N
N

N

HAL

open science

A LOGIC-BASED NETWORK FORENSIC MODEL

FOR EVIDENCE ANALYSIS
Changwei Liu, Anoop Singhal, Duminda Wijesekera

» To cite this version:

Changwei Liu, Anoop Singhal, Duminda Wijesekera. A LOGIC-BASED NETWORK FORENSIC
MODEL FOR EVIDENCE ANALYSIS. 11th IFIP International Conference on Digital Forensics (DF),
Jan 2015, Orlando, FL, United States. pp.129-145, 10.1007/978-3-319-24123-4 8 . hal-01449074

HAL Id: hal-01449074
https://inria.hal.science/hal-01449074
Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01449074
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 8

A LOGIC-BASED NETWORK FORENSIC
MODEL FOR EVIDENCE ANALYSIS

Changwei Liu, Anoop Singhal and Duminda Wijesekera

Abstract

Many attackers tend to use sophisticated multi-stage and/or multi-host
attack techniques and anti-forensic tools to cover their traces. Due to
the limitations of current intrusion detection and network forensic anal-
ysis tools, reconstructing attack scenarios from evidence left behind by
attackers of enterprise systems is challenging. In particular, reconstruct-
ing attack scenarios using intrusion detection system alerts and system
logs that have too many false positives is a big challenge.

This chapter presents a model and an accompanying software tool
that systematically addresses the reconstruction of attack scenarios in
a manner that could stand up in court. The problems faced in such re-
constructions include large amounts of data (including irrelevant data),
missing evidence and evidence corrupted or destroyed by anti-forensic
techniques. The model addresses these problems using various meth-
ods, including mapping evidence to system vulnerabilities, inductive
reasoning and abductive reasoning, to reconstruct attack scenarios. The
Prolog-based system employs known vulnerability databases and an
anti-forensic database that will eventually be extended to a standardized
database like the NIST National Vulnerability Database. The system,
which is designed for network forensic analysis, reduces the time and
effort required to reach definite conclusions about how network attacks
occurred.

Keywords: Network forensics, network attacks, evidence graph, admissibility

1.

Introduction

Network forensics is the science that deals with the capture, record-
ing and analysis of network events and traffic in order to detect and
investigate intrusions. A network forensic investigation requires the con-
struction of an attack scenario when conducting an examination of the

130 ADVANCES IN DIGITAL FORENSICS XI

attacked system. In order to present the scenario that is best supported
by evidence, forensic investigators must analyze all possible attack sce-
narios reconstructed from the available evidence. This includes false
negatives and items of evidence that are missing or destroyed (in part
or in entirety) as a result of investigators using tools that are unable to
capture traces of some attacks or attackers using anti-forensic techniques
to destroy evidence.

Although the use of intrusion detection system alerts and system logs
as evidence has been contested in courts, they provide the first level
of information to forensic investigators when creating potential attack
scenarios [13]. In order to reconstruct potential attack scenarios, re-
searchers [1, 2] have proposed aggregating redundant alerts based on
similarities and correlating them using predefined attack scenarios to
determine multi-step, multi-stage attacks. However, this approach is
manual and rather ad hoc. As an improvement, Wang and Daniels [15]
proposed automating the process using a fuzzy-rule-based hierarchical
reasoning framework that correlates alerts using local rules and group-
ing them using global rules. However, this approach fails when evidence
is destroyed and it does not consider the potential admissibility of the
evidence and the constructed attack scenario in legal proceedings.

To address these problems, this research employs a rule-based system
that automates the attack scenario reconstruction process while being
cognizant of standards for evidence admissibility. The rule base incorpo-
rates: (i) correlation rules that coalesce security event alerts and system
logs; (ii) rules that explain missing and destroyed evidence (with the
support of an anti-forensic database) by using what-if scenarios; and
(iii) rules that help assess the admissibility of evidence. The viability
and utility of the system is demonstrated via a prototype written in
Prolog.

