
HAL Id: hal-01446612
https://inria.hal.science/hal-01446612

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Theory of Integrating Tamper Evidence with
Stabilization

Reza Hajisheykhi, Ali Ebnenasir, Sandeep S. Kulkarni

To cite this version:
Reza Hajisheykhi, Ali Ebnenasir, Sandeep S. Kulkarni. A Theory of Integrating Tamper Evidence with
Stabilization. 6th Fundamentals of Software Engineering (FSEN), Apr 2015, Tehran, Iran. pp.84-99,
�10.1007/978-3-319-24644-4_6�. �hal-01446612�

https://inria.hal.science/hal-01446612
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Theory of Integrating Tamper Evidence with
Stabilization ⋆ ⋆⋆

Reza Hajisheykhi1, Ali Ebnenasir2, and Sandeep S. Kulkarni1

1 Computer Science and Engineering Department
Michigan State University

East Lansing, Michigan 48824, USA
{hajishey, sandeep}@cse.msu.edu
2 Department of Computer Science
Michigan Technological University
Houghton, Michigan 49931, USA

aebnenas@mtu.edu

Abstract. We propose the notion of tamper-evident stabilization –that
combines stabilization with the concept of tamper evidence– for com-
puting systems. On the first glance, these notions are contradictory;
stabilization requires that eventually the system functionality is fully
restored whereas tamper evidence requires that the system functional-
ity is permanently degraded in the event of tampering. Tamper-evident
stabilization captures the intuition that the system will tolerate pertur-
bation upto a limit. In the event that it is perturbed beyond that limit,
it will exhibit permanent evidence of tampering, where it may provide
reduced (possibly none) functionality. We compare tamper-evident sta-
bilization with (conventional) stabilization and with active stabilization
and propose an approach to verify tamper-evident stabilizing programs
in polynomial time. We demonstrate tamper-evident stabilization with
two examples and argue how approaches for designing stabilization can
be used to design tamper-evident stabilization. We also study issues of
composition in tamper-evident stabilization. Finally, we point out how
tamper-evident stabilization can effectively be used to provide tradeoff
between fault-prevention and fault tolerance.

Keywords: Self-stabilization, reactive systems, adversary, formal meth-
ods

1 Introduction

In this paper, we introduce the notion of tamper-evident stabilizing systems, and
study these systems in the context of composition, verification, and synthesis.
The notion of tamper-evident stabilizing systems is motivated by the need for

⋆ A brief announcement of this paper appears in SSS 2014.
⋆⋆ This work is supported by NSF CCF-1116546, NSF CNS 1329807, and NSF CNS

1318678.

0007560
Pencil

2 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

tamper-resistant systems that also stabilize. A tamper-resistant system ensures
that an effort to tamper with the system makes the system less useful/inoperable
(e.g., by zeroing out sensitive data in a chip or voiding the warranty). The notion
of tamper resistance is contradictory to the notion of stabilization in that the
notion of stabilization requires that in spite of any possible tampering the system
inherently acquires its usefulness eventually.

Intuitively, the notion of tamper-evident stabilization is based on the obser-
vation that all tamper-resistant systems tolerate some level of tampering without
making the system less useful/inoperable. For example, a tamper-resistant chip
may have a circuitry that does some rudimentary checks on the input and dis-
cards the input if the check fails. A communication protocol may use CRC to
ensure that most random bit-flips in the message are tolerated without affect-
ing the system. However, if the tampering is beyond acceptable level then they
become less useful/inoperable. Based on this intuition, we observe that a tamper-
evident stabilizing system will recover to its legitimate state if its perturbation
is within an acceptable limit. However, if it is perturbed outside this boundary,
it will make itself inoperable. Moreover, when the system enters the mode of
making itself inoperable, it is necessary that it cannot be prevented.

Thus, if the system is outside its normal legitimate states, it is in one of two
modes: recovery mode, where it is trying to restore itself to a legitimate state, or
tamper-evident mode, where it is trying to make itself inoperable. The recovery
mode is similar to the typical stabilizing systems in that the recovery should be
guaranteed after external perturbations stop. However, in the tamper-evident
mode, it is essential that the system makes itself inoperable even if outside
perturbations continue.

To realize the last requirement, we need to make certain assumptions about
what external perturbations can be performed during tamper-evident mode. For
example, if these perturbations could restore the system to a legitimate state
then designing tamper-evident stabilizing systems is impossible. Hence, we view
the system execution to consist of (1) program executions (in the absence of
fault and adversary); (2) program executions in the presence of faults; and (3)
program execution in the presence of adversary.

Faults are random events that perturb the system randomly and rarely. By
contrast, the adversary is actively preventing the system from making itself in-
operable. However, unlike faults, the adversary may not be able to perturb the
system to an arbitrary state. Also, unlike faults, adversary may continue to ex-
ecute forever. Even if the adversary executes forever, it is necessary that system
actions have some fairness during execution. Hence, we assume that the system
can make some number (in our formal definitions, we have this as strictly greater
than 1) of steps between two steps of the adversary.

