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Abstract. A real-time trinocular stereo vision processor is proposed which 

combines a window matching architecture with a classification architecture. A 

pair wise segmented window matching for both the center-right and center-left 

image pairs as their scaled down image pairs is performed. The resulting cost 

functions are combined which results into nine different cost curves. A multi 

level hierarchical classifier is used to select the most promising disparity value. 

The classifier makes use of features provided by the calculated cost curves and 

the pixels’ spatial neighborhood information. Evaluation and classifier training 

has been performed using an indoor dataset. The system is prototyped on an 

FPGA board equipped with three CMOS cameras. Special care has been taken 

to reduce the latency and the memory footprint. 

Keywords: trinocular stereo camera; real-time matching; confidence metric; 

computer vision; system-on-chip; FPGA; SoC; 

1 Introduction 

Trinocular vision makes use of three cameras to calculate a disparity space image 

(DSI). The DSI is generated by pairwise matching the images from the different cam-

eras which is based on a local window based stereo matching architecture.  

An improvement of occlusion handling in trinocular vision compared to stereo vi-

sion is achieved by Mozerov [1]. The main idea is based on the assumption that any 

occluded region in a matched stereo pair (center-left images) in general is not occlud-

ed in the opposite matched pair (center-right images). They use a global optimization 

technique to derive the composite DSI. Bidirectional matching using trinocular stereo 

is used by Ueshiba [2] to detect half-occlusions and to discard false matches. It uses a 

cumulative cost function derived from a summation of both cost curves.  
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The method presented in this paper likewise calculates several DSI’s. However, in-

stead of combining them, a hierarchical classifier is used to select the most likely 

disparity for each pixel in the final DSI. The matching algorithm is based on the adap-

tive-weight algorithm proposed by Yoon [3], which adjusts the support weight of each 

pixel in a fixed sized window. The support weights are depending on the color and the 

spatial difference between each pixel in the window and the center pixel. Dissimilari-

ties are computed based on the support weights and the plain similarity scores. Their 

experiment indicates that a local based stereo matching algorithm can produce depth 

maps similar to global algorithms. A hardware implementation using the same ideas is 

published by Motten in [4]. 

For each matching result, a confidence metric is calculated. A good comparison be-

tween different confidence metrics can be found in the evaluation paper of Hu [5]. 

Confidence metrics suitable for hardware implementation can be found in [6]. They 

conclude that neighboring pixels contain valuable information to distinguish good 

matches from bad ones. 

Recently many stereo implementations have been proposed for hardware imple-

mentations. A real-time FPGA-based stereo vision system is presented by Jin [7] that 

makes use of the census transform. Their system includes all the pre- and post-

processing functions such as: rectification, LR-check and uniqueness test in a single 

FPGA. Another extensive implementation can be found in [8]. They divide the prob-

lem into two parts: first a rough depth map is constructed using a segmentation based 

SAD window comparison, second a disparity refinement module identifies false 

matches and replaces them with new estimates. Hardware implementations of a 

trinocular disparity processor are limited. An implementation using the summation of 

SAD’s from both image pairs can be found in [9]. 

This paper combines the strengths of an advanced stereo vision system with a two-

scale adaptive window SAD incorporated in a trinocular setup. 

2 System Overview 

2.1 General Architecture 

The trinocular disparity processor takes three images that have been taken by three 

cameras that have a vertical alignment and a horizontal offset (see Fig. 1). The objec-

tive is to calculate a disparity space image (DSI) where dark pixels represent a dis-

tance further away from the cameras and a light pixel represents a distance closer to 

the camera. 

Objects will appear on the same horizontal line (the epipolar line) on all images. 

The horizontal distance between the same objects on the center image and the left (or 

right) image is called the disparity. If calibrated correctly, the disparity of an object 

between the center-left and the center-right image pair is the same. This characteristic 

can be used to discard false matches using bidirectional matching [2] or to improve 

the quality of the disparity space image (DSI) especially in occluded regions [1]. 

 



The architecture consists of three main blocks (see Fig. 2). The first block captures 

the pixel streams, generates the scaled images and places them in multiple parallel on-

chip memories. The second block performs a pair wise window comparison of the 

different streams using a binary adaptable SAD cost aggregation [8]. The third block 

calculates its confidence for each data stream and selects the final disparity value. 