This research builds on a preliminary reasoning model described in [§]
by extending the MulVAL attack graph generation tool [12] that is im-
plemented in XSB Prolog [14]. Figure 1 presents the architecture of
MulVAL and the extended model. The extensions, which are shaded,
include: (i) an evidence module that uses MITRE’s OVAL database [10]
or expert knowledge (if there is no corresponding entry in the OVAL
database) to convert evidence from the attacked network to the corre-
sponding software vulnerability and computer configuration required by
MulVAL; (ii) anti-forensic and expert knowledge databases that generate
explanations in the face of missing or destroyed evidence; and (iii) rules
of evidence and access control modules that help judge the acceptability
of evidence.

Liu, Singhal € Wijesekera 131

Interaction Security Access
Rules Policy Control
v v A 4
Prolog Engine ::> Attack Scenario

A

(Expert () (. () Federal Rules
Knowledge AnaIySIS Database of Evidence

A A A A

Evidence OVAL Computer Anti-Forensic
Scanner Configuration Database

Figure 1. Architecture of MulVAL and the extended model.

2. Background and Related Work

This section presents the background concepts and related research.

2.1 MulVAL and Logical Attack Graphs

MulVAL is a Prolog-based system that automatically identifies secu-
rity vulnerabilities in enterprise networks [7]. Running on XSB Pro-
log, MulVAL uses tuples to represent vulnerability information, network
topology and computer configurations and to determine if they give rise
to potential attack traces. The graph comprising all the attack traces
generated by this system is called a logical attack graph.

Definition 1: A = (N,, N, Ny, E, L, G) is a logical attack graph where
N, N, and Ny are sets of derivation, primitive and derived fact nodes,
E C (N, UNg) x N;) U (N, x Ng), L is a mapping from a node to its
label, and G C Ny is the final goal of an attacker [7, 11].

Figure 2 shows an example logical attack graph. A primitive fact node
(rectangle) represents specific network configuration or vulnerability in-
formation corresponding to a host computer. A derivation node (ellipse)
represents a successful application of an interaction rule on input facts,
including primitive facts and prior derived facts. The successful interac-
tion results in a derived fact node (diamond), which is satisfied by the
input facts.

132 ADVANCES IN DIGITAL FORENSICS XI

3:hacl(internet,webServer,tcp,80)| | 4:attackerLocated(internet)

2:RULE 6 (direct network access)

1:netAccess(webServer,tcp,80)

Figure 2. Example logical attack graph.

2.2 Evidence Graphs

While an attack graph predicts potential attacks, an evidence graph is
constructed to present evidence of a specific enterprise network attack.

Definition 2: An evidence graph is a sextuple G = (N, N, E, L, Nj-
Attr, N.-Attr) where Np, and N, are sets of disjoint nodes representing
a host computer involved in an attack and the related evidence, E C
(N, x Ne) U (Ne x Np), L is a mapping from a node to its label, and
Np-Attr and N.-Attr are attributes of a host node and evidence node,
respectively [5].

The attributes of a host node include host ID, states and timestamps.
The states include the states before and after a particular attack step,
which can be source, target, stepping-stone or affiliated [5, 7]. The
attributes of an evidence node describe the event initiator, target and
its timestamp.

2.3 Related Work

Reasoning has been used to correlate evidence when reconstructing
crime scenarios. In traditional (non-digital) forensics, researchers have
used inductive and abductive reasoning to model potential crime scenar-
ios and correlate evidence [4]. In the area of digital forensics, Wang and
Daniels [15] have used a fuzzy-rule base to correlate attack steps sub-
stantiated by aggregated security event alerts. Their scheme aggregates
security event alerts by checking if they have the same source-destination
pair, belong to the same attack class and fall within a self-extending time
window. A self-extending time window is elongated to include all alerts
within a predefined time difference from the original event. However,
the approach does not handle situations where evidence is missing or

Liu, Singhal € Wijesekera 133

Administrator
Jd

Portal Web
Service

a

Client 1

&

Client 2 Firewall 2

Firewall 1

Attacker Product
N Web Service
@’

JUOZ paIsnI],

Database
Server

Client n

Employees’
Workstations

Figure 3. Example attacked network.

incomplete nor does it use any standards to determine the acceptability
of evidence.