The contributions of the paper are as follows. We

– formally define the notion of tamper-evident stabilization;
– compare the notion of tamper-evident stabilization with (conventional) sta-

bilization and active stabilization, where a system stabilizes in spite of the
interference of an adversary [7];

A Theory of Integrating Tamper Evidence with Stabilization 3

– explain the cost of automated verification of tamper-evident stabilization;

– present some theorems about composing tamper-evident stabilizing systems;

– identify how methods for designing stabilizing programs can be used in de-
signing tamper-evident stabilizing systems. We also identify potential obsta-
cles in using those methods, and

– identify potential applications of tamper-evident stabilization and illustrate
it with two examples.

Organization. The rest of the paper is organized as follows: In Section 2,
we present the preliminary concepts on stabilization. We introduce the notion
of tamper-evident stabilization, illustrate it with two examples, and compare it
with (conventional) stabilization and active stabilization in Section 3. Section 4
represents an algorithm for automatic verification of tamper-evident stabilizing
programs. We evaluate the composition of tamper-evident stabilizing systems
in Section 5 and discuss a design methodology for tamper-evident stabilizing
programs in Section 6. The relationship between tamper-evident stabilization
and other stabilizing techniques is discussed in Section 7, and finally, Section 8
concludes our paper.

2 Preliminaries

Our program modeling utilizes standard approach for defining interleaving pro-
grams, stabilization [3, 11, 12], and active stabilization [7]. A program includes
a finite set of variables with finite (or any finite abstraction of an infinite state
system) domain. It also includes guarded commands (a.k.a. actions) [11] that up-
date those program variables atomically. Since these internal variables are not
needed in the definitions involved in this section, we describe a program in terms
of its state space Sp, and its transitions δp ⊆ Sp × Sp, where Sp is obtained by
assigning each variable in p a value from its domain.

Definition 1 (Program). A program p is of the form ⟨Sp, δp⟩ where Sp is the
state space of program p and δp ⊆ Sp × Sp.

Definition 2 (State Predicate). A state predicate of p is any subset of Sp.

Definition 3 (Computation). Let p be a program with state space Sp and
transitions δp. We say that a sequence ⟨s0, s1, s2, ...⟩ is a computation iff

– ∀j ≥ 0 :: (sj , sj+1) ∈ δp

Definition 4 (Closure). A state predicate S of p = ⟨Sp, δp⟩ is closed in p iff
∀s0, s1 ∈ Sp :: (s0 ∈ S ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ S).

Definition 5 (Invariant). A state predicate S is an invariant of p iff S is
closed in p.

4 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

Remark 1. Normally, the definition of invariant (legitimate states) also includes
a requirement that computations of p that start from an invariant state are cor-
rect with respect to its specification. The theory of tamper-evident stabilization
is independent of the behaviors of the program inside legitimate states. Instead,
it only focuses on the behavior of p outside its legitimate states. We have defined
the invariant in terms of the closure property alone since it is the only relevant
property in the definitions/theorems/examples in this paper.

Definition 6 (Convergence). Let p be a program with state space Sp and
transitions δp. Let S and T be state predicates of p. We say that T converges to
S in p iff

– S ⊆ T ,
– S is closed in p,
– T is closed in p, and
– For any computation σ =⟨s0, s1, s2, ...⟩ of p if s0 ∈ T then there exists l such

that sl ∈ S.

Definition 7 (Stabilization). Let p be a program with state space Sp and tran-
sitions δp. We say that program p is stabilizing for invariant S iff Sp converges
to S in p.

Using the approach in [7, 15], we define the adversary as follows and define
the notion of tamper-evident stabilization with respect to the capabilities of the
given adversary in Section 3.

Definition 8 (Adversary). We define an adversary for program p = ⟨Sp, δp⟩
to be a subset of Sp × Sp.

Next, we define a computation of the program, say p, in the presence of the
adversary, say adv.

Definition 9 (⟨p, adv, k⟩-computation). Let p be a program with state space
Sp and transitions δp. Let adv be an adversary for program p and k be an integer
greater than 1. We say that a sequence ⟨s0, s1, s2, ...⟩ is a ⟨p, adv, k⟩-computation
iff

– ∀j ≥ 0 :: sj ∈ Sp, and
– ∀j ≥ 0 :: (sj , sj+1) ∈ δp ∪ adv, and
– ∀j ≥ 0 :: ((sj , sj+1) ̸∈ δp) ⇒ (∀l | j < l < j + k :: (sl, sl+1) ∈ δp)

Observe that a ⟨p, adv, k⟩-computation guarantees that there are at least
k− 1 program transitions/actions between any two adversary actions for k > 1.
Moreover, the adversary is not required to execute in a ⟨p, adv, k⟩-computation.

Remark 2 (Fairness among program transitions). The above definition and def-
inition 3 only consider fairness between program actions and adversary actions.
If a program requires fairness among its actions to ensure stabilization, they can
be strengthened accordingly. For reasons of space, this issue is outside the scope
of this paper.

A Theory of Integrating Tamper Evidence with Stabilization 5

Definition 10 (Convergence in the presence of adversary). Let p be a
program with state space Sp and transitions δp. Let S and T be state predicates
of p. Let adv be an adversary for p and let k be an integer greater than 1. We
say that T ⟨adv, k⟩-converges to S in p in the presence of adversary adv iff

– S ⊆ T ,
– S is closed in p ∪ adv,
– T is closed in p ∪ adv, and
– For any ⟨p, adv, k⟩-computation σ =⟨s0, s1, s2, ...⟩ if s0 ∈ T then there exists

l such that sl ∈ S.

