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Chapter 12

IDENTIFYING PASSWORDS
STORED ON DISK

Shiva Houshmand, Sudhir Aggarwal and Umit Karabiyik

Abstract This chapter presents a solution to the problem of identifying passwords
on storage media. Because of the proliferation of websites for finance,
commerce and entertainment, the typical user today often has to store
passwords on a computer hard drive. The identification problem is to
find strings on the disk that are likely to be passwords. Automated
identification is very useful to digital forensic investigators who need
to recover potential passwords when working on cases. The problem
is nontrivial because a hard disk typically contains numerous strings.
The chapter describes a novel approach that determines a good set of
candidate strings in which stored passwords are very likely to be found.
This is accomplished by first examining the disk for tokens (potential
password strings) and applying filtering algorithms to winnow down
the tokens to a more manageable set. Next, a probabilistic context-free
grammar is used to assign probabilities to the remaining tokens. The
context-free grammar is derived via training with a set of revealed pass-
words. Three algorithms are used to rank the tokens after filtering. Ex-
periments reveal that one of the algorithms, the one-by-one algorithm,
returns a password-rich set of 2,000 tokens culled from more than 49
million tokens on a large-capacity drive. Thus, a forensic investigator
would only have to test a small set of tokens that would likely contain
many of the stored passwords.

Keywords: Disk examination, stored passwords, password identification

1. Introduction
Passwords continue to be the primary means for authenticating users.

Because of the proliferation of websites related to banking, commerce
and entertainment, the typical user necessarily maintains multiple ac-
counts and passwords. Meanwhile, for security reasons, many websites
have adopted password policies that force users to register passwords
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that conform to certain length, symbol and digit requirements. Since
it is difficult to remember multiple, complex passwords, users increas-
ingly save their passwords either on paper or on their computers. When
storing passwords on disk, users typically use password management
software or the password recall option provided by browsers or save
passwords directly on their computers or cell phones. A 2012 survey by
Kaspersky Lab [8] revealed that 29% of users do not remember pass-
words, but instead store them on media. The survey also reports that
13% of users create text documents with passwords that they store on
their hard drives, 9% save passwords on their cell phones and only 7%
use specialized password management software. As passwords become
more complex, greater numbers of users will turn to storing their pass-
words on their computer hard drives. Indeed, an informal survey of 100
students conducted as part of this research revealed that 42% of the stu-
dents store their passwords and 55% of these students save them on hard
drives or cell phones without using encryption or specialized software.

Some researchers have developed techniques for extracting crypto-
graphic keys and passwords stored in browsers [5, 10, 14]. However,
a search of the literature does not reveal any research that attempts to
distinguish passwords from other strings stored directly on disk by users.
This problem, involving the identification of passwords in media, is the
focus of this chapter.

An example scenario [4] is a disk containing encrypted files (of say
illegal photographs) and there is a likelihood that the user has stored the
passwords somewhere on the disk in order to easily access the encrypted
files. A forensic investigator could review each saved file and attempt to
determine, by context and structure, the strings that might correspond
to passwords. This would, of course, be a very tedious task, especially
if the disk has high capacity and holds numerous files.

Investigators sometimes use software tools to tokenize all the strings
found on disks and incorporate them in dictionaries for offline cracking
of encrypted files. However, it is often the case that the list of strings
becomes too large to be used in dictionary-based password cracking. The
identification problem is to distinguish the tokens that are likely to be
passwords and winnow down the list to a manageable size. This problem
is non-trivial because distinguishing the strings that may be passwords
from a large set of strings has no obvious solution.

The solution described in this chapter first analyzes a disk image and
attempts to retrieve all the strings that could possibly be passwords
(these are called “tokens”). During the process of retrieval and sub-
sequent processing, which is called “filtering,” a potentially very large
set of tokens is reduced to a manageable set that contains most of the
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passwords. This is accomplished by applying specialized filters to reduce
the size of the token set. A previously-trained probabilistic context-free
grammar [6, 16] is employed to decide which of the remaining tokens
are likely to be passwords by assigning each token a probability. The
probability values are used as input to ranking algorithms that produce
ordered lists of tokens that represent possible passwords. The token lists
can be used in dictionary-based password cracking.