In order to address these limitations, Liu et al. [6] have proposed the
use of an anti-forensic database containing expert knowledge to help
generate hypotheses about missing or destroyed evidence and to sub-
stantiate the default assumptions of experts. MITRE’s OVAL database
and federal rules related to digital evidence are used to determine the
potential acceptability of digital evidence [9]. Some of the solutions
proposed in [9] were not implemented; these are discussed later in this
chapter.

3. Network Example

Figure 3 shows an example attacked network [9]. In order to explain
how an anti-forensic database can be used to create explanations in the
face of destroyed evidence, anti-forensic techniques were used to remove
some evidence.

Table 1 shows the machine IP address and vulnerability information.
By exploiting the vulnerabilities listed in Table 1, the attacker was able
to launch three attacks: (i) compromise a workstation (CVE-2009-1918)
to access the database server; (ii) leverage the product web application
vulnerability (SWE89) to attack the database server; and (iii) exploit a
cross-site scripting (XSS) vulnerability on a chat forum hosted by the
portal web service to steal the administrator’s session ID so that phishing

134 ADVANCES IN DIGITAL FORENSICS XI

Table 1. Machine IP addresses and vulnerabilities.

Machine IP Address/Port Vulnerability

Attacker 129.174.124.122

Workstations 129.174.124.184/185/186 HTML Objects Memory Corruption
Vulnerability (CVE-2009-1918)

Webserverl — 129.174.124.53:8080 SQL Injection (CWES9)

Product Web Service

Webserver2 — 129.174.124.53:80 SQL Injection (CWES9)

Product Web Service

Administrator 129.174.124.137 Cross-Site Scripting Flaw (XSS)

Database Server 129.174.124.35

emails could be sent to clients, tricking them to update their confidential
information.

In the experimental network, the installed intrusion detection system,
configured web server and database server were able to detect some
attacks and log malicious accesses. However, there were some false pos-
itives (e.g., when attack attempts were not successful). Also, because
the Snort tool used for intrusion detection did not incorporate certain
rules or the actual attack activities looked benign, some attacks were
not detected and, therefore, no alerts were logged as evidence in these
instances. Two examples are: (i) phishing URLs sent by the attacker
to the clients requesting them to update their confidential information
were not detected; and (ii) database server access by the attacker from
the compromised workstation was deemed to be benign. In addition,
the attacker compromised the workstation and obtained root privileges,
which enabled him to use anti-forensic techniques to delete evidence left
on the workstation. Under these conditions, when evidence is missing
or destroyed, it is necessary to find a way to show how the attack might
have occurred.

4. Attack Scenario Reconstruction

This section discusses the attack scenario reconstruction process.

4.1 Rules and Facts

As stated in Section 1, the vulnerability/forensics database construc-
ted from MITRE’s OVAL [10] was used to convert intrusion detection
system alerts and the associated system logs to the corresponding vul-
nerability entries for attack scenario reconstruction (expert knowledge

Liu, Singhal € Wijesekera 135

Table 2. Evidence of alerts and logs from Figure 3.

Timestamp Source Destination Content Vulnerability
IP Address IP Address

08\13-12:26:10 129.174.124. 129.174.124. SHELLCODE x86 CVE-2009-1918
122:4444 184:4040 inc ebx NOOP

08\13-12:27:37 129.174.124. 129.174.124. SHELLCODE x86 CVE-2009-1918
122:4444 184:4040 inc ebx NOOP

08\13-14:37:27 129.174.124. 129.174.124. SQL Injection CWES9
122:1715 53:80 Attempt

08\13-16:19:56 129.174.124. 129.174.124. Cross-Site XSS
122:49381 137:8080 Scripting

08\13-14:37:29 129.174.124. 129.174.124. name="‘Alice’ CWES9
53 35 AND password="‘alice’

OR 41’:41’

is used only when an entry is not found in OVAL) [8]. Table 2 shows
the converted evidence from the experimental network in Figure 3.

Figure 4 shows the concrete predicates for the items of evidence cor-
responding to the computer configuration and network topology, which
instantiate the corresponding predicates in reasoning rules during a Mul-
VAL run. In the figure, predicate “attackedHost” represents a destina-
tion victim computer; predicate “hacl” denotes a host access control
list; predicate “advances” represents the access rights within the fire-
wall that were used by the attacker to reach the next computer after
the attacker had compromised a computer as a stepping-stone; predi-
cate “timeOrder” ensures that the starting time and the ending time of
an attack are within a reasonable interval; and predicates “vulExists,”
“vulProperty” and “networkServicelnfo” represent an attack step on the
target computer (the first term in the predicate “networkServicelnfo”
represents the target computer).