Definition 11 (Active stabilization). Let p be a program with state space Sp

and transitions δp. Let adv be an adversary for program p and k be an integer
greater than 1. We say that program p is k-active stabilizing with adversary adv
for invariant S iff Sp ⟨p, adv, k⟩-converges to S in p.

3 Tamper-Evident Stabilization

This section defines the notion of tamper-evident stabilization, illustrates it in
the context of two examples, and compares it with the notion of (conventional)
stabilization and active stabilization.

3.1 The Definition of Tamper-Evident Stabilization

In this section, we define the notion of tamper-evident stabilization.

Definition 12 (Tamper-evident stabilization). Let p be a program with
state space Sp and transitions δp. Let adv be an adversary for program p. And,
let k be an integer greater than 1. We say that program p is k-tamper-evident
stabilizing with adversary adv for invariants ⟨S1, S2⟩ iff there exists a state
predicate T of p such that

– T converges to S1 in p
– ¬T ⟨adv, k⟩-converges to S2 in p.

From the above definition (especially closure of T and ¬T), it follows that S1
and S2 must be disjoint (See Figure 1(a)). In addition, tamper-evident stabiliza-
tion provides no guarantees about program behaviors if the adversary executes
in T .

Remark 3. Observe that in the above definition k must be greater than 1, as k=1
allows the adversary to prevent the program from executing entirely. In terms
of permitted values of k, k = 2 provides the maximum power to the adversary.
Hence, in most cases, in this paper we will consider k=2. In this case, we will
omit the value of k. In other words tamper-evident stabilizing is the same as
2-tamper-evident stabilizing.

6 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

(a) (b)

Fig. 1. (a) Structure of a tamper-evident stabilizing system, (b) Tamper-evident sta-
bilizing traffic controller program

Remark 4. Based on the definition of convergence, in the above definition, S1
should be a subset of T . Given this constraint, if S1 = T then it corresponds to
a pure tamper evident system. If such a system is perturbed to a non-legitimate
state then it is guaranteed to recover to S2 even in the presence of an adversary.
And, if T = Sp, then it corresponds to a stabilizing program (cf. Theorem 3).
Thus, tamper-evident stabilization captures a range of systems from the ones
that are pure tamper-evident and that are pure stabilizing.

The notion of tamper-evident stabilization prescribes the behavior of the
program from all possible states. In this respect, it is similar to the notion of
stabilizing fault tolerance. In [3], authors introduce the notion of nonmasking
fault tolerance; it only prescribes behaviors in a subset of states. We can extend
the notion of tamper-evident stabilization in a similar manner. We do so by
simply overloading the definition of tamper-evident stabilization.

Definition 13 (Tamper-evident stabilization in environment U). Let p
be a program with state space Sp and transitions δp. Let adv be an adversary for
program p, and U be a state predicate. Moreover, let k be an integer greater than
1. We say that program p is k-tamper-evident stabilizing with adversary adv for
invariants ⟨S1, S2⟩ in environment U iff there exists a state predicate T such that

– S1, S2, and T are subsets of U ,
– U is closed in p ∪ adv,
– U ⇒ (T converges to S1 in p),
– U ⇒ ¬T ⟨adv, k⟩-converges to S2 in p.

Observe that if U equals true then the above definition is identical to that
of Definition 12.

3.2 The Token Ring Program

This section describes the well-known token ring program [10] and then repre-
sent that this program is tamper-evident stabilizing. The program consists of N

A Theory of Integrating Tamper Evidence with Stabilization 7

processes arranged in a ring. Each process j, 0 ≤ j ≤ N−1, has a variable x.j
with the domain {0, 1, · · · , N−1}. To model the impact of adversary actions on
a process j, we add an auxiliary variable up.j, where process j has failed iff up.j
is false. We say, a process j, 1 ≤ j ≤ N−1, has the token iff processes j and j−1
have not failed and x.j ̸= x.(j−1). If process j, 1 ≤ j ≤ N−1, has a token then
it copies the value of x.(j−1) to x.j. The process 0 has the token iff processes 0
and N−1 have not failed and x.(N−1) = x.0. If process 0 has the token then it
increments its value in modulo N arithmetic (we show modulo N arithmetic by
notation +N). Thus, the actions of the program are as follows:

TR0 :: up.0 ∧ up.(N−1) ∧ x.0 = x.(N−1) −→ x.0 := (x.(N−1) +N 1)
TRj :: up.j ∧ up.(j−1) ∧ x.j ̸= x.(j−1) −→ x.j := x.(j−1);

Adversary action. The adversary can cause any process to fail. Hence, the
adversary action can be represented as

TRadv :: up.j −→ up.j := false

Tamper-evident stabilization of the program. To show that the token ring
program TR is tamper-evident stabilizing in the presence of the adversary TRadv,
we define the predicate Ttr and invariants S1tr and S2tr as follows:

Ttr = ∀j :: up.j
S1tr= Ttr ∧ (∀j : 1 ≤ j ≤ N − 1 : (x.j = x.(j − 1)) ∨ (x.(j − 1) = x.j +N 1))

∧ ((x.0 = x.(N − 1)) ∨ (x.0 = x.(N − 1) +N 1))
S2tr= ¬Ttr∧ (∀j : 1 ≤ j ≤ N − 1 : (up.j ∧ up.(j − 1)) ⇒ x.j = x.(j − 1))

∧ ((up.0 ∧ up.(N − 1)) ⇒ (x.0 ̸= x.(N − 1)))

Theorem 1. The token ring program TR is tamper-evident stabilizing with
adversary TRadv for invariants ⟨S1tr, S2tr⟩.