This work is unique in its specification of the problem of identifying
passwords on disk, its use of a probabilistic context-free grammar and its
development of filters and ranking algorithms. Experiments demonstrate
that the approach, on the average, identifies 60% of the passwords in the
top 2,000 potential passwords returned to an investigator. Moreover,
the approach is directly applicable to identifying passwords stored on
cell phones and USB flash drives.

2. Related Work
Little, if any, research has focused on password identification in stor-

age media. Garfinkel et al. [2] have studied the general problem of
attempting to capture a storage profile of an individual computer to de-
tect anomalous behavior. They propose the monitoring of the forensic
content of the disk (or other media), such as email addresses and credit
card numbers. The approach described in this chapter could, in fact, be
used by their technique to capture potential password strings.

With respect to identifying passwords, many forensic tools exist for
finding desired strings on disk; this means that the specific passwords
being searched for are known. Forensic recovery tools such as EnCase
and FTK can be used to find passwords on a hard disk, but these tools
merely return a list of all the strings on the disk. As will be seen,
the real problem is filtering the potentially large number of strings and
determining the strings that are most likely to be passwords.

Sensitive Data Manager [7] is designed to search for data such as
passwords, credit card numbers and social security numbers in several
locations, including files, email, browsers, registry files, databases and
websites. As far as searching for data on a hard disk is concerned, Sensi-
tive Data Manager checks only the files that have metadata information
available to the filesystem; it does not examine the unallocated space to
search for passwords in deleted files. Sensitive Data Manager provides
password search customization by enabling keyword and regular expres-
sion searches; this requires an investigator to conduct string searches as
in the case of EnCase and FTK. Sensitive Data Manager, thus, does not
tackle the password identification problem.
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A related problem is to find a password that has been used to encrypt
a file or to find the login password of a user. Hargreaves and Chivers [5]
have attempted to recover encryption keys from memory; they demon-
strated that if the memory is preserved when encrypted files are open,
it is possible to find the encryption keys. Similarly, Lee et al. [10] have
had success in finding login passwords by collecting and examining page
files. Their work is interesting, but it is orthogonal to the password
identification problem.

Attempts have also been made to find passwords that are stored by
browsers. Chrome Password Recovery [14] is an open-source, command-
line password recovery tool that retrieves login information (usernames,
passwords and website links) from Google Chrome. However, it only
focuses on recovering sensitive data such as encryption/decryption keys
from encrypted Google Chrome password database files; it is not de-
signed to identify passwords saved on hard disks.

3. Background
This section discusses the principal concepts underlying the proposed

solution to the password identification problem.

3.1 Probabilistic Context-Free Grammars
Probabilistic context-free grammars have been used to create better

passwords as well as to crack passwords. This research uses a grammar
to rank tokens recovered from a hard disk based on their likelihood of
being user passwords. Specifically, the probabilistic password cracking
approach described in [6, 16] is used to assign probability values to poten-
tial password tokens. In this approach, the base structure of a password
is defined according to the component type (L for alpha string, D for
digit string and S for special symbol string) and the length of the string
is incorporated in the base structure. For example, the password string
alice123#% has the base structure L5D3S2. A probabilistic grammar
is then determined from a training corpus by calculating the frequen-
cies of all the base structures and the component structures (of each
length) found in the corpus. The resulting information is structured as
a context-free grammar. For example, alice123#% is derived as follows:

S ⇒ L5D3S2 ⇒ aliceD3S2 ⇒ alice123S2 ⇒ alice123#%

At each step, a probability is assigned to the rule transition. The
product of the transition probabilities is the probability of the resulting
string. As shown in [6], this approach can be used to compute the
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probability of any token given a context-free grammar derived from a
realistic password corpus.

4. Examining a Disk
The goal is to identify passwords in files stored on disk by a user.

Note that the assumption is that the user is not actively trying to hide
passwords. In fact, the user simply stores the passwords in a file on disk
that may or may not contain other text; this is done so that the user can
easily access a forgotten password. The file may be in allocated space
or unallocated space (i.e., the file has been deleted) or it may be hidden
using the operating system.

