the azimuth obtains values in [-π,π], whereas the elevation obtains values in 

[0,π/2], with the maximum value at the CoD pixel of the frame. 

 

  
(a) (b) 

Fig. 4. Graphical representation of the azimuth (a) and elevation (b) look-up tables. 



2.3 Video acquisition and Robot localization  

Robot localization is achieved utilizing the video stream acquired by the fisheye cam-

era. The first step is segmentation of the robot’s top surface. In order to assist segmen-

tation, we have placed a specific color on the top of the robot. Thus, a pixel (i,j) is 

segmented as top of the robot, according to its color in the RGB color system, using 

the following rule: 

      , 1.8 , 1.2 ,R i j G i j B i j       (11) 

The segmentation achieved by Eq.(11) is accurate and efficient (see Fig. 7), therefore, 

the use of other color spaces, such as the HSV was not considered necessary.  Eq.(11) 

is specific to the color that was used to mark the top of the robot and can be modified 

if a different color is used. In order to increase the accuracy of the segmentation by 

excluding possible false pixels, as well as to accelerate its execution, we precalculate 

and store in a binary mask all the frame pixels in which the top of the robot is possible 

to be imaged by the specific camera. Since the robot has a constant height hR, its real 

position can be calculated unambiguously in the frame, provided that the pixel (i,j) 

imaging the center of its top surface has been segmented. The azimuth θ and elevation 

φ of the line of view of this pixel is given by the look-up tables. Then the real position 

 ,real realx y  of the robot on the floor is given by 

 
 

 
 

 max maxcos , sin
tan tan

R R

real ij real ij

ij ij

z h z h
x y 

 

 
    (12). 
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(a) (b) 

Fig. 5. The geometry for the calculation of the robot’s real location given the pixel A that imag-

es the center of the robot’s flat top surface. 

The relevant geometric concept is shown in Fig. 5. Given the geometry of the in-

door space being imaged by the fisheye camera, we may exclude the non accessible 

areas. Thus, the binary mask of the allowed pixels is set to 1 only for the pixels for 



which the corresponding (xreal,yreal) does not lie on inaccessible areas (Fig. 6). Robot 

segmentation according to (11) is performed only on the non-zero pixels of the mask. 

The robot’s real location is calculated using (12) and stored in each frame. 

 

Fig. 6. A typical video frame. The pixels where it is possible for the segmented top of the robot 

to appear have been highlighted.  

3 Results 

We present results to indicate the proposed accuracy of robot localization. We ac-

quired ten video sequences with duration between 90 and 120 sec, at 25 frames 

(480x640 pixels) per second (fps). The robot used in this study is a PeopleBot of the 

Adept MobileRobots company. We used the robot built-in sensors to record its loca-

tion, to be utilized as ground truth for validating the results. No built-in robot sensor 

readings were used for the proposed localization algorithm.  

 

Fig. 7. The path of the robot in one of the acquired videos, the segmented top of the robot sur-

face and the determined central point, used for the calculation of real world position. 



Figure 7 shows the resulting segmentation of the top of the robot from a number of 

frames of one of the videos, with its center of gravity marked. The path of the robot in 

the video frame is visible. Figure 8(a) shows the path of the robot, estimated by the 

proposed algorithm (continuous curve). The ground truth has also been included for 

comparison (dotted curve). The starting point is marked by a star and the position of 

the fisheye camera is also shown, since the positional error is expected to vary propor-

tionally to the distance from the camera. As it can be observed, the position estimated 

by the proposed algorithm is very accurate close to the camera but the error starts to 

increase as the robot moves away from the camera. This can be attributed to the dete-

rioration of the spatial resolution of the fish-eye image, as well as to inaccuracies of 

the calibration of the camera model. Notice that the localization error is not accumu-

lated, as in the case of relative measurements (dead reckoning). In Fig. 8(b) the de-

pendence of the error is presented with respect to the distance from the camera. 

 

  
(a) (b) 

Fig. 8. (a) The robot position obtained by the proposed algorithm in a single video, as well as 

the ground truth positions. (b) The average error in robot localization achieved by the proposed 

algorithm, as a function of the robot’s distance from the fisheye camera. 

4 Discussion and further work 

An algorithm for the localization of a robot in indoor environment has been presented, 

which is based only on video acquired by a stationary fisheye camera, installed on the 

ceiling of the imaged room. The proposed algorithm has been implemented using 

Matlab and executed on an Intel(R) Core i5-2430 CPU @ 2.40 GHz Laptop with 4 

GB Ram, under Windows 7 Home Premium. The mean execution time of the pro-

posed localization algorithm was approximately 70 msec per frame of dimension 

480x640, with no parallelization or specially optimized source code. In our experi-

ments, the overall procedure including the acquisition of the real time video stream 

through a WiFi connection resulted in processing 7 frames per second, which can 

support real time localization because of the low speed of the robot. This rate can be 

increased using a different development environment.   

Regarding the localization accuracy, our experiments showed that the algorithm is 

able to localize the robot with positional error less than 0.1 meters in distances up to 



4.5 meters from the stationary camera. The localization error increases proportionally 

to the distance of the robot from the camera, due to inaccuracies of the fisheye camera 

model. For this reason we will explore further the proposed camera model, possibly 

by including more controlling parameters and evolutionary algorithms for its calibra-

tion. Navigation experiments based on the proposed robot localization algorithm will 

also be performed, to assess its usefulness in assisting environments.  
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