Proof. If Ttr is true then the program is essentially the same as the token ring
program from [11] and, hence, it stabilizes to S1tr. If Ttr is violated then the
token cannot go past failed process(es). Hence, S2tr would eventually be satisfied.
Note that for the second constraint, adversary action (that may fail a process)
cannot prevent the program from reaching S2tr. ⊓⊔

3.3 Tamper-Evident Stabilizing Traffic Controller Program

This section describes another tamper-evident stabilizing program that illus-
trates a traffic light program that (1) recovers to normal operation from per-
turbations that do not cause the system to reach an unsafe state, and (2) per-
manently preserves the evidence of tampering if perturbations cause the system
to reach an unsafe state. This example also illustrates why tamper-evident sta-
bilization is desirable over (conventional) stabilization in some circumstances.
Moreover, it can be used as a part of multiphase recovery [6] where a quick re-
covery is provided to safe states and complete recovery to legitimate states can
be obtained later (or with human intervention).

8 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

Description of the program. In this program, we have an intersection with
two one-way roads [5]. Each road is associated with a signal that can be either
green (G), yellow (Y), red (R), or flashing (F). As expected, in any normal state,
at least one of the signals should be red to ensure that traffic accidents do not
occur.

If such a system is perturbed by an adversary where an adversary can some-
how affect the signal operation causing safety violations then it is crucial that
such an occurrence is noted for potential investigation. (These adversary ac-
tions can be triggered with simple transient faults that reset clock variables. For
simplicity, we omit the cause of such adversary actions and only consider their
effects.) In this example, we consider the requirement that if both signals are
simultaneously yellow or green then the system must reach a state where both
signals are flashing to indicate a signal malfunction due to adversary.

Thus, this program consists of two variables sig0 and sig1. The program
consists of five actions: The first two actions are responsible for normal operation
where a signal changes from G to Y to R and back to G. The third action
considers the case where the system is perturbed outside legitimate states (e.g.,
by transient faults) and it is desirable that the system recovers from that state.
The fourth action considers the case where the adversary actions perturb the
system beyond an acceptable level and, hence, it is necessary that the system
enters the tamper-evident state. Thus, the program actions are as follows: (In
this program, j is instantiated to be either 0 or 1, and k is instantiated to be
1− j.)

TC1j :: (sigj = G) ∧ (sigk = R) −→ sigj = Y
TC2j :: (sigj = Y) ∧ (sigk = R) −→ (sigj = R) ∧ (sigk = G)
TC3j :: (sigj = R) ∧ (sigk = R) −→ (sigj = G)
TC4j :: ((sigj ̸= R) ∧ (sigk ̸= R)) ∨ (sigk = F) −→ (sigj = F)
TC5j :: (sigj = F) ∧ (sigk = F) −→ {notify the user that the system is in

S2}

Adversary actions. The adversary TCadv can cause a red signal to become
either yellow or green. Hence, the adversary actions can be represented as (j =
0, 1):

TCadv1 :: sigj = R −→ sigj = Y
TCadv2 :: sigj = R −→ sigj = G

Tamper-evident stabilization of the program. To show that the program
TC is tamper-evident stabilizing in the presence of adversary TCadv, we define
the predicate Ttc and invariants S1tc and S2tc as follows:

Ttc = ⟨((G,R), (Y,R), (R,G), (R, Y)), (R,R)⟩
S1tc = ⟨(G,R), (Y,R), (R,G), (R, Y)⟩
S2tc = ⟨(F, F)⟩

Theorem 2. The traffic controller program TC is tamper-evident stabilizing
with adversary TCadv for invariants ⟨S1tc, S2tc⟩.

A Theory of Integrating Tamper Evidence with Stabilization 9

Proof. If Ttc is true then the program is essentially the same as the traffic control
program from [5] and, hence, it stabilizes to S1tc. If the adversary TCadv violates
Ttc, the action TC4 can execute and one of the signals will be flashing. As a
result, the other signal would eventually become flashing and S2tr would be
satisfied (See Figure 1(b)). ⊓⊔

3.4 Stabilization, Tamper-evident Stabilization, and Active
Stabilization

In this section, we compare the notion of (conventional) stabilization, active sta-
bilization and tamper-evident stabilization. Specifically, Theorem 3 considers the
case where p is stabilizing and evaluates whether it is tamper-evident stabilizing,
and Theorem 4 considers the reverse direction. Relation with active stabilization
follows trivially from these theorems.

Theorem 3. If a program p is stabilizing for invariant S, then p is k-tamper-
evident stabilizing with adversary adv for invariants ⟨S, ∅⟩, for any adversary
adv and k ≥ 2.