Figure 5 shows a reasoning rule that describes a generic attack. Each
rule has Prolog tuples that derive the postconditions from the precon-
ditions of an attack step. For example, the rule in Figure 5 stipulates
that: if the attacker has compromised the victim’s computer (Line 3)
and the victim has the privilege “Perm” on his computer “Host” (Line
4) and the attacker can access the victim’s computer (Line 5), then the
evidence representing the three preconditions as the cause is correlated
with the evidence that the attacker obtained the victim’s privileges on
the victim’s computer (Line 2). Line 1 is a string that uniquely identifies
a rule and Line 6 is the description of the rule.

136 ADVANCES IN DIGITAL FORENSICS XI

/* Final attack victims */
attackedHost(execCode(admin,_)).
attackedHost(execCode(dbServer,_,_)).
attackedHost(execCode(admin,_)).

/* Network topology and access control policy */
attackerLocated (internet).
hacl(internet,webServer,tcp,80).
hacl(webServer,dbServer,tcp,3660).
hacl(workStation1,dbServer,tcp,3660).
hacl(workStation2,dbServer,tcp,3660).
hacl(internet,workStationl,_, _).
hacl(internet,workStation2,_, _).
hacl(internet,admin,_,).

hacl(H,H,_, _).
advances(webServer,dbServer).
advances(workStation,dbServer).

/* Timestamps used to find the evidence dependency */
timeOrder(webServer,dbServer,14.3727,14.3729).
timeOrder(workStationl,dbServer,12.2610,14.3730).

/* Configuration and attack information of workStationl */
vulExists(workStationl,'CVE-2009-1918’,httpd).
vulProperty (‘CVE-2009-1918’ ,remoteExploit,
privEscalation).
networkServiceInfo(workStationl,httpd,tcp,80,apache).

Figure 4. Input facts in the form of predicates representing evidence.

/* Interaction Rules */

1. interaction_rule(

2. (execCode(Host,Perm) :-

principal Compromised (Victim),
hasAccount(Victim,Host,Perm),

canAccessHost(Host)),

rule_desc(‘When a principal is compromised, any machine

O Ot W

on which he has an account is also compromised’,0.5)).

Figure 5. Example reasoning rule.

4.2 Evidence Graph Generation

Figure 6 shows the attack scenario that resulted from querying the
logic-based system that was not integrated with an anti-forensic data-
base and did not cover evidence acceptability standards. The table below
the evidence graph provides a description of each node and the corre-

Liu, Singhal € Wijesekera

137

1:execCode(admin,apache)

2:RULE 2 (remote exploit of a
server program)

3:netAccess(admin,tcp,80)

4:RULE 7 (direct network access)

5:hacl(internet,admin,tcp)

6:attackerLocated (internet)

T:networkServicelnfo(admin,httpd,
tcp,80,apache)

8:vulExists(admin,*XSS’ httpd,
remoteExploit,privEscalation)

9:execCode(workStationl,apache)

10:RULE 2 (remote exploit of a
server program)

11:net Access(workStationl,tcp,80)

12:RULE 7 (direct network access)

13:hacl(internet,workStation1,
tcp,80)

14:networkServicelnfo(workStation1,
httpd,tep,80,apache)

15:vulExists(workStationl,
‘CVE-2009-1918’,httpd,
remoteExploit,privEscalation)

16:execCode(workStation2,apache)

17:RULE 2 (remote exploit of a
server program)

18:net Access(workStation2,tcp,80)

19:RULE 7 (direct network access)

20:hacl(internet,workStation2,tcp,80)

21:metworkServiceInfo(workStation2,
httpd,tcp,80,apache)

22:vulExists(workStation2,
‘CVE-2009-1918’ httpd,
remoteExploit,privEscalation)

23:netAccess(dbServer,tcp,3660)

24: RULE 6 (multi-hop access)

25:hacl(webServer,dbServer,tcp,3660)

26:execCode(webServer,apache)

27:RULE 2 (remote exploit of a
server program)

28:netAccess(webServer,tcp,80)

29:RULE 7 (direct network access)

30:hacl(internet,webServer,tcp,80)

31:networkServicelnfo(webServer,
httpd,tcp,80,apache)

32:vulExists(webServer, CWES9’,
httpd,remoteExploit,privEscalation)

Figure 6. Network attack scenario reconstructed from alerts and logs.