A more sophisticated user might use specialized software to hide pass-
words in unallocated space in a partition, in file slack space or in some
other non-filesystem space. Although this scenario is not the focus of
this research, it should still be possible to find such data on the disk as
long as encryption or steganography are not used. For example, if a user
explicitly hides data or a file in the slack space of a file or partition, the
slack space tool bmap or file carver scalpel could, respectively, be used
to retrieve the data or file from slack space. The recovered data could
be written to a text file for the tokenization process described in Sec-
tion 4.2. The approach could fail under certain circumstances, such as
when passwords are hidden in an arbitrary space on disk. Although the
string stream could be viewed using a hex editor and the data echoed to a
text file, it can be difficult to determine string boundaries when garbage
data is intentionally or unintentionally added to the string stream. These
circumstances greatly complicate the password identification problem.

4.1 Recovering Files from a Disk
The first step is to retrieve all the different types of files from the

filesystem of a given disk image. This can be done using tsk recover, a
component of The Sleuth Kit, an open-source, digital forensics tool that
provides several command-line tools for analyzing disk images. Note
that tsk recover can recover files from allocated space as well as un-
allocated space. This work specifically focuses on filesystems that are
not corrupted. Files for which metadata information is lost or damaged
are not considered. Data carving tools could also be used to retrieve
files that might reside in other parts of the disk such as slack space, lost
partitions and unallocated space in partitions. The tools could be used
to create one or more files that could then be analyzed in the same way
as the uncorrupted files.
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4.2 Retrieving Tokens from Files
After recovering files from the disk, the next step is to extract the

strings that are potential passwords. This is accomplished by extracting
white-space separated strings from file types such as .doc, .docx, .xls,
.xlsx, .rtf, .odt, .pdf and .txt.

Since some of the file types are not readable by text editors, these files
must be converted to the text file format in order to be able to read their
contents. The open-source tools, catdoc, docx2txt, xls2txt, unoconv
and xls2txt, unrtf, odt2txt and pdftotext were, respectively, used
to convert .doc, .docx, .xls, .xlsx, .rtf, .odt and .pdf files to the
text file format.

Spaces, tabs and newlines were used as delimiters to tokenize string
streams in a file; the associated text file was created by writing each
token on a separate line. The resulting text files corresponding to all
the files on disk were then searched to find potential passwords.

The accuracy of the tokens retrieved from the files is based entirely
on the conversion performance of the tools. Two possible problems ex-
ist. First, some strings may be altered during the conversion process.
Second, some new strings (i.e., not in the original file) may have been
created by the tools. This latter situation only occurred when converting
.xls and .xlsx files containing multiple spreadsheets for which the tool
would add each sheet name. In the experiments conducted using the
tools, a problem was rarely encountered during the conversion process.
All the strings in the files were obtained, including from tables in .doc
and .docx files and everything in the cells of .xls and .xlsx files. The
only thing that was not obtained was text in the images residing in these
files. Images sometimes create strings in the conversion process that are
completely filtered out later.

4.3 Initial Filtering
Even an average-sized disk typically contains many different file types

and files with text content; this results in a massive number of tokens. In
order to reduce the number of tokens retrieved, rules were defined to filter
some classes of tokens that are very unlikely to be passwords. Several
revealed password sets (e.g., results of attacks on various websites such
as Rockyou [15] and Yahoo [12]) were examined to obtain insights into
the kinds of structures that are rarely seen in passwords. The following
initial filters were defined and applied:

Non-Printable: This filter eliminates ASCII characters that are
almost always not valid password characters.
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Length: Passwords usually have certain lengths based on the
password policy that is enforced. This filter applies a conservative
bound and only tokens of length l, where 6 < l < 21, are retained.
In the Yahoo set, only 1.93% of the passwords have length less
than seven and 0.047% of the passwords have length greater than
20.

Floating Point: The files on disk (especially .xls files) of-
ten include many floating point numbers. It is a good idea to
filter floating point numbers because studies of revealed password
sets reveal that there is very little chance that such tokens cor-
respond to passwords. Thus, this filter eliminates strings corre-
sponding to the regular expression [-+]? [0-9]* .? [0-9]+
([eE][-+]?[0-9]+)?.

Repeated Tokens: This filter retains one copy of each repeated
token in a file. One might assume that repeated tokens are unlikely
to be passwords, but users often use the same password for multiple
accounts, so there would be multiple instances of a given password
string in a file.