Proof. To prove tamper-evident stabilization, we need to identify a value of T .
We set T = true, representing the state space of p. Now, we need to show that
Sp converges to S in p and ¬true ⟨adv, k⟩-converges to ϕ in p. Of these, the
former is satisfied since p is stabilizing for invariant S, and the latter is trivially
satisfied since ¬true corresponds to the empty set. ⊓⊔

Corollary 1. If program p is k-active stabilizing with adversary adv and k ≥ 2
for invariant S, then p is k-tamper-evident stabilizing with adversary adv for
invariants ⟨S, ∅⟩.

Note that, if there exists k and adv such that program p is k-active stabilizing
with adversary adv for invariant S, then p is stabilizing for invariant S.

Theorem 4. If program p = ⟨Sp, δp⟩ is k-tamper-evident stabilizing with ad-
versary adv for invariants ⟨S1, S2⟩, then p is stabilizing for invariant (S1∨S2).

Proof. Since program p is tamper-evident stabilizing, the two constraints in the
definition of tamper-evident stabilizing are true. If the program p starts from T ,
it converges to S1. If p starts from ¬T , in the presence or absence of adversary
adv, it converges to S2. This completes the proof. ⊓⊔

However, a similar result relating tamper-evident stabilization and active
stabilization is not valid. In other words, it is possible to have a program p that
is k-tamper-evident stabilizing with adversary adv for invariants ⟨S1, S2⟩ but it
is not k-active stabilizing with adversary adv for invariant (S1∨S2). This is due
to the fact that if the program begins in T then in the presence of the adversary,
there is no guarantee that it would recover to S1.

10 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

4 Verification of Tamper-evident Stabilization

To prove tamper-evident stabilization of a given program, we need to determine
the predicate T (from Definition 12). Based on Definition 12, from every state
in ¬T , we must eventually reach a state in S2. Hence, from ¬T , we cannot reach
a state in S1. Also, from every state in T , we must reach a state in S1. Thus,
the only possible choice for T is the states from where the program can reach
S1. Therefore, Algorithm 1 starts with the construction of T (Lines 1-3) and
checking the closure property of predicates T and ¬T , and invariants S1 and
S2 (Lines 4-6). Thereafter, we utilize CheckCycle() to detect if program p has
cycles in T − S1. Notice that if there is a cycle in a state predicate Y , then the
following is true for any state s0 in the cycle: ∃s1 ∈ Y : (s0, s1) ∈ p. As such,
the absence of any cycles in Y would require the negation of the aforementioned
expression to hold (see Line 16). This is the basic idea behind the CheckCycle
routine (Lines 15-19). If any states in T − S1 is not removed, it implies that
some of them form a cycle. If such a cycle exists then p is not tamper-evident
stabilizing.

Utilizing the ideas in [7], we construct p1 that considers the effect of adversary
adv and checks for cycles of p1 in ¬T − S2 (Line 8-9). In this construction,
reach(s0, s1, l) denotes that s1 can be reached from s0 by execution of exactly
l transitions of ¬T . If such cycles of p1 do not exist then p is tamper-evident
stabilizing.

Algorithm 1 Verification of tamper-evident stabilization
Input: program p = ⟨Sp, δp⟩, invariants S1 and S2, adversary adv.
Output: true or false.

1: T = S1
2: repeat T1 = T ; T = T1 ∪ {s0 | (s0, s1) ∈ δp ∧ s1 ∈ T}
3: until (T1 == T)
4: if ¬(CheckClosure(T , p) ∧ CheckClosure(¬T , p) ∧ CheckClosure(S1, p) ∧ CheckClosure(S2,

p)) then
5: return false
6: end if
7: if CheckCycle(T − S1, p) ̸= ∅ then return false end if
8: p1 = {(s0, s1) | (∃l : l ≥ k − 1 : reach(s0, s1, l)) ∨ (∃s2 : reach(s0, s2, l) ∧ (s2, s1) ∈ adv)}
9: if CheckCycle(¬T − S2, p1) ̸= ∅ then return false end if
10: return true

11: function CheckClosure(X, p)
12: if ∀s0, s1 ∈ Sp : (s0 ∈ X ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ X) then return true
13: else return false end if
14: end function
15: function CheckCycle(Y , p)
16: repeat Y 1 = Y ; Y = Y1 − {s0 | ∀s1 ∈ Y : (s0, s1) ̸∈ δp}
17: until (Y 1 == Y)
18: return Y
19: end function

Theorem 5. The following problem can be solved in polynomial time in |Sp|.3

3 For reason of space, proofs appear in [17].

A Theory of Integrating Tamper Evidence with Stabilization 11

Given a program p, adversary adv, and state predicates S1 and S2, is p
tamper-evident stabilizing with adversary adv for invariants ⟨S1, S2⟩?

5 Composing Tamper-evident Stabilization

In this section, we evaluate the composition of tamper-evident stabilizing sys-
tems by investigating different types of compositions considered for stabilizing
systems.

Parallel Composition. A parallel composition of two programs considers
the case where two independent programs are run in parallel on a weakly fair
scheduler so that each program is guaranteed to execute its enabled actions.
Weak fairness ensures that any action that is continuously enabled will be exe-
cuted infinitely often. Thus, during the parallel execution, the behavior of one
program does not affect the behavior of the other. Hence, if we have two pro-
grams p and q that do not share any variables such that p is stabilizing for S
and q is stabilizing for R then parallel composition of p and q is stabilizing for
S ∧R.