138 ADVANCES IN DIGITAL FORENSICS XI

1. query:-
2 tell(‘queryresult.P’),

3. writeln(‘execCode(dbServer,user):’),
4 listing(execCode(dbServer,user)),

5

told.

Figure 7. Querying the system for explanatory hypotheses.

sponding evidence in the logical form according to Definition 1. The
facts, including primary facts (rectangles) and derived facts (diamonds)
before a derivation node (ellipse), represent the preconditions before an
attack step. All the facts after a derivation node represent postconditions
after the attack step. Figure 6 shows the four attack paths constructed
by this process: (i) the attacker used a cross-site scripting attack (XSS)
to steal the administrator’s session ID and obtain the administrator’s
privileges (6— 4 — 3 — 2 — 1); (ii) the attacker used a web application
that does not sanitize user input (CWES89) to launch a SQL injection
attack on the database (6 — 29 — 28 — 27 — 26 — 24 — 23); (iii) the
attacker used a buffer overflow vulnerability (CVE-2009-1918) to com-
promise workstations (6— 12 — 11 — 10 — 9 and 6 — 19 — 18 —
17 — 16).

Because some evidence is missing and destroyed, the phishing attack
observed on the client computers and the attack on the database server
launched from the compromised workstations could not be constructed
or shown in Figure 6. Also, because the available evidence used for attack
scenario reconstruction was not validated using standards of acceptabil-
ity, Figure 6 might not reflect the real attack scenario and, hence, would
have little weight in a court of law.

5. Extending MulVAL

This section describes the extension of MulVAL to support attack
scenario reconstruction.

5.1 Using an Anti-Forensic Database

Abductive reasoning and an anti-forensic database are engaged by
the Prolog-based framework to explain how a host computer might have
been attacked when evidence is missing or destroyed [6, 8.

By using abductive reasoning, the extended Prolog logic-based frame-
work is able to provide all potential general explanations about how an
attacker might have launched a particular attack. For example, in or-
der to explain how the database server in Figure 3 might have been
attacked, the file shown in Figure 7 was created to query the extended

Liu, Singhal € Wijesekera 139

Table 3. Anti-forensic database.

1D Al D1

Category attack tool destroy data

Tool BC-Wipe

Technique obfuscate signature delete content
Windows all 98+

Linux all all

Privilege user user

Access remote client local client

Software Snort

Effect bypass detection delete data permamently

logic-based system to show all the attack steps that would result in
“execCode(dbServer,user)” (attack on the database server) as the ex-
planatory hypothesis. In Figure 7, Lines 2 to 5 require the system to list
all the attack steps of “execCode(dbServer,user)” and write the results
to the file queryresult.P (Line 2 opens the output stream for writing
to queryresult.P and Line 5 closes the output stream). The returned
query results indicate that three possible hypotheses could result in “ex-
ecCode(dbServer,user).” They are: (i) using a compromised computer
as the stepping stone; (ii) exploiting the vulnerability of the database
access software; and (iii) using a legitimate database server account to
inject malicious input.

After all possible hypotheses have been generated, the extended Pro-
log logic-based framework uses an anti-forensic database to select the
best explanation. Table 3 shows an example anti-forensic database
from [6], which instantiates the predicate “anti- Forensics(Category,Tool,
Technique, Windows,Linux,Privilege,Access,Software,Consequence)” in
Line 1 of Figure 8 so that it can work with the hypotheses obtained from
the corresponding abductive rules to evaluate if a particular hypothesis
could result in the postconditions collected from an attacked computer
when evidence is missing or has been destroyed.