Word Punctuation: This filter eliminates punctuation patterns
encountered in sentences. Specifically, tokens containing only al-
pha strings ending with one of the following characters ; : , .
? ! - ) } were filtered. Also, tokens starting with ( or { were
filtered. An examination revealed that only 0.516% of such tokens
were present in a sample of one million passwords in the Rockyou
set.

4.4 Specialized Alpha String Filtering
It is obvious that English words constitute a very large part of every

text file. Therefore, an extremely prevalent class of tokens found on a
hard disk is the set of alpha strings (i.e., strings containing only alpha-
betic characters). This research considers various approaches for han-
dling such strings. In particular, the following specialized alpha string
filters are defined:

All-Alphas: This filter eliminates tokens that only have alpha-
betic characters. The assumption is that the vast majority of pass-
words contain other symbols (e.g., digits and special characters).
This assumption is validated by most password creation policies.

Sentences: This filter eliminates all alpha strings that are only
within sentences. The OpenNLP tool [1] was used to detect sen-
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tences after the file type conversion. This tool detects whether or
not a punctuation character marks the end of a sentence. However,
it cannot identify sentence boundaries based on sentence content.
It only returns a set of indices for which each sentence (or non-
sentence) is on a separate line. An additional problem encoun-
tered after the conversion process to a .txt file was that word
wrapping was not preserved when line breaks were added; thus,
sentences that ran over multiple lines were output as multiple in-
dices by OpenNLP. Heuristics were used to detect indices that
corresponded to sentences (and non-sentences). For example, an
index that started with a capital letter and ended with a period [13]
may be filtered.

Capitalization: This filter eliminates all lower case alpha strings.
This is because most password policies require passwords to have
characters from one or more other classes (e.g., symbols, digits and
capital letters).

Dictionary Words: This filter eliminates alpha strings that ap-
pear in an English dictionary. This eliminates strings that are most
likely words in sentences while retaining the remaining strings in
the token set.

Multiwords: This filter eliminates all alpha strings that are not
multiwords. A multiword is a string that consists of two or more
words in an English dictionary. Examples are passphrases (without
whitespace) that are increasingly used as passwords.

5. Identifying Passwords
This section focuses on the problem of distinguishing and finding a

password from among a set of tokens. Specifically, after the hard disk has
been examined and all the tokens separated by whitespace are obtained,
a mechanism is required to distinguish passwords from other sequences
of characters that appear in the text.

5.1 Calculating Token Probabilities
As discussed above, a probabilistic context-free grammar can be cre-

ated from a large set of real user passwords. The probabilistic context-
free grammar models a password distribution and the way users create
passwords. Knowledge of the structure of passwords enables passwords
to be differentiated from regular text.

Given a probabilistic context-free grammar, the probability of a string
in the password distribution can be computed. This research employed



Houshmand, Aggarwal & Karabiyik 203

the method described in [6] to calculate the probability. Each string
was parsed into its components and the probability associated with each
component of the probabilistic context-free grammar was computed.

As an example, consider the string violin22, which is represented as
the base structure L6D2. The product of probabilities of the components
(i.e., base structure L6D2, alpha string violin, all lower case capitaliza-
tion M6 and digit component 22) is the estimated probability value of
the string. Using this approach, the probabilities of all the retrieved
tokens were computed. Note that in the remainder of the discussion,
the retrieved tokens correspond to tokens that remain after the initial
filtering.

5.2 Ranking Algorithms
After computing the probability of each token, the tokens must be

ranked and a limited set of tokens (say the top N tokens called “potential
passwords”) must be provided to the investigator to examine as the most
likely password candidates from the hard disk. Obviously, it is ideal to
have high precision and high recall in the potential password set. Recall
is generally more important in offline password cracking while precision
is more important in online cracking. One might argue that, in the case
of an offline attack, one could consider all the tokens found on the disk.
However, it is very important to reduce the size of the potential password
set – although password cracking is continually being sped up by GPUs,
many hashing algorithms (e.g., the one used in TrueCrypt) can still take
a very long time using the resources available to most law enforcement
agencies.