 

Fig. 1. Trinocular disparity processor setup 

 

Fig. 2. Global architecture 

On several places, this architecture makes use of a binary support window. When 

using a fixed window shape, depth continuity is implicitly assumed across this win-

dow. This assumption is false at depth edges where parts of the window belong to 

different depth levels.  A more conservative assumption is to only assume depth con-

tinuity across pixels with similar color. Yoon [3] proposed an adaptive weight algo-

rithm which gives a support weight to each pixel in a window. In order to save system 

on chip resources, an alternative has been proposed where the support weights are 

chosen as binary values [4]. A value of ‘0’ means that this pixel doesn’t belong to the 



support window of the center pixel and ‘1’ means that this pixel belongs to the sup-

port window of the center pixel. This is called the binary support window (1). It is 

calculated by taken the absolute difference of the chroma color components (CB, CR) 

of all pixels q belonging to the rectangular window centered in pixel p.  

     
                                            

           
  (1) 

This binary support window is used when comparing different windows with each 

other (2). Instead of comparing a complete window, only the pixels where the support 

window is ‘1’ (white) will be taken into account (see Fig.3). 

                                           
    (2) 

 

Fig. 3. Window content (left) and resulting binary support window (right) 

 

Each window of the center image needs to be matched with multiple windows of 

the left or the right camera. For every window that needs to be matched, a SAD calcu-

lation is performed. The larger the disparity search width, the more SAD calculations 

are needed. The result is an array that contains a SAD score for each disparity value 

(usually starting from 0), this array is also known as the cost curve (see Fig. 4).   

 

Fig. 4. Cost curve example 

In this paper, C1 stands for the lowest SAD score (the minima of the Cost Curve). C2 

stands for the second lowest SAD score, and so on. Their corresponding depths are 

indicated by D1 and D2. Most matching algorithms calculate the disparity from the 

cost curve using a “Winner Takes All” (WTA) approach. Doing so, the minima of the 

cost curve (C1) will become the calculated disparity D1. 

In this architecture nine different cost curves are calculated for each pixel in the 

DSI.  The first step is to calculate the cost curve the center-right (SADCR1) and center-



left (SADCL1) image pairs as their scaled down image pairs (SADCR0 and SADCL0). 

The second step is to calculate the summation of these cost curves (3).  

 

Fig. 5. Different window matching 

 

 
 
 

 
 
                           
                     
                     
                     
                     
                        

  (3) 

3 Hierarchical Classification 

In the previous section it is explained that nine disparity values are generated for each 

pixel (3). In order to select one of them for generating the DSI, a two level hierar-

chical classifier is constructed (see Fig. 6). In the first level of the hierarchy, the dis-

parity values are investigated independently of each other. For each disparity value a 

binary confidence classifier is constructed using the methods presented in [6]. These 

confidences are passed on to the second level classifier which selects the disparity to 

use, or indicates that no disparity has been found. 

 

Fig. 6. Hierarchical classification 



For each level of the hierarchy, a different set of features is needed for classification. 

The first level of classifiers uses information obtained from the pixel neighborhood 

and from its corresponding cost curve. The second level classifier uses the generated 

binary confidence values together with the agreement between the different disparity 

values. A binary confidence value of ‘1’ indicates a strong confidence in the correct-

ness of the disparity value. A binary confidence value of ‘0’ indicates a weak confi-

dence in the correctness of the disparity value. 

Three different datasets have been used to verify the results:    

 Tsukuba  [10]:   384 x 288 (Maximal disparity of 30). 

 Teddy   [11]:  450 x 375 (Maximal disparity of 30). 

 Art   [12]:  695 x 555 (Maximal disparity of 30). 

In order to train a classifier, it is needed to define a target output. In this case, the 

preferable output would be a Boolean value indicating the correctness of the disparity 

value (the confidence value). A pixel is defined to be correctly matched with its corre-

sponding disparity when the calculated disparity (Dc) and the real disparity (Dr) do not 

differ more than one unit disparity value (4, 5). 

                
                          

           
  (4) 

                       
          
    (5) 

3.1 Feature Generation 

The features for the first level of classification are proposed in [6]. Their objective lies 

in accommodating the classification of the disparity stream for the first level of classi-

fication.  

The matching cost (MC) is the minimum value of the cost curve. A high score will 

be a good indication of a wrong depth value. 

        (6) 

The texture (TEX) uses a fixed window of color information (Ci) around the investi-

gated pixel and measures the amount of texture it contains. The intuition behind it is 

that textureless regions will provide more incorrect depth values. 

                                   (7) 

The segmentation size (SEG) calculates the sum of the binary support window (1). 

This binary support window can be the same as the one used in the cost aggregation 

phase. 