Figure 8 is a codification of an anti-forensic database for the pur-
pose of providing explanations in the face of missing or destroyed ev-
idence. Lines 2 through 11 specify two rules that use the predicate
“anti_Forensics(Category, Tool, Technique, Windows, Linux,Privilege, Acc-
ess,Software,Consequence)” to evaluate if the hypothesis that the at-
tacker has used the vulnerability in the database access software to at-
tack the database is the best explanation.

In the first rule (Lines 2-7), the head “vulHyp(H,_vullD,Software,
Range,Consequence)” (the hypothetical vulnerability the attacker might

140 ADVANCES IN DIGITAL FORENSICS XI

1. anti_Forensics(Category, Tool, Technique,Windows,Linux,Privilege,
Access,Program,Consequence).

2. vulHyp(H,_vullD,Software,Range,Consequence) :-

/* The following three predicates are from the abductive reasoning result */

3. vulExists(Host,_vullD,Software,Access,Consequence),

4. networkServicelnfo(Host,Software,Protocol,Port,Perm),

5. netAccess(Host,Protocol,Port).

/* Introduce a hypothetical vulnerability */

6. anti_Forensics(Category,Tool, Technique,OS,Privilege, Access,Software,Effect).
7. hostConfigure(Host,OS,Software).

8. with_hypothesis(vulHyp, Post-Condidtion) :-
9. cleanState,
10. assert(vulHyp(H,-vullD,Software,Range,Consequence)),

11. post-Condition.

Figure 8. Codifying the anti-forensic database.

have used) is derived from three predicates: (i) hypothesis obtained from
one of the results of Figure 7 (Lines 3-5); (ii) “anti-Forensics” predicate
in Line 6 where the variable terms (“Category,” “Tool,” “Technique,”
“Windows,” “Linux,” “Privilege,” “Access,” “Program” and “Conse-
quence”) are instantiated by the corresponding concrete data from Ta-
ble 3 during a system run; and (iii) configuration of the host (Line 7)
where the evidence has been destroyed by an anti-forensic technique used
by the attacker.

In the second rule (Lines 8-11), the derived fact “vulHyp(H,-vullD,
Software,Range,Consequence)” obtained from the first rule is asserted
to the logic runtime database (Line 10) and the asserted hypotheti-
cal condition is checked to see if it results in the postconditions (Line
11). The predicate “cleanState” (Line 9) is used to retract all previ-
ously asserted dynamic clauses that might affect the asserted predicate
“vulHyp(H,_vulID, Software,Range,Consequence).” After the asserted
“vulHyp” is proved to cause the postconditions, the hypothesis is eval-
uated as the potential cause of the attack. Note that an investigator
should perform an additional examination or even simulate the attack
for the purpose of validation, especially when multiple hypotheses can
explain the same attack.

5.2 Integrating Evidence Standards

Federal evidence admissibility criteria place additional constraints on
evidentiary data and data handling procedures, which include chain of
custody. Whenever the admissibility of digital evidence is called into

Liu, Singhal € Wijesekera 141

question, five federal rules are applied: (i) authenticity (Rules 901 and
902); (ii) hearsay or not (Rules 801-807); (iii) relevance (Rule 401); (iv)
prejudice (Rule 403); and (v) original writing (Rules 1001-1008) [8], the
most important being the relevance criterion. If these constraints are
not considered, the evidence runs the risk of being ruled as insufficient.

The federal rules were codified in the Prolog logic-based framework [9]
to determine the admissibility of evidence. The original MulVAL rules
only use positive predicates in order to control complexity. The extended
version incorporates negation to disqualify unacceptable evidence during
an admissibility judgment.

Extended logic programs have two kinds of negations: (i) default nega-
tion that represents a procedural failure to find facts; and (ii) explicit
negation (classic negation) that represents known negative facts [14].
Because a default negated predicate cannot be used as the head of a
Prolog rule, default negated predicates (expressed using “\+” in XSB
Prolog) are used in the body of a rule to exclude impossible facts, and an
explicit negated predicate (expressed using “-” in XSB Prolog) is used
in the head of a rule to judge if a derived fact that represents the cor-
responding evidence holds. If the logic program that includes negated
predicates, including explicit negated predicates and the corresponding
rules, generates execution cycles due to negated predicates, then it is
necessary to ensure that the program is stratified [3]. Figure 9 shows a
stratified Prolog program that uses positive and explicit negated predi-
cates to determine if an attacker can gain access to a host computer (i.e.,
web server or workstation in the example) using the network protocol
and ports (Lines 9-12). The conclusion (Lines 13-20) shows that the
attacker can access the web server via TCP on Port 80, but not Port
8080. As such, only the evidence based on accessing the web server via
TCP on Port 80 is acceptable when constructing an attack scenario.