Now, we consider the case where we have two programs p and q that are
tamper-evident stabilizing for ⟨S1, S2⟩ and ⟨S1′, S2′⟩, and p and q do not share
any variables. Is the parallel composition of p and q (denoted by p[]q) also
tamper-evident stabilizing?

Theorem 6 (Parallel Composition). Given programs p and q that do not
share variables.

p is tamper-evident stabilizing with adversary adv for ⟨S1, S2⟩ ∧
q is tamper-evident stabilizing with adversary adv for ⟨S1′, S2′⟩
⇒
p[]q is tamper-evident stabilizing with adversary adv for ⟨S1 ∧ S1′, S2 ∨ S2′⟩

Note that in parallel composition of two tamper-evident stabilizing programs,
the first predicate is combined by conjunction whereas the second one is com-
bined by disjunction. However, we could make p[]q tamper-evident stabilizing
for ⟨S1 ∧ S1′, S2 ∧ S2′⟩ provided we add actions to p (respectively q) so that it
checks if q (respectively, p) is in a state in S2′ (respectively, S2). Accordingly, p
can change its own state to be in S2 (respectively, S2′).

Superposition. We can also superpose two tamper-evident stabilizing
systems in a similar manner. For example, consider the case where program p
is superposed on program q, i.e., p has read-only access to variables of q and q
does not have access to variables of p.

Theorem 7 (Superposition).

p is tamper-evident stabilizing with adversary adv for ⟨S1, S2⟩ in S1′ ∧
q is active stabilizing with adversary adv for S1′ ∧
q is tamper-evident stabilizing with adversary adv for ⟨S1′, S2′⟩ ∧
q is silent in S1′, i.e., q has no transition (except self-loops) in S1′ ∧

12 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

p is superposed on q
⇒
p[]q is tamper-evident stabilizing with adversary adv for ⟨S1, S2 ∨ S2′⟩.

Transitivity. Tamper-evident stabilization preserves transitivity in a man-
ner similar to stabilizing programs. Specifically,

Theorem 8 (Transitivity 1).

p is tamper-evident stabilizing with adversary adv for ⟨S1, S2⟩ in U ∧
p is tamper-evident stabilizing with adversary adv for ⟨S1′, S2′⟩ in S1
⇒
p is tamper-evident stabilizing with adversary adv for ⟨S1′, S2⟩ in U , and
p is tamper-evident stabilizing with adversary adv for ⟨S1′, S2 ∨ S2′⟩ in U .

We can also infer transitivity property by the following theorem.

Theorem 9 (Transitivity 2).

p is tamper-evident stabilizing with adversary adv for ⟨S1, S2⟩ ∧
S1 converges to S1′ in p ∧
S2 ⟨adv, k⟩-converges to S2′ in p
⇒
p is tamper-evident stabilizing with adversary adv for ⟨S1′, S2′⟩.

6 Designing Tamper-evident Stabilization by Local
Detection and Global/Local Correction

In this section, we identify some possible approaches for designing tamper-
evident stabilization. Specifically, we evaluate the use of some of the existing
approaches for designing stabilization in designing tamper-evident stabilization.

Local Detection and Global Correction One approach for designing
stabilization is via local detection and global correction. In such a system, the
invariant S of the system is of the form ∀j : S.j, where S.j is a local predicate
that can be checked by process j. Each process j is responsible for checking
its own predicate. If the system is outside the legitimate state then the local
predicate of at least one process is violated. Hence, this process is responsible
for initiating a global correction (such as distributed reset [19]) to restore the
system to a legitimate state.

A similar approach is also applicable for tamper-evident stabilization. For
example, consider the case where the predicates involved in defining tamper-
evident stabilization are S1 = ∀j :: S1.j, S2 = ∀j :: S2.j, and T = ∀j :: T.j.
Based on the problem of tamper-evident stabilization, we have ∀j :: (S1.j ⇒
T.j) ∧ (S2.j ⇒ ¬T.j) ∧ ¬(S1.j ∧ S2.j).

In this case, the actions of process j to obtain tamper-evident stabilization
is as follows:

¬T.j ∧ ¬S2.j −→ Satisfy S2.j

A Theory of Integrating Tamper Evidence with Stabilization 13

T.j ∧ ¬S1.j −→ Initiate global correction to restore S1

To utilize such an approach to design tamper-evident stabilization, we need
to make some changes to global correction and put some reasonable constraints
on what an adversary can do. In particular, the global correction to restore
S1 involves changes to all processes. For tamper-evident stabilization, however,
process j will execute its part in global correction only if T.j is true. Also, if
process j observes that T.k is false for some neighbor k then j will satisfy S2.j.
This will guarantee that if T.j is false for some process then the program will
eventually reach a state in S2. The definition of tamper-evident stabilization
requires that ¬T is closed in the adversary actions. This assumption is essential
since if the adversary could move the system from a state in ¬T to T then the
system would have forgotten that it was tampered beyond acceptable levels. In
the context of this example, it would be necessary that the adversary cannot
cause the program to start in a state where T.j is false for some process j and
the adversary causes j to move to a state where T.j is true.