In order to obtain the best precision and recall, several approaches
were used to identify the top potential passwords from the retrieved to-
kens. This section describes three algorithms for ranking possible pass-
words. Note that the strings and the file they are associated with are
maintained and this relationship is exploited by the algorithms. The
algorithms incorporate a parameter N denoting the number of potential
passwords to be returned to the investigator. The algorithms are:

Top Overall: This algorithm selects the N highest probability
tokens from among all the retrieved tokens. However, the results
presented later in the chapter show that this is not the most effec-
tive approach.

Top Percent (per File): This algorithm selects a fixed percent-
age of the highest probability tokens from each file such that the
total number of tokens returned is N (thus, different numbers of
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tokens are selected from each file). The resulting tokens are then
ordered according to their probabilities.

Top 1-by-1 (per File): The first round of the algorithm chooses
the highest probability token from each file and ranks them accord-
ing to their probabilities. In the second round, the second highest
probability token is selected from each file (if available) and they
are ranked according to their probabilities. The rounds are con-
tinued until N tokens are obtained. Note that tokens in round j
are ranked above tokens in round j + 1.

6. Experimental Evaluation
This section discusses the experimental results related to the utility

of the filtering techniques as well as the effectiveness of the algorithms
in identifying passwords. Since disk images containing real passwords
were not available, test disk images were created by incorporating files
containing a number of real passwords taken from revealed password
sets.

6.1 Experimental Setup
The Govdocs1 digital corpus [3] was used as the source of files. This

corpus contains about one million freely redistributable files in many for-
mats. Five data disk images of different sizes (50 MB, 100 MB, 250 MB,
500 MB and 1 GB) were created with FAT filesystems. Each test disk
image modeled a real disk and corresponded to a subset of a typical com-
plete disk. A fairly large amount of space on a real disk is devoted to
the operating system, media files (videos, music, images) and installed
programs. The test disks only incorporated files that are likely to be
created by users (.doc, .xls, .pdf, etc.). The sizes of the data disk im-
ages correspond to the total sizes of these files. For example, the 1 GB
test data disk would likely have been derived from a 500 GB hard disk
belonging to a typical user. The numbers of files analyzed in the five
disks with sizes 50 MB, 100 MB, 250 MB, 500 MB and 1 GB were 108,
143, 426, 571 and 1,194, respectively.

Passwords were randomly selected from a revealed password set and
files were randomly selected for storing the passwords. Since no data
was available on how users store their passwords (either in one file or
many files or at the end of large files, etc.), attempts were made to be as
general as possible when adding the passwords. The experiments used
passwords from three well-known revealed password sets: one million
passwords from Rockyou [15], 300,000 from CSDN [9] and 300,000 from
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Table 1. Percentage token reduction per filter.

Disk Filter 50 MB 100 MB 250 MB 500 MB 1 GB

Non-Printable 0 0 0 0.0015 0
Length 59.65 65.57 60.34 40.75 53.08
Floating Point 1.05 0.45 20.71 46.87 28.21
Repeated Token 85.04 82.79 73.78 75.63 70.10
Word Punctuation 68.96 11.90 8.27 6.28 20.42
All-Alpha 77.89 73.11 60.66 31.95 33.71

Yahoo [12]. Interested readers are referred to Ma et al. [11] for statistical
information about these password sets.

6.2 Initial Filtering
Experiments were conducted to assess how the filters help reduce the

number of tokens. The initial filtering techniques described previously
were employed and the numbers of tokens obtained before and after
applying each of the initial filters for each disk size were recorded. The
most aggressive specialized filtering involving the removal of all alpha
strings was also applied.

Table 1 presents the results. Note that all the filters, except non-
printable, have a major impact on the results, reducing the large number
of tokens obtained from the hard disk to a much smaller and manageable
set. The non-printable filter turned out to be important in the next step
involving the computation of probabilities, but it was rarely useful for
token reduction. The order of application of the filters does not matter
(except for the time requirements) because the same results are obtained
regardless of the order in which filtering is performed.

Table 2. Token reduction by all filters.

50 MB 100 MB 250 MB 500 MB 1 GB

# Before Filtering (mil.) 2.45 2.16 6.76 28.84 49.41
# After Filtering (mil.) 0.07 0.050 0.25 1.38 3.21
Total Reduction (%) 97.15 97.68 96.35 95.21 93.50

Table 2 shows the numbers of tokens (in millions) before and after
filtering and the percentage reductions after all the filters were applied.
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6.3 Ranking Algorithms
Experiments were conducted to evaluate the results of the three rank-

ing algorithms. The Rockyou and CSDN revealed password sets were
used to provide passwords that were stored on the test disks. The initial
filters and the all-alpha filter were used in the experiments.