In addition to using (explicit) negated predicates to exclude unac-
ceptable evidence, in order to accommodate the federal rules of evidence,
rules related to “timestamp,” “relevance” and “not hearsay” were added
to enhance the determination of evidence acceptability. Predicate “time-
Order” is used to verify if the attack steps are constructed in chrono-
logical order and the corresponding evidence falls in a reasonable time-
frame. Predicate “vulRelevance” models expert knowledge, bug reports
and vulnerability databases to determine if the given evidence is rele-
vant to the observed attack. Predicate “notHearsay” is used to ensure
that the evidence resource is not declared “hearsay” (a verbal report
is generally not admissible). Interested readers are referred to [9] for a
detailed discussion related to the federal rules of evidence in the context
of the extended MulVAL framework.

142 ADVANCES IN DIGITAL FORENSICS XI

1. nnetAccess(H,Protocol,Port):-
. nattackerLocated(Zone),
3. nhacl(Zone,H,Protocol,Port).

[\V]

4. -nnetAccess(H,Protocol,Port) :-
. nattackerLocated(Zone),
. -nhacl(Zone,H,Protocol,Port).

S Ot

7. nattackerLocated (internet).

8. -nattackerLocated(webServer).

9. nhacl(internet,webServer,tcp,80).

10. nhacl(internet,workstation,tcp,4040).
11. nhacl(internet,workstation,udp,6060).
12. -nhacl(internet,webServer,tcp,8080).

13. | ?- -nnetAccess(webServer,tcp,8080).
14. yes

15. | 7- nnetAccess(webServer,tcp,8080).
16. no

17. | ?- nnetAccess(webServer,tcp,80).
18. yes

19. | ?- -nnetAccess(webServer,tcp,80).

20. no

Figure 9. Rule using explicit negation.

6. Experimental Results

The framework was supplied with the experimental evidentiary data
and the new evidence graph shown in Figure 10 was obtained. The new
evidence graph has several differences compared with the previous evi-
dence graph in Figure 6. First, the attack path (Node6 — Nodel9 —
Nodel8 — Nodel7 — Nodel6) on “Workstation 2” in Figure 6 is re-
moved. This is because the evidence is not acceptable as false nega-
tives are used (According to MITRE’s OVAL database, “Workstation
2” is a Linux machine that uses Firefox as the web browser, which
does not support a successful attack using “CVE-2009-1918” that only
succeeds on Windows Internet Explorer). Second, a new attack path
(Nodel — Noded2 — Node43) corresponding to the phishing attack on
the clients launched using the compromised administrator’s session ID
is added. This is obtained by using abductive reasoning on predicate
“exec(client,_)” and a further investigation of the declared “hearsay”
(the clients’ phishing reports). Third, an attack path between the com-
promised workstation and the database server (Node27 — Node38 —
Nodell) is added; using the anti-forensic database, the reasoning system
discovered that the attacker used the compromised workstation to gain

Liu, Singhal € Wijesekera 143

41 1 39

42

43

Figure 10. New reconstructed attack scenario.

access to the database server. Note that the reason why evidence could
not be found is because the attacker was able to remove all the evidence
using escalated root privileges that were obtained in a malicious manner.

Clearly, the reconstructed attack scenario obtained using the extended
MulVAL framework (Figure 10) is considerably different from the re-
constructed attack scenario obtained without the extension (Figure 6).
This demonstrates that the extended framework can account for miss-
ing and/or destroyed evidence and can enhance the acceptability of a
reconstructed attack scenario.