Local Detection and Local Correction We can also utilize the above
approach in the context of local detection and local correction [3] to add tamper-
evident-stabilization if invariant S1 is of the form ∀j :: S1.j, predicates of dif-
ferent processes are arranged in a partial order, and actions that correct S1.j
preserve all predicates that come earlier in the order. In such a system when
process j finds that T.j ∧ ¬S1.j is true it only locally satisfies S1.j. Given that
we have a partial order, eventually we reach a state where S.j is true in all states.

Effect of the structure of the predicate T . Intuitively, in tamper-evident
stabilization, we have two convergence requirements. T converges to S1 and ¬T
converges to S2 in the presence of an adversary. If T is a conjunctive predicate
then ¬T is a disjunctive predicate. Hence, a reader may wonder what would
happen if T were a disjunctive predicate instead of a conjunctive predicate. We
argue that this is likely to be a harder problem than the case where T is a
conjunctive predicate.

7 The Relationship between Tamper-evident Stabilization
and other Stabilization Techniques

Starting with Dijkstra’s seminal work [10] on stabilizing algorithms for token cir-
culation, several variations of stabilizing algorithms have been proposed during
the past decades. These algorithms can be classified into two categories: stronger
stabilizing and weaker stabilizing algorithms.

The algorithms in the first category not only guarantee stabilization but
also satisfy some additional properties. Examples of this category include fault-
containment stabilization, byzantine stabilization, Fault-Tolerant Self Stabiliza-
tion (FTSS), multitolerance, and active stabilization. Fault-containment sta-
bilization (e.g., [14, 25]) refers to stabilizing programs that ensure that if one
(respectively small number of) fault occurs then quick recovery is provided to
the invariant. Byzantine stabilizing (e.g., [21, 22]) programs tolerate the sce-

14 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

narios where a subset of processes is byzantine. FTSS (e.g., [4]) covers stabi-
lizing programs that tolerate permanent crash faults. Multitolerant stabilizing
(e.g., [13, 19]) systems ensure that, in addition to stabilization, the program
masks a certain class of faults. Finally, active stabilization [7] requires that the
program should recover to the invariant even if it is constantly perturbed by an
adversary.

By contrast, a stabilizing program satisfies the constraints of weaker versions
of stabilization. However, a program that provides a weaker version of stabiliza-
tion may not be stabilizing. Examples of this include weak stabilization, prob-
abilistic stabilization, and pseudo stabilization. Weak stabilization (e.g., [9, 16])
requires that starting from any initial configuration, there exists an execution
that eventually reaches a point from which its behavior is correct. However, the
program may execute on a path where such a legitimate state is never reached.
Probabilistic stabilization [18] refers to problems that ensure that starting from
any initial configuration, the program converges to its legitimate states with
probability 1. Nonmasking fault tolerance (e.g., [1,2]) targets the programs where
the program recovers from states reached in the presence of a limited class of
faults. However, this limited set of states may not cover the set of all states.
Pseudo stabilization [8] relaxes the notion of points in the execution from which
the behavior is correct. In other words, every execution has a suffix that exhibits
correct behavior, yet time before reaching this suffix is unbounded.

The aforementioned stabilizing algorithms consider several problems includ-
ing mutual exclusion, leader election, consensus, graph coloring, clustering, rout-
ing, and overlay construction. However, none of them considers problem of tam-
pering (e.g., [20, 23, 24]). In part, this is due to the fact that stabilization and
tamper evidence are potentially conflicting requirements.

Tamper-evident stabilization is in some sense a weaker version of stabilization
in that from Theorem 3 every stabilizing program is also tamper-evident stabi-
lizing. In particular, a stabilizing program guarantees that from all states pro-
gram would eventually recover to legitimate states. By contrast, tamper-evident
stabilizing program gives the option of recovering to tamper-evident states. (Al-
though Theorem 4 suggests that every tamper-evident stabilizing program can
be thought of as a stabilizing program, the invariant of such a stabilizing program
is of the form ⟨S1, S2⟩, where S2 includes states that the system has no/reduced
functionality.)

Tamper-evident stabilization is stronger than the notion of nonmasking fault
tolerance. In particular, nonmasking fault-tolerance also has the notion of fault-
span (similar to T in Definition 12) from where recovery to the invariant is
provided. In tamper-evident stabilization, if the program reaches a state in ¬T ,
it is required that it stays in ¬T . By contrast, in nonmasking fault-tolerance,
the program may recover from ¬T to T .

Tamper-evident stabilization can be considered as a special case of nonmasking-
failsafe multitolerance, where a program that is subject to two types of faults
Ff and Fn provides (i) failsafe fault tolerance when Ff occurs, (ii) nonmasking
tolerance in the presence of Fn, and (iii) no guarantees if both Ff and Fn occur

A Theory of Integrating Tamper Evidence with Stabilization 15

in the same computation. We have previously identified [13] sufficient conditions
for efficient stepwise design of failsafe-nonmasking multitolerant systems, where
Ff and Fn do not occur simultaneously and their scopes of perturbation outside
the invariant are disjoint. Based on the role of T in Definition 12, we can ensure
that these conditions are satisfied (Due to reasons of space, this proof is beyond
the scope of the paper) for tamper-evident stabilization. This suggests that effi-
cient algorithms can be designed for tamper-evident stabilization based on the
approach in [13].