Some websites (e.g., Rockyou) did not enforce a password policy at
the time they were attacked. Consequently, a good number of passwords
in their lists have length less than seven or are alpha strings. Because
this series of experiments only sought to evaluate the ranking algorithms,
such passwords were not stored on the test disks. Specifically, five pass-
words were stored on each disk in one set of experiments and fifteen
passwords were stored in the second set of experiments. The assumption
was that users would typically store between five to fifteen passwords.
The passwords were stored either in a file or in a deleted file. The Yahoo
password set was used to train the probabilistic context-free grammar
that was used to calculate the probabilities of potential passwords.

For each combination of disk size, revealed set and number of pass-
words stored, the number of passwords that could be found using the
three algorithms (top overall, top percent and top 1-by-1) were deter-
mined. The results are presented in terms of N potential passwords
provided to the investigator, where N is 1,000, 2,000, 4,000, 8,000 and
16,000.

Table 3 shows the results of storing five and fifteen passwords from
CSDN. For example, the 1-by-1 algorithm, finds all five passwords in the
50 MB test data disk, three passwords in the 100 MB disk, two passwords
in the 250 MB disk, etc., within the top N = 1, 000 passwords returned
by the algorithm.

The results obtained when storing five passwords are discussed first.
When comparing the algorithms, given an N value and the number of
stored passwords, higher recall implies higher precision and both values
can be calculated from the number of passwords found. For example,
the average recall value for the 1-by-1 algorithm across different disk
sizes for N = 8, 000 is 92%; for the top percent algorithm, the average
recall value is 56%; and for the top overall algorithm, the average recall
value is 40%. This shows that the 1-by-1 algorithm has higher precision
and higher recall compared with the other algorithms.

The results obtained when storing fifteen passwords are similar. For
N = 8, 000, the average recall value of the 1-by-1 algorithm is 89.3%
across the various disk sizes. Table 3 shows that the 1-by-1 algorithm
has good performance and is better than the other algorithms.
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Table 3. Number of CSDN passwords found.

Disk 50 100 250 500 1 50 100 250 500 1
Size MB MB MB MB GB MB MB MB MB GB

N Out of 5 Passwords Out of 15 Passwords
1,

00
0 Overall 1 2 0 0 2 1 7 0 2 2

Percent 2 3 1 1 2 4 10 2 3 3
1-by-1 5 3 2 3 3 11 12 7 8 9

2,
00

0 Overall 1 2 0 0 2 1 9 0 2 2
Percent 5 3 1 1 2 9 10 2 4 5
1-by-1 5 4 2 3 4 12 14 9 9 11

4,
00

0 Overall 5 2 0 0 2 11 10 0 2 2
Percent 5 3 2 1 2 10 11 3 5 6
1-by-1 5 5 3 4 4 15 15 12 10 12

8,
00

0 Overall 5 3 0 0 2 13 11 0 2 2
Percent 5 3 2 1 3 11 11 8 5 8
1-by-1 5 5 4 4 5 15 15 13 10 14

16
,0

00

Overall 5 4 0 0 2 15 14 0 2 2
Percent 5 4 2 3 3 12 14 9 8 8
1-by-1 5 5 4 5 5 15 15 13 11 14

Table 4 shows the results for stored passwords from the Rockyou pass-
word set. When five passwords from Rockyou were stored, the average
recall value of the 1-by-1 algorithm for N = 8, 000 is 84%, for the top
percent algorithm the average recall value is 72% and for the top overall
algorithm the average recall value is 60%. In the case of a smaller N
value (N = 1, 000), the average recall value for the 1-by-1 algorithm
when fifteen passwords were stored is 81.3% and the average precision
is 1.2%.

The amount of time taken by each algorithm was also measured. The
total time taken for retrieving the tokens, filtering, ranking and returning
the top potential passwords from the 1 GB data disk was less than three
minutes. The total time for the smallest data disk (50 MB) was just
thirteen seconds.