                   
    (8) 

The following two features make use of neighborhood information of the disparity 

space image (DSI). In order to calculate them, a buffer is needed to store several lines 



of the DSI. The size of this window depends on the size of the neighborhood and the 

width of the image. 

The sum of neighboring depths differences (SNDD) uses a fixed window of depths 

around the investigated pixel and calculates the depth differences in this window.  

                          
           
    (9) 

The sum of neighboring depths differences binary window (SNDDBW) is similar to 

SNDD, but instead of using a fixed window it uses only the neighboring pixels, which 

have a similar color. This is a different usage of the binary support window (1).  

         
                     
           
   

             
   

 (10) 

The following features are designed for multi stream classification. They take the 

confidence value generated from the first level of classification and provide a feature 

which objective lies in accommodating the selection of the best disparity stream. 

The sum of streaming depths differences (SSDD) calculates the depth difference 

between the different disparity streams taking the confidence value into account.  

                              
       
    (11) 

The sum of streaming confidences (SSC) calculates the number of streams which 

have a positive confidence.  

                  
       
    (12) 

3.2 Classification Methods 

The first level classifier consists of a decision tree (DT) for each disparity stream 

individually. The decision tree is a top-down tree structure consisting of internal 

nodes, leaf nodes, and branches. Each internal node represents a decision on a feature, 

and each outgoing branch corresponds to a possible outcome. Each leaf node repre-

sents a class (0 or 1 in this case). The main advantage of a decision tree is the ease of 

interpretation and implementation, while still being able to separate hard to separate 

classes. In the example of Fig. 7, two classes are separated by the class boundary 

which is constructed using a small DT.  

The second level classifier chooses the final disparity from the different disparity 

streams by choosing the one with the lowest SSDD. A decision tree classifier is 

trained to construct a confidence value for the final disparity value.  

Both classification methods are easily implemented in hardware without using 

many resources.  

 



 

Fig. 7. Decision tree example: two-dimensional feature space (left) and resulting DT (right) 

3.3 First Level Classification Evaluation 

Matlab has been used to generate and classify the different features using five-fold 

cross validation. The dataset is split into five sets, where four sets are used for training 

the classifier and one set is used for validating the results. This is repeated five times, 

such that each of the five sets is used exactly once as validation set. The five valida-

tion results are averaged to generate the final result.    

For each dataset, cost curves have been calculated using the SAD aggregation 

method for a binary adaptable window with four different selection thresholds and a 

window size of 7x7.  

The features are indicated in the following table by their acronym and by the sub-

script of their parameters: e.g. SNDDBW21,8 means SNDDBW with a window size of 

21x21 and a Chroma threshold of 8.  

The results of the first level classification can be seen in table 1. For every test, the 

feature is shown which is most important in the construction of the tree. From this 

table, we can see that the error rate between the different disparity streams is differ-

ent; by summation of the SAD’s a more correct DSI is constructed.  

From Fig. 8 we can see that the different DSI’s have different areas which are indi-

cated as correct. The center-left image comparison (CL1) provides a good result 

across borders where the area on the left side of the border is further away then the 

area on the right side of the border. The center-right image (CR1) provides good re-

sults when the border is reversed. A summation of both SAD’s (CLR1) gives a lower 

global error rate, but the borders are less clear. 

As expected, the scaled down image pair comparisons (CL0 – CR0 – CLR0) pro-

vides better results on large texture less areas compared with the normal size image 

pair comparisons (CL1 – CR1 – CLR1). This is particular true for the background. 

However they have problems finding the correct disparity value for small objects, like 

the bars on the lamp. The summation of the SAD’s generated by the normal size and 

the scaled downs image pairs (CL01 – CR01) gives a lower global error rate, keeps 

small details and has a better result with texture less areas.   

 



Table 1. First level classification 

 