8 Conclusion and Future Work

This paper introduces the notion of tamper-evident stabilization that captures
the requirement that if a system is perturbed within an acceptable limit then it
restores itself to legitimate states. However, if it is perturbed beyond this bound-
ary then it permanently preserves evidence of tampering. Moreover, the latter
operation is unaffected even if the adversary attempts to stop it. We formally
defined tamper-evident stabilization and investigated how it relates to stabi-
lization and active stabilization. We argued that tamper-evident stabilization
is weaker than stabilization in that every stabilizing system is indeed tamper-
evident stabilizing. Also, tamper-evident stabilization captures a spectrum of
systems from pure tamper-evident systems to pure stabilizing systems. We also
demonstrated two examples where we design tamper-evident stabilizing token
passing and traffic control protocols. We identified how methods for design-
ing stabilizing programs can be leveraged to design tamper-evident stabilizing
programs. We showed that the problem of verifying whether a given program is
tamper-evident stabilizing is polynomial in the state space of the given program.
We note that the problem of adding tamper-evident stabilization to a given high
atomicity program can be solved in polynomial time. However, the problem
is NP-hard for distributed programs. Moreover, we find that parallel composi-
tion of tamper-evident stabilizing systems works in a manner similar to that
of stabilizing systems. Nevertheless, superposition or transitivity requirements
of tamper-evident stabilization are somewhat different than that for stabilizing
systems.

We are currently investigating the design and analysis of tamper-evident
stabilizing System-on-Chip (SoC) systems in the context of the IEEE SystemC
language. Our objective here is to design systems that facilitate reasoning about
what they do and what they do not do in the event of tampering. Second, we
will leverage our existing work on model repair and synthesis of stabilization in
automated design of tamper-evident stabilization. Third, we plan to study the
application of tamper-evident stabilization in game theory (and vice versa).

References

1. A. Arora. Efficient reconfiguration of trees: A case study in methodical design of
nonmasking fault-tolerant programs. In FTRTFT, pages 110–127, 1994.

16 Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

2. A. Arora, M. Gouda, and G. Varghese. Constraint satisfaction as a basis for
designing nonmasking fault-tolerant systems. Journal of High Speed Networks,
5(3):293–306, 1996.

3. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015–
1027, 1993.

4. J. Beauquier and S. Kekkonen-Moneta. On ftss-solvable distributed problems. In
WSS, pages 64–79, 1997.

5. B. Bonakdarpour and S. S. Kulkarni. Compositional verification of fault-tolerant
real-time programs. In EMSOFT, pages 29–38, 2009.

6. B. Bonakdarpour and S. S. Kulkarni. On the complexity of synthesizing relaxed
and graceful bounded-time 2-phase recovery. In FM, pages 660–675, 2009.

7. B. Bonakdarpour and S. S. Kulkarni. Active stabilization. In SSS, pages 77–91,
2011.

8. J.E. Burns, M. Gouda, and R.E. Miller. Stabilization and pseudo-stabilization.
Distributed Computing, 7(1):35–42, 1993.

9. S. Devismes, S. Tixeuil, and M. Yamashita. Weak vs. self vs. probabilistic stabi-
lization. In ICDCS, pages 681–688, 2008.

10. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

11. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1990.
12. S. Dolev. Self-Stabilization. MIT Press, 2000.
13. A. Ebnenasir and S. S. Kulkarni. Feasibility of stepwise design of multitolerant

programs. TOSEM, 21(1):1–49, December 2011.
14. S. Ghosh and A. Gupta. An exercise in fault-containment: Self-stabilizing leader

election. Information Processing Letters, 59(5):281–288, 1996.
15. M. Gouda. Elements of security: Closure, convergence, and protection. Information

Processing Letters, 77(24):109 – 114, 2001. In honor of Edsger W. Dijkstra.
16. M. Gouda. The theory of weak stabilization. In International Workshop on Self-

Stabilizing Systems, volume 2194, pages 114–123, 2001.
17. R. Hajisheykhi, A. Ebnenasir, and S. Kulkarni. Tamper-evident stabilization. Tech-

nical Report MSU-CSE-14-4, June 2014.
18. A. Israeli and M. Jalfon. Token management schemes and random walks yield

self-stabilizing mutual exclusion. In PODC, pages 119–131, 1990.
19. S. Kulkarni and A. Arora. Multitolerance in distributed reset. Chicago Journal of

Theoretical Computer Science, 1998(4), December 1998.
20. D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C. Mitchell, and

M. Horowitz. Architectural support for copy and tamper resistant software. In
ASPLOS, pages 168–177, 2000.

21. Mahyar R. Malekpour. A byzantine-fault tolerant self-stabilizing protocol for dis-
tributed clock synchronization systems. In SSS, pages 411–427, 2006.

22. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In SRDS,
pages 22–31, 2002.

23. Sean W. Smith and Steve Weingart. Building a high-performance, programmable
secure coprocessor. Computer Networks, 31(8):831–860, 1999.

24. G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Aegis: architec-
ture for tamper-evident and tamper-resistant processing. In ICS, pages 160–171,
2003.

25. H. Zhang and A. Arora. Guaranteed fault containment and local stabilization in
routing. Computer Networks, 50(18):3585–3607, 2006.