Examination of the results in Tables 3 and 4 reveals that the 1-by-1
algorithm has the most consistent performance.

6.4 Specialized Filtering
The filters used in the experiments described above eliminated all the

alpha strings. This is reasonable because the vast majority of password
policies would disallow such passwords. Nevertheless, the experiments
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Table 4. Number of Rockyou passwords found.

Disk 50 100 250 500 1 50 100 250 500 1
Size MB MB MB MB GB MB MB MB MB GB

N Out of 5 Passwords Out of 15 Passwords
1,

00
0 Overall 1 2 3 3 2 8 9 8 8 9

Percent 3 2 1 2 0 8 10 4 3 2
1-by-1 4 4 4 4 2 13 13 12 13 10

2,
00

0 Overall 1 2 3 3 2 8 11 8 8 9
Percent 4 2 2 3 1 10 10 7 4 5
1-by-1 4 4 4 5 2 14 13 13 15 11

4,
00

0 Overall 4 3 3 3 2 14 12 8 8 9
Percent 4 4 3 5 2 13 13 9 10 6
1-by-1 4 5 4 5 2 14 14 13 15 11

8,
00

0 Overall 4 3 3 3 2 14 12 8 8 9
Percent 4 4 3 5 2 13 13 12 13 7
1-by-1 4 5 5 5 2 14 15 15 15 11

16
,0

00

Overall 5 4 3 3 2 15 13 8 8 9
Percent 4 4 4 5 2 14 13 13 14 7
1-by-1 5 5 5 5 2 15 15 15 15 11

described in this section examine whether less restrictive filtering of al-
pha strings is useful.

In particular, the experiments used the specialized filters described
previously to retain some of the alpha strings. The filters were applied
in addition to the initial filters. The experiments used the 1GB data
disk with fifteen stored passwords from the Rockyou set. Alpha string
passwords were permitted to be selected from the Rockyou set for stor-
age. Note that these passwords could potentially be filtered before the
identification process.

Table 5 shows the results for various specialized filters (N: no filter,
C: capitalization, M: multiwords, D: dictionary, S: sentences and A: all-
alphas). The numbers in parentheses correspond to how many of the
fifteen passwords stored on the disk remained after the filtering process.
For example, A (11) means that four of the fifteen passwords stored on
the disk were filtered by the all-alphas filter.

The multiwords filter (M) eliminates all single words (whether they
are dictionary words or not). The dictionary filter (D), however, only
eliminates single words included in the dictionary and retains multi-
words. Therefore, when applying the multiwords filter, a more limited
set of alpha strings is retained. The dictionary filter used a moderate-
sized English dictionary, which was designed for Scrabble-style computer
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Table 5. Comparing specialized filters.

N
(15)

C
(11)

M
(14)

D
(14)

S
(15)

A
(11)

Overall 0 2 0 0 0 5
N=1,000 Percent 1 1 3 3 2 1

1-by-1 2 2 4 4 0 8

Overall 0 2 0 0 0 5
N=2,000 Percent 1 2 3 3 2 2

1-by-1 2 2 4 5 0 10

Overall 0 2 0 0 0 5
N=4,000 Percent 2 3 3 3 3 4

1-by-1 2 2 5 5 1 10

Overall 0 2 0 0 0 5
N=8,000 Percent 4 4 5 5 3 7

1-by-1 2 2 7 7 1 10

Overall 0 2 0 0 0 5
N=16,000 Percent 4 4 5 5 3 7

1-by-1 4 5 8 8 7 10

word games; the dictionary was augmented with common names and
common words from television and movie scripts. The results without
any alpha string filtering (N) are also shown.

Table 5 shows that using less aggressive filters such as the multiwords
and dictionary filters reduces password loss due to filtering. However,
these filters are not as successful as the more aggressive approach of using
the all-alphas filter and subsequently identifying the passwords because
they retain too many alpha strings. Because of the large number of
alpha strings that appear in the final token list and because of the way
in which the probability of each token is calculated (words of the same
length have equal probability), a large number of alpha strings with
fairly high probabilities are obtained. Hence, when the top N potential
passwords are selected by the algorithms, many of the passwords are not
found as quickly as when all the alpha strings are filtered.