Data Data Feature Error Rate Misclassification 

Stream   Name DSI (Th1) Binary Classifier 

CL0 Tsukuba SNDDBW21,8 27.30% 17.13% 

  Teddy SNDDBW21,8 13.35% 5.35% 

  Art SNDDBW21,8 19.65% 10.60% 

CR0 Tsukuba SNDDBW21,8 29.43% 21.15% 

  Teddy SNDDBW21,8 18.26% 6.12% 

  Art SNDDBW21,8 19.27% 10.64% 

CL1 Tsukuba SNDDBW21,8 22.98% 11.51% 

  Teddy SNDDBW21,8 14.53% 13.39% 

  Art SNDDBW21,8 23.74% 18.12% 

CR1 Tsukuba SNDDBW21,8 25.05% 11.88% 

  Teddy SNDDBW21,8 23.55% 16.25% 

  Art SNDDBW21,8 24.45% 19.53% 

CL01 Tsukuba SNDDBW21,8 22.92% 14.77% 

  Teddy SNDDBW21,8 11.60% 6.05% 

  Art SNDDBW21,2 19.11% 10.21% 

CR01 Tsukuba SNDDBW21,8 24.83% 18.53% 

  Teddy SNDDBW21,8 17.06% 6.83% 

  Art SNDDBW21,2 18.99% 11.50% 

CLR0 Tsukuba SNDDBW21,8 25.19% 20.06% 

  Teddy SNDDBW21,8 14.02% 7.47% 

  Art SNDDBW21,8 16.30% 10.13% 

CLR1 Tsukuba SNDDBW21,8 22.40% 11.85% 

  Teddy SNDDBW21,8 18.15% 21.59% 

  Art SNDDBW21,8 19.12% 14.06% 

CLR01 Tsukuba SNDDBW21,2 22.52% 16.67% 

  Teddy SNDDBW21,8 14.17% 8.10% 

  Art SNDDBW21,8 16.73% 10.45% 

 

This indicates that by combining the DSI’s, we could obtain a higher quality DSI. 

However before combining them, we need to know which part of each individual DSI 

is correct. A binary classifier is constructed to provide a confidence value for each 

DSI. The more correct this classifier, the more success we will have with the com-

bined DSI. Depending on the dataset, a misclassification rate between 5% and 20% is 

obtained.  This could be improved by using a more discriminative classifier like an 

artificial neural network [6]. 

 



 

Fig. 8. Depth map quality of the Tsukuba dataset for a fixed window size of 7x7 after the first 

level of classification (black pixels indicate a confidence value of zero) 

3.4 Second Level Classification Evaluation 

The goal of this classification level is to select the most promising disparity value 

(13). The input of this classification level is the SSDD for each disparity stream. The 

output of this classification level is a disparity selection. A confidence value is after-

wards generated using the same method as for each individual stream although using 

SSC as an extra input feature. 

                                 (13) 

An exhaustive search is performed in order to know which combination of streams 

provides the highest disparity improvement. A selected set of results can be seen in 

table 2.  The results indicate that, by combining extra streams, the classification rate 

for all investigated datasets are improved. From Fig. 9 we can see that the addition of 

extra streams improves the quality of the DSI. The trinocular setup improves the DSI 

most noticeably at occluded regions. The scaled image improves the disparity map at 

parts with little texture. 



Table 2. Second level classification 

Data Data Error Rate Misclassification 

Stream   DSI (Th1) Binary Classifier 

CL1 - CR1 - ... Tsukuba 16.50% 12.90% 

CL01 - CR01 - ... Teddy 7.82% 7.18% 

CLR1 - CLR0 Art 11.86% 10.09% 

CL1 - CR1 -... Tsukuba 16.52% 12.47% 

CL0 - CR0 Teddy 7.74% 6.71% 

  Art 12.43% 11.50% 

CL1 - CR1 - ... Tsukuba 16.85% 12.57% 

CL01 - CL01 Teddy 8.05% 7.23% 

  Art 13.09% 11.38% 

CL01 - CR01 - ... Tsukuba 17.25% 13.22% 

CLR1 - CLR0 Teddy 7.58% 6.47% 

  Art 11.82% 10.99% 

 

 

 

Fig. 9. Depth map quality of the investigated datasets (Tsukuba, Teddy, Art). Comparison of 

DSI generated from CL0 data stream (Top row) and DSI generated from the combination of 

CL0, CL1, CR0 and CR1 data streams (Bottom row) 

4 System Design 

The hardware architecture consists of three main modules. First a filter and sub sam-

pling module has been added to the pre-processing module [8] so that a scaled image 

is generated with one-fourth the size of the original image. Second the window 

matching module is modified from [8] to allow for multiple data stream matching. 

Third a hierarchic classification module is constructed to select the most promising 

disparity from the different disparity results.  



4.1 Pre-Processing Module 

The pre-processing module (see Fig. 10) consists of four different entities for each 

pixel stream: first a Bayer demosaicing algorithm is used to reconstruct the color im-

age, next a rectification module is used to remove lens distortion and perform 

trinocular calibration and lastly the image is filtered and down sampled to generate a 

scaled image. 