144 ADVANCES IN DIGITAL FORENSICS XI

7. Conclusions

The network forensic model described in this chapter extends the Mul-
VAL Prolog logic-based reasoning framework to automate the causality
correlation of evidentiary data collected after a security event in an en-
terprise network. The extended model uses inductive and abductive
reasoning, an anti-forensic database and legal acceptability standards
for evidence to construct evidence graphs for network forensic analy-
sis. The extension also excludes evidence such as false positives that
are inadmissible and provides explanations for missing and destroyed
evidence. In addition, it automates the process of using evidence that
meets acceptability standards for attack scenario reconstruction.

Future research will attempt to develop a method for finding the best
explanation of a network attack from among alternative explanations,
validate the framework using realistic attack scenarios and work with
attorneys to refine the evidence acceptability determination procedure.
Also, attempts will be made to standardize the anti-forensic database.

Note that this chapter is not subject to copyright in the United States.
Commercial products are only identified in order to adequately specify
certain procedures. In no case does such identification imply a recom-
mendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the identified products are necessarily
the best available for the purpose.

References

[1] O. Dain and R. Cunningham, Building scenarios from a hetero-
geneous alert stream, Proceedings of the IEEE SMC Workshop on
Information Assurance and Security, pp. 231-235, 2001.

[2] H. Debar and A. Wespi, Aggregation and correlation of intrusion-
detection alerts, Proceedings of the Fourth International Symposium
on Recent Advances in Intrusion Detection, pp. 85-103, 2001.

[3] M. Fitting and M. Ben-Jacob, Stratified and three-valued logic pro-
gramming semantics, Proceedings of the Fifth International Confer-
ence and Symposium on Logic Programming, pp. 1054-1069, 1988.

[4] J. Keppens and J. Zeleznikow, A model based reasoning approach
for generating plausible crime scenarios from evidence, Proceedings
of the Ninth International Conference on Artificial Intelligence and
Law, pp. 51-59, 2003.

[5] C. Liu, A. Singhal and D. Wijesekera, Mapping evidence graphs to
attack graphs, Proceedings of the IEEE International Workshop on
Information Forensics and Security, pp. 121-126, 2012.

Liu, Singhal € Wijesekera 145

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

C. Liu, A. Singhal and D. Wijesekera, Using attack graphs in foren-
sic examinations, Proceedings of the Seventh International Confer-
ence on Availability, Reliability and Security, pp. 596—603, 2012.

C. Liu, A. Singhal and D. Wijesekera, Creating integrated evidence
graphs for network forensics, in Advances in Digital Forensics I1X,
G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg, Germany,
pp- 227-241, 2013.

C. Liu, A. Singhal and D. Wijesekera, A model towards using evi-
dence from security events for network attack analysis, Proceedings
of the Eleventh International Workshop on Security in Information
Systems, pp. 83-95, 2014.

C. Liu, A. Singhal and D. Wijesekera, Relating admissibility stan-
dards for digital evidence to attack scenario reconstruction, Journal
of Digital Forensics, Security and Law, vol. 9(2), pp. 181-196, 2014.

MITRE, Open Vulnerability and Assessment Language: A Comm-
unity-Developed Language for Determining Vulnerability and Con-
figuration Issues in Computer Systems, Bedford, Massachusetts
(oval.mitre.org), 2015.

X. Ou, W. Boyer and M. McQueen, A scalable approach to attack
graph generation, Proceedings of the Thirteenth ACM Conference
on Computer and Communications Security, pp. 336-345, 2006.

X. Ou, S. Govindavajhala and A. Appel, MulVAL: A logic-based
network security analyzer, Proceedings of the Fourteenth USENIX
Security Symposium, 2005.

P. Sommer, Intrusion detection systems as evidence, Computer Net-
works, vol. 31(23-24), pp. 2477-2478, 1999.

T. Swift, D. Warren, K. Sagonas, J. Friere, P. Rao, B. Cui, E. John-
son, L. de Castro, R. Marques, D. Saha, S. Dawson and M. Kifer,
The XSB System Version 3.6.x, Volume 1: Programmer’s Manual
(xsb.sourceforge.net/manuall/manuall.pdf), 2015.

W. Wang and T. Daniels, A graph based approach towards network
forensics analysis, ACM Transactions on Information and System
Security, vol. 12(1), article no. 4, 2008.