The sentences filter (S) is designed to reduce documents containing
text but, as noted previously, the tool that was used was unable to
distinguish between sentences and non-sentences. The results in Table 5
show that the sentences filter is not as useful as the other filters. Better
tools for identifying sentences render the sentences filter more useful for
password identification.
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Figure 1. Comparison of specialized filters for various N values.

The results in Table 5 also show that using all the filters is better
than using no filters. Also, the all-alphas filter is much more effective
than the other filters even though it may filter some passwords before
the identification process. Furthermore, as before, the 1-by-1 algorithm
has the best overall performance.

To assess how quickly passwords could be identified, the 1-by-1 al-
gorithm was used along with the various specialized alpha string filters
(in addition to the initial filters). Figure 1 shows plots of N versus the
recall value until all the passwords that can be found by a given filter
are obtained (the results are the averages of several runs). Note that
some filters cannot achieve a recall value of one because some of the
passwords were filtered before the identification process. For example,
the aggressive all-alphas filter may not be able to find all of the pass-
words, but, on the average, it finds nine of the fifteen passwords with a
recall of 0.6 and precision of 0.005 at N = 1, 659. In comparison, when
no specialized filters are applied, nine of the fifteen passwords are found
only at the very much higher N = 229, 671.

The results demonstrate that the filtering and identification approach
enables an investigator to find most of the passwords at a very small
value of N , eliminating the need to check a massive number of strings.
Note that if the aggressive filter is not successful, an investigator could
use a less aggressive filter. For example, using the dictionary filter, which
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Figure 2. Comparison of specialized filters for small N values.

loses fewer passwords and finds an average of nine of the fifteen passwords
at N = 36, 240, is still much better than not using a specialized filter.

By choosing an appropriate value of N , an investigator can move be-
tween the online and offline password cracking modes. In order to better
understand the implications of small values of N , Figure 2 presents the
results for initial values of N up to 2,000. Note that the all-alphas filter
identifies about half of the stored passwords within the first 500 tokens.
Even finding just one password on a disk can be very helpful to an
investigator because users often reuse a single password for multiple ac-
counts. Note that, for the all-alphas filter in Figure 1, the first password
was found on the average at N = 11.

Readers may be interested in seeing examples of the potential pass-
words returned by the 1-by-1 algorithm. Table 6 shows the top twenty
potential passwords and their associated probabilities when using the
all-alphas filter. Two of the fifteen passwords stored on the disk (i.e.,
lyndsay1 and blueberry1 ) are among the top twenty potential passwords
returned by the system. It is not clear how the filtering and ranking
could be improved because all the other potential passwords appear to
be possible passwords as well.
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Table 6. Top twenty passwords.

Rank Potential
Passwords

Probability Rank Potential
Passwords

Probability

1 charles1 6.384 E-6 11 pdprog1 5.370 E-8
2 include3 1.687 E-6 12 report1 5.370 E-8
3 program4 1.610 E-6 13 cielo123 5.080 E-8
4 carolina23 6.272 E-7 14 soldiers1 4.044 E-8
5 light20 1.112 E-7 15 bluberry1 4.044 E-8
6 program97 7.757 E-8 16 listeria1 4.044 E-8
7 lyndsay1 7.739 E-8 17 compendia1 3.110 E-8
8 decagon1 7.739 E-8 18 framework1 3.110 E-8
9 dogbloo1 7.739 E-8 19 alpha1s 2.972 E-8
10 example1 7.739 E-8 20 address2 2.538 E-8

7. Conclusions
The proposed technique involving a probabilistic context-free gram-

mar, specialized filters and ranking algorithms is very effective at iden-
tifying potential passwords stored on hard disks. Experiments demon-
strate that the technique can provide a relatively small list of tokens
that contain most of the stored passwords. For example, given approxi-
mately 49 million tokens from a large hard drive as input, the technique
was able to output an ordered potential password set of 2,000 tokens,
which contained nine of the fifteen stored passwords. Furthermore, the
technique can very quickly find at least a few of the passwords – on
the average, one password was found in the top eleven tokens and three
passwords in the top fifty tokens.

Future research will apply the technique to other devices and media,
including cell phones and USB drives. Also, the research will explore
other approaches for identifying and filtering sentences. The filters and
the ranking algorithms will also be adapted to leverage other information
such as the password policy and the names and dates of birth of family
members.
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