 

Fig. 10. Pre-processing module 

Pixels generated by the camera are formatted in a Bayer pattern consisting of the four 

colors: Red (R), Green1 (G1), Blue (B) and Green2 (G2), representing the three color 

filters. The high quality linear interpolation demosaicing algorithm [13] is used to 

estimate the color components for each pixel. 

The proposed architecture makes use of the YCBCR color space. The Luminance 

(Y) values are used to compare the two input streams. While the chrominance values 

(CB, CR) are used to construct the binary support window. Hence, the reconstructed 

RGB color space needs to be transformed into the YCBCR color space (14). 

  

                       

                          

                         

  (14) 

Two different kinds of distortions are present in a trinocular camera setup. The first 

kind consists of the lens distortions; the second kind consists of the misalignment of 

the three cameras. Since the search space is only located on the epipolar line, both 

distortions should be resolved before matching can be performed. The intrinsic and 

extrinsic parameters of the cameras individually and the transformation matrix of the 

trinocular setup are determined offline using images of checkerboard patterns [14]. 

These parameters are hence used to construct the x and y mapping coordinates for 

each pixel in the image. Those parameters are called the reverse mapping coordinates. 



The rectification module proposed in [15] consists of three main parts (see Fig.11). 

The reverse mapping coordinates are stored in a LUT. When the mapping coordinates 

do not change drastically from pixel to pixel, it suffices to only store the mapping 

coordinates of certain pixels. These pixels are chosen to be located on a regular grid. 

The desired grid size depends on the amount of distortion in the image. Bilinear inter-

polation is used to reconstruct the mapping coordinates for the complete image. The 

warped image is constructed by selecting the pixels from the source image whose 

coordinates are provided by the reverse mapping LUT. In order to perform reverse 

mapping, the source pixels need to be stored in an input buffer. This input buffer is 

especially designed to keep the memory usage low so that no external memory is 

needed. Third, the output pixels are resampled in order to get sub-pixel accuracy. 

 

Fig. 11. Image rectification module [15] 

 The rectified pixel stream is passed through a 3x3 mean filter and down sampled 

by a factor of two. The original pixel stream is annotated with level 1 (L1) while the 

scaled pixel stream is annotated with level 0 (L0). 

4.2 Window  Comparison Module 

The pixel streams originating from the right and left camera are compared with the 

center camera using segmentation based SAD calculation (see Fig. 12). During every 

clock cycle a window of the center camera is compared with four windows of the left 

or right camera. Since four successive pixels are stored in one memory location, one 

memory read accesses four pixels; hence four comparison modules are running in 

parallel.  

On every clock cycle, the stream selection unit (SSU) determines where each data 

stream is written to and which windows are compared.  

The frequency of the window matching module directly controls the possible dis-

parity search width of the trinocular matching architecture and can be adapted to the 

available resources. The higher the frequency difference between the pixel stream and 

the window matching module, the more comparisons can be executed. In the example 

on Fig. 13 the window matching module is clocked twenty-four times higher than the 

pixel streams. 



 

Fig. 12. Window comparison module 

On each clock cycle, the comparison module compares the reference window with 

four consecutive windows (see Fig. 13). The lowest SAD score and its corresponding 

index are saved in a register, so that on the next clock cycle this lowest SAD score 

can be compared against the SAD scores of the next four windows.  When the end of 

a search window is reached, the index indicates the disparity result and a new search 

window is initiated. In our example, in the first eight clock cycles, the center image is 

compared with the right image. In the next eight clock cycles the center image is 

compared with the left image. 

 

Fig. 13. Window comparison of different data streams 



 

In the following four clock cycles the scaled center image is compared with the 

scaled right image and in the last four clock cycles the scaled center image is com-

pared with the scaled left image. This leads to a combined disparity search width of 

thirty-two. 

This architecture makes it possible to easily change the disparity search width and 

comparison data streams for each pixel in the DSI. By adapting the SSU it is possible 

to switch between a trinocular and a stereo disparity search. The trade-off is the dis-

parity range; on each clock cycle, four comparisons can be performed. When using 

only two cameras, all clock cycles can be used for this camera pair. While with three 

cameras, only half of the clock cycles remain for each camera pair, this will lead to a 

reduction of the disparity search width. 

4.3 Hierarchical Classification Module 

The hierarchical classification module consists of the generation of the features used 

during the classification phase and the two classification steps. The first level classifi-

er calculates the confidence of each stream in the selection (15, 16). For each stream, 

different thresholds are selected. However, the main structure of the classifier remains 

the same. The second level classifier selects the most promising disparity stream for 

the final DSI (17, 18, 19). 

                              (15) 

  
                             

                                 
         

  (16) 

                 -                             (17) 

                                         (18) 

                                         (19) 

The features are calculated at different moments in the streaming pipeline. For the 

first level of classification, three main timing zones have been specified. 

 Zone 1: Features based on the luminance window e.g. TEX. 

 Zone 2: Features based on the cost curve e.g. MC. 

 Zone 3: Features based on the disparity window e.g. SNDD. 

Features of different timing zones are expensive to synchronize. Each feature needs a 

buffer to temporally store its value. This is of particular importance when combining 

features from zone 1 and 3. Zone one features are calculated even before the calcula-

tion of the depth value, while zone three features are based on a window of disparity 

values around the disparity value of which the feature is calculated. This means that a 

delay of several image lines is to be expected.  



A solution is to split the classification method into separate classification methods 

for each zone. For a decision tree classifier, no major changes are needed, each branch 

of the DT can be pre-calculated in a different zone (see Fig. 14). Since only the results 

need to be buffered, the width of the buffer is reduced to one. 

 

Fig. 14. Example of different timing zones for classification 

5 Implementation 

The architecture and methods presented in this paper have been implemented on an 

FPGA system (Terasic DE2-115 development board) , based on an Altera Cyclone IV 

(EP4CE115F29C7N) with 114,480 logic elements and 432 memory blocks. The 

sources of the input streams are three cameras with a resolution of 640x480 and a 

pixel clock of 16 MHz resulting in a refresh rate of 52 Hz. The current implementa-

tion consists of the proposed design using a 7x7 binary adaptive window SAD with a 

window matching clock of 96 MHz. The hardware block diagram can be found on 

Fig. 15. 

The architecture has been constructed to reduce memory usage. Hence there is no 

need for external memories. The reduction of external memory usage has the addi-

tional advantage that the latency between input frame and output frame becomes min-

imal. This makes this system suitable to be incorporated in real-time control loops. In 

addition to the evaluation presented in section II, the system has also been tested in 

real life environments. 

The synthesis results can be found in Table 3. 

 



 

Fig. 15. Hardware block diagram 



Table 3. Synthesis results overview 

        Memory Elements 

  

 

  Logic Elements Nr of Blocks Kilobits 

  Module Name # Single Total Single Total Single Total 

P
re

- 

P
ro

ce
ss

in
g
 

Demosaicing 3 861 2,583 6 18 31 92 

Rectification 3 4,870 14,610 44 132 331 993 

Box Filter & Downsampling 3 688 2,064 5 15 28 84 

W
in

d
o

w
 M

at
ch

in
g
 

Address & Stream Selection A 1 296 296         

Parallel Memory A 1 659 659 22 22 119 119 

Address & Stream Selection B 1 340 340         

Parallel Memory B 1 1,557 1,557 22 22 59 59 

Address & Stream Selection C 1 310 310         

Parallel Memory C 1 661 661 22 22 59 59 

Binary Support Window 1 5,014 5,014         

Comparison Module 1 20,893 20,893 1 1 0 0 

H
ie

ra
rc

h
ic

al
 

C
la

ss
if

ic
at

io
n
 

Feature 1: Texture 4 854 3,416         

Feature 2: Parallel Memory D 1 2,115 2,115 18 18 102 102 

Feature 2: Binary Suppport 

Window 1 5,675 5,675         

Feature 2: Parallel Memory E 4 2,115 8,460 12 48 64 255 

Feature 2: SNDBBW (21x21) 4 8,350 33,400         

Feature 3: SSDD & Minima 

Selection  1 212 212         

Total:       102,265   298   1,764 

 

6 Conclusions and Future Work 

A trinocular disparity processor has been proposed. We investigated nine cost curves 

resulting from pairwise comparison of three cameras. Each data stream has been in-

vestigated independently from one another and ultimately a hierarchic classification 

algorithm selects the most promising disparity value.  

For each of the nine cost curves, a classification algorithm is trained in order to 

provide a confidence indication for their disparity values. These confidences are 

passed on to the second level classifier which selects the disparity to use, or indicates 

that no disparity has been found. 

The selection of classification algorithms has been used as guideline for the im-

plementation in an FPGA. From the results we can conclude that the quality of the 

disparity space image increases by using more cost curves from a trinocular camera. 



Due to the adaptability of the window matching module and the hierarchic classifi-

cation structure, the system can easily be expanded with more data streams to further 

improve the disparity space image. 